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Subsection 1

Smooth Manifolds
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Hyperbolic Dynamics I Smooth Manifolds

Differentiable Structures

Definition

A set M is said to admit a differentiable structure of dimension n ∈ N if
there exist injective maps

ϕi : Ui → M in open sets Ui ⊆ R
n, i ∈ I ,

such that:

1.
⋃

i∈I ϕi (Ui) = M;

2. For any i , j ∈ I , such that V = ϕi (Ui ) ∩ ϕj (Uj) 6= ∅, the preimages
ϕ−1
i (V ) and ϕ−1

j (V ) are open and the map ϕ−1
j ◦ ϕi is of class C

1.

Each map ϕi : Ui → M is called a chart or a coordinate system.

Given a differentiable structure on M, we consider the topology on M

formed by the sets A ⊆ M, such that

ϕ−1
i A ⊆ R

n is open for every i ∈ I .
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Hyperbolic Dynamics I Smooth Manifolds

Smooth Manifolds

A topological space is said to be Hausdorff if any distinct points have
disjoint open neighborhoods.

A topological space is said to have a countable basis if there exists
a countable family of open sets such that each open set can be
written as a union of elements of this family.

Definition

A set M is said to be a (smooth) manifold of dimension n if:

It admits a differentiable structure of dimension n;

It is a Hausdorff topological space;

It has a countable basis.
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Hyperbolic Dynamics I Smooth Manifolds

Example

Let ϕ : U → R
m be a function of class C 1 in an open set U ⊆ R

n.

Then the graph

M = {(x , ϕ(x)) : x ∈ U} ⊆ R
n ×R

m

is a manifold of dimension n.

A differentiable structure is given by the single map
ψ : U → R

n ×R
m defined by

ψ(x) = (x , ϕ(x)).
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Hyperbolic Dynamics I Smooth Manifolds

Example

The set
T = {(x , y) ∈ R

2 : x2 + y2 = 1}
is a manifold of dimension 1.

A differentiable structure is given by the maps ϕi : (−1, 1) → T,
i = 1, 2, 3, 4, defined by

ϕ1(x) = (x ,
√
1− x2), ϕ2(x) = (x ,−

√
1− x2),

ϕ3(x) = (
√
1− x2, x), ϕ4(x) = (−

√
1− x2, x).

We note that T can be identified with S1.

In particular, the map χ : S1 → T defined by

χ(x) = (cos (2πx), sin (2πx))

is a homeomorphism.
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Hyperbolic Dynamics I Smooth Manifolds

Example

The torus Tn = Sn is a manifold of dimension n.

Recall the maps ϕi : (−1, 1) → T, i = 1, 2, 3, 4, defined by

ϕ1(x) = (x ,
√
1− x2), ϕ2(x) = (x ,−

√
1− x2),

ϕ3(x) = (
√
1− x2, x), ϕ4(x) = (−

√
1− x2, x).

A differentiable structure is given by the maps ψ : (−1, 1)n → T
n,

defined by

ψ(x1, . . . , xn) = ((χ−1 ◦ ψ1)(x1), . . . , (χ
−1 ◦ ψn)(xn)),

where each ψi is any of the functions ϕ1, ϕ2, ϕ3 and ϕ4.
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Hyperbolic Dynamics I Smooth Manifolds

Differentiable Maps

Definition

A map f : M → N between manifolds is said to be differentiable at a

point x ∈ M if there exist charts

ϕ : U → M and ψ : V → N,

such that:

1. x ∈ ϕ(U) and f (ϕ(U)) ⊆ ψ(V );

2. ψ−1 ◦ f ◦ ϕ is differentiable at ϕ−1(x).

Moreover, f is said to be of class C k in an open set W ⊆ M if all maps
ψ−1 ◦ f ◦ ϕ are of class C k in ϕ−1(W ).
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Hyperbolic Dynamics I Smooth Manifolds

Tangent Vectors

Let M be a manifold of dimension n.

Let Dx be the set of all functions g : M → R that are differentiable
at x ∈ M.

Definition

The tangent vector to a differentiable path α : (−ε, ε) → M, with
α(0) = x at t = 0, is the function vα : Dx → R defined by

vα(g) =
d(g ◦ α)

dt

∣

∣

∣

∣

t=0

.

We also say that vα is a tangent vector at x .
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Hyperbolic Dynamics I Smooth Manifolds

Tangent Spaces and Tangent Bundles

One can show that the set TxM of all tangent vectors at x is a vector
space of dimension n.

The space TxM is called the tangent space of M at x .

Moreover, the set

TM = {(x , v) : x ∈ M, v ∈ TxM}

is a manifold of dimension 2n.

TM is called the tangent bundle of M.

George Voutsadakis (LSSU) Dynamical Systems May 2024 11 / 65



Hyperbolic Dynamics I Smooth Manifolds

Differentiable Structure on the Tangent Bundle

Let ϕ : U → M be a chart.

Let (x1, . . . , xn) be the coordinates in U.

Let
(e1, . . . , en)

is the standard basis of Rn.

Consider the differentiable paths αi : (−ε, ε) → M for i = 1, . . . , n,
defined by

αi (t) = ϕ(tei ).

The tangent vector to the path αi at t = 0 is denoted by ∂
∂xi

.
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Hyperbolic Dynamics I Smooth Manifolds

Differentiable Structure on the Tangent Bundle (Cont’d)

One can show that
(

∂

∂x1
, . . . ,

∂

∂xn

)

is a basis of the tangent space Tϕ(0)M.

Moreover, a differentiable structure on

TM = {(x , v) : x ∈ M, v ∈ TxM}

is given by the maps
ψ : U ×R

n → TM

defined by

ψ(x1, . . . , xn, y1, . . . , yn) =

(

ϕ(x1, . . . , xn),
n
∑

i=1

yi
∂

∂xi

)

.
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Hyperbolic Dynamics I Hyperbolic Sets

Subsection 2

Hyperbolic Sets
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Hyperbolic Dynamics I Hyperbolic Sets

The Setup

A diffeomorphism of a manifold M is an invertible C 1 map
f : M → M, whose inverse is also of class C 1.

Let f : M → M be a C 1 diffeomorphism of a manifold M.

For each x ∈ M, define a linear transformation

dx f : TxM → Tf (x)M

between the tangent spaces TxM and Tf (x)M by

dx fv = vf ◦α,

for any differentiable path α : (−ε, ε) → M, such that α(0) = x and
vα = v .

One can show that the definition does not depend on the path α.
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Hyperbolic Dynamics I Hyperbolic Sets

Riemannian Manifolds

We always assume that M is a Riemannian manifold.

That is, each tangent space TxM is equipped with an inner product
〈·, ·〉x , such that the map

TM ∋ (x , v) 7→ 〈v , v〉x

is differentiable.

This inner product induces the norm

‖v‖x = 〈v , v〉1/2x , v ∈ TxM.

For simplicity of notation, we always write 〈·, ·〉 and ‖·‖, without
indicating the dependence on x (deduced from the context).
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Hyperbolic Dynamics I Hyperbolic Sets

Hyperbolic Sets

Definition

A compact f -invariant set Λ ⊆ M is said to be a hyperbolic set for f if
there exist λ ∈ (0, 1), c > 0, and a decomposition

TxM = E s(x)⊕ Eu(x),

for each x ∈ Λ, such that:

1.
dx fE

s(x) = E s(f (x)) and dx fE
u(x) = Eu(f (x));
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Hyperbolic Dynamics I Hyperbolic Sets

Hyperbolic Sets (Cont’d)

Definition (Cont’d)

2. If v ∈ E s(x) and n ∈ N, then

‖dx f nv‖ ≤ cλn‖v‖;

3. If v ∈ Eu(x) and n ∈ N, then

‖dx f −nv‖ ≤ cλn‖v‖.

The linear spaces E s(x) and Eu(x) are called, respectively, the stable and
unstable spaces at the point x .
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Hyperbolic Dynamics I Hyperbolic Sets

Example

Let a ∈ (0, 1) and b > 1.

Define the linear transformation f : R2 → R
2 by

f (x , y) = (ax , by).

We have f (0) = 0. Hence, the origin is a fixed point.

Consider the decomposition R
2 = E s ⊕ Eu, where:

E s is the horizontal axis;
E u is the vertical axes.

Consider the linear transformation

A = d0f = f .
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Hyperbolic Dynamics I Hyperbolic Sets

Example (Cont’d)

For the linear transformation

A = d0f = f

we have:

1. AE s = E s and AE u = E u;
2. ‖Av‖ ≤ a‖v‖, for v ∈ E s ;
3. ‖A−1v‖ ≤ b−1‖v‖, for v ∈ E u.

Take λ = max {a, b−1} and c = 1.

We see that {0} ⊆ R
2 is a hyperbolic set for the diffeomorphism f .
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Hyperbolic Dynamics I Hyperbolic Sets

The Smale Horseshoe

Let f be a diffeomorphism on an open neighborhood of the square
Q = [0, 1]2 with the behavior shown on he left.

We consider the following horizontal and vertical strips, for some
constant a ∈ (0, 12).

H1 = [0, 1] × [0, a], H2 = [0, 1] × [1− a, 1];

V1 = [0, a]× [0, 1], V2 = [1− a, 1]× [0, 1].
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Hyperbolic Dynamics I Hyperbolic Sets

The Smale Horseshoe (Cont’d)

We assume that f (H1) = V1 and f (H2) = V2.

This yields the identity

Q ∩ f (Q) = V1 ∪ V2.

We also assume that the restrictions f |H1
and f |H2

are affine, with

f (x , y) =

{

(ax , by), if (x , y) ∈ H1

(−ax + 1,−by + b), if (x , y) ∈ H2
, b =

1

a
.

We shall see that the construction of the Smale horseshoe only
depends on the restriction f |H1∪H2

.
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Hyperbolic Dynamics I Hyperbolic Sets

The Smale Horseshoe (Cont’d)

Now we consider the diffeomorphism f −1.

We have f −1(V1) = H1 and f −1(V2) = H2.

Taking into account Q ∩ f (Q) = V1 ∪ V2, we get

f −1(Q) ∩ Q = f −1(V1) ∪ f −1(V2) = H1 ∪ H2.

From these two relations, we get

1
⋂

k=−1

f n(Q) = (H1 ∪ H2) ∩ (V1 ∪ V2).

So f −1(Q) ∩ Q ∩ f (Q) is the union of four
squares of size a.
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Hyperbolic Dynamics I Hyperbolic Sets

The Smale Horseshoe (Cont’d)

We iterate this procedure, i.e., consider successively the images f n(Q)
and the preimages f −n(Q). The intersection

Λn =
n
⋂

k=−n

f k(Q)

is the union of 4n squares of size an.

Now Λn is a decreasing sequence of nonempty closed sets.

Thus, the compact set Λ =
⋂

n∈N Λn =
⋂

k∈Z f k(Q) is nonempty.

It is called a Smale horseshoe (for f ).
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Hyperbolic Dynamics I Hyperbolic Sets

The Smale Horseshoe (Cont’d)

Clearly, the set Λ has no interior points since the diameters of the 4n

squares in Λn tend to zero when n → ∞.

One can also verify that Λ has no isolated points.

Hence, it is a Cantor set (closed with neither interior nor isolated
points).
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Hyperbolic Dynamics I Hyperbolic Sets

Hyperbolic Character of the Smale Horseshoe

Proposition

Λ is a hyperbolic set for the diffeomorphism f .

We have
Λ =

⋂

k∈Z

f k(Q).

So Λ is f -invariant, i.e., f −1Λ = Λ.

On the other hand, by the definition of f , we have:

dx f =

(

a 0
0 b

)

, for x ∈ H1;

dx f =

(

−a 0
0 −b

)

, for x ∈ H2.
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Hyperbolic Dynamics I Hyperbolic Sets

Hyperbolic Character of the Smale Horseshoe (Cont’d)

For each x ∈ Λ, we consider the decomposition

R
2 = E s(x) ⊕ Eu(x),

where E s(x) is the horizontal and Eu(x) the vertical axis.

The matrices for dx f are diagonal.

So we get

dx fE
s(x) = E s(f (x)) and dx fE

u(x) = Eu(f (x)).

Moreover, by the matrix expressions,

‖dx fv‖ =

{

a‖v‖, if v ∈ E s(x),
b‖v‖, if v ∈ Eu(x).

We take λ = a and c = 1 in the definition of a hyperbolic set.
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Hyperbolic Dynamics I Hyperbolic Sets

A Second Construction

let g be a diffeomorphism on an open neighborhood of the square Q

with the behavior shown.

Assume g(H1) = V1, g(H2) = V2.
Moreover, let

g(x , y)

=

{

(x3 , 3y), if (x , y) ∈ H1,

(x3 + 2
3 , 3y − 2), if (x , y) ∈ H2.

Then the compact g -invariant set Λg =
⋂

n∈Z gn(Q) cincides with
the Λ of the Smale’s horseshoe.

Proposition

Λg is a hyperbolic set for the diffeomorphism g .
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Hyperbolic Dynamics I Hyperbolic Sets

A More General Construction

Let h be a diffeomorphism on an open neighborhood of the square Q,
such that Q ∩ h(Q) has a finite number of connected components.

More precisely, consider pairwise disjoint
closed horizontal strips H1, . . . ,Hm ⊆ Q

(figure shows m = 3).
We assume that the images Vi = h(Hi ),
for i = 1, . . . ,m, are vertical strips in Q

(necessarily disjoint since h is invertible).

Moreover, we assume that h |Hi
is an affine transformation of the form

h |Hi
(x , y) = (λix + ai , µiy + bi ),

for i = 1, . . . ,m, with |λi | < 1 and |µi | > 1.

Let µ = max {|λi |, |µi |−1 : i = 1, . . . ,m}.
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Hyperbolic Dynamics I Hyperbolic Sets

A More General Construction (Cont’d)

For each n ∈ N, consider the intersection

Λh
n =

n
⋂

k=−n

hk(Q).

It is the union of m2n rectangles with sides of length at most µn.

Consider, moreover, the compact h-invariant set

Λh =
⋂

n∈Z

hn(Q).

Λh has no interior points.

We can also verify that Λh has no isolated points.

Proposition

Λh is a hyperbolic set for the diffeomorphism h, taking λ = µ and c = 1.
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Hyperbolic Dynamics I Hyperbolic Sets

Distance Between Subspaces

Let E ⊆ R
p and v ∈ R

p .

Define
d(v ,E ) = min {‖v − w‖ : w ∈ E}.

Moreover, given subspaces E ,F ⊆ R
p, we define

d(E ,F ) = max

{

max
v∈E ,‖v‖=1

d(v ,F ), max
w∈F ,‖w‖=1

d(w ,E )

}

.
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Hyperbolic Dynamics I Hyperbolic Sets

Example

Let E ,F ⊆ R
2 be subspaces of dimension 1.

Then
d(E ,F ) = sinα,

where α ∈ [0, π2 ] is the angle between E and F .
Indeed, in this case, we have:

max
v∈E ,‖v‖=1

d(v ,F ) = d(vE ,F ),

where vE ∈ E is any vector with norm 1;

max
v∈F ,‖w‖=1

d(w ,E ) = d(vF ,E ),

where vF ∈ F is any vector with norm 1.

These numbers coincide.

Hence,
d(E ,F ) = d(vE ,F ) = d(vF ,E ) = sinα.
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 1: Sublimits of Sequences of Unit Length

Lemma

Let Λ ⊆ R
p be a hyperbolic set and x ∈ Λ. Consider the stable and

unstable spaces E s(x) and Eu(x). Let xm ∈ Λ, for all m ∈ N, such that
xm → x when m → ∞. Any sublimit of a sequence vm ∈ E s(xm) ⊆ R

p,
with ‖vm‖ = 1 is in E s(x).

Note that the closed unit sphere of Rp is compact.

So the sequence vm has sublimits.

Sincevm ∈ E s(xm), we have

‖dxm f nvm‖ ≤ cλn‖vm‖, m, n ∈ N.

Letting m → ∞, we obtain

‖dx f nv‖ ≤ cλn‖v‖, n ∈ N,

where v is any sublimit of the sequence vm.

By definition, v has no component in Eu(x). Thus, v ∈ E s(x).
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 2: Dimension of Stable and Unstable Spaces

Lemma

Let Λ ⊆ R
p be a hyperbolic set and x ∈ Λ. Consider the stable and

unstable spaces E s(x) and Eu(x). Let xm ∈ Λ, for all m ∈ N, such that
xm → x when m → ∞. Then, there exists an m ∈ N, such that, for any
p, q > m:

dimE s(xp) = dimE s(xq);

dimEu(xp) = dimE s(xq).

The dimensions dimE s(xm) and dimEu(xm) can only take finitely
many values.

So there exists a subsequence ym of xm such that the numbers
dimE s(ym) and dimEu(ym) are independent of m.

Let v1m, . . . , vkm ∈ E s(ym) ⊆ R
p be an orthonormal basis of E s(ym),

where k = dimE s(ym) (which, by hypothesis, is independent of m).
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 2: Dimension (Cont’d)

The closed unit sphere of Rp is compact.

So the sequence (v1m, . . . , vkm) has sublimits.

Moreover, each sublimit (v1, . . . , vk) is still an orthonormal set.

By the preceding lemma, v1, . . . , vk ∈ E s(x).

Thus, since (v1, . . . , vk) is an orthonormal set,

dimE s(x) ≥ k .

Proceeding analogously for the unstable spaces, we obtain

dimEu(x) ≥ dimM − k .

But we have TxM = E s(x)⊕ Eu(x).

Therefore,

dimE s(x) = k and dimEu(x) = dimM − k .
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 2: Dimension (Cont’d)

In particular, the vectors v1, . . . , vk generate E s(x).

We show that each vector v ∈ E s(x) with norm ‖v‖ = 1 is a sublimit
of some sequence vm ∈ E s(ym) with ‖vm‖ = 1.

Write v =
∑k

i=1 αivi with
∑k

i=1 α
2
i = 1.

Then take

vm =

∑k
i=1 αivim

‖∑k
i=1 αivim‖

.

Suppose zm is another subsequence of xm such that the dimensions
dimE s(zm) and dimEu(zm) are independent of m.

Say, dimE s(zm) = ℓ and dimEu(zm) = dimM − ℓ.

Then we also have dimE s(x) = ℓ and dimEu(x) = dimM − ℓ.

Thus, ℓ = k .

So dimE s(xm) and dimEu(xm) are constant for sufficiently large m.
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 3: Estimating Distance Between Stable Subspaces

Lemma

Let Λ ⊆ R
p be a hyperbolic set and x ∈ Λ. Consider the stable and

unstable spaces E s(x) and Eu(x). Let xm ∈ Λ, for all m ∈ N, such that
xm → x when m → ∞. Given δ > 0, there exists a p ∈ N, such that

max
w∈E s (xm),‖w‖=1

d(w ,E s(x)) < δ, for m > p.

Note that given ε > 0 and a sequence wm ∈ E s(xm) with ‖wm‖ = 1,
we have d(wm,E

s(x)) < ε for any sufficiently large m.

Otherwise, there would exist a subsequence wkm , such that

d(wkm ,E
s(x)) ≥ ε, for m ∈ N.

Then, any sublimit w of wkm satisfies d(w ,E s(x)) ≥ ε.

But this is impossible since, by Lemma 1, w ∈ E s(x).
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 3: Estimating Distance (Cont’d)

We consider orthonormal bases (v1m, . . . , vkm) of E
s(xm) (for each

sufficiently large m, such that dimE s(xm) = k).

By the preceding paragraph, there exist integers p1, . . . , pk ∈ N, such
that, for m > pi ,

d(vim,E
s(x)) < ε.

We also take vectors wm ∈ E s(xm), with norm ‖wm‖ = 1, and we
write wm =

∑k
i=1 αimvim with

∑k
i=1 α

2
im = 1.

Now, for each i = 1, . . . , k and m > p := max {p1, . . . , pk}, there
exists a wim ∈ E s(x), such that ‖vim − wim‖ < ε. Then

d(wm,E
s(x)) ≤ ‖wm −∑k

i=1 αimwim‖
≤ ∑k

i=1 |αim| · ‖vim − wim‖
< kǫ.

Hence, max
w∈E s (xm),‖w‖=1

d(w ,E s(x)) < kε, for m > p.
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 4: Estimating Distance Between Stable Subspaces

Lemma

Let Λ ⊆ R
p be a hyperbolic set and x ∈ Λ. Consider the stable and

unstable spaces E s(x) and Eu(x). Let xm ∈ Λ, for all m ∈ N, such that
xm → x when m → ∞. Given δ > 0, there exists a q ∈ N, such that

max
v∈E s(x),‖v‖=1

d(v ,E s(xm)) < δ, for m > q.

Let ε > 0 and v ∈ E s(x).

We show that d(v ,E s(xm)) < ε, for any sufficiently large m.

Otherwise, there would exist a sequence xkm , such that

d(v ,E s(xkm)) ≥ ε, for m ∈ N.

Consider wm ∈ E s(xkm) with ‖wm‖ = 1, having v as a sublimit (each
v ∈ E s(x) is obtained as a sublimit of such a sequence).

Then ‖v − wm‖ ≥ ε, m ∈ N. So 0 = ‖v − v‖ ≥ ε, a contradiction.
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Hyperbolic Dynamics I Hyperbolic Sets

Lemma 4: Estimating Distance (Cont’d)

Now consider an orthonormal basis v1, . . . , vk of E s(x).

Take integers q1, . . . , qk ∈ N, such that

d(vi ,E
s(xm)) < ε, for m > qi .

For each i , there exists a vim ∈ E s(xm) with ‖vi − vim‖ < ε.

Given v ∈ E s(x), with ‖v‖ = 1, write

v =
∑k

i=1 αivi ,
∑k

i=1 α
2
i = 1.

Then, for m > q := max{q1, . . . , qk},

d(v ,E s(xm)) ≤ ‖v −∑k
i=1 αivim‖

≤ ∑k
i=1 |αi | · ‖vi − vim‖

< kǫ.

Hence, max
v∈E s(x),‖v‖=1

d(v ,E s(xm)) < kε, for m > q.
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Hyperbolic Dynamics I Hyperbolic Sets

Convergence and Distance

Theorem

If Λ ⊆ R
p is a hyperbolic set, then the spaces E s(x) and Eu(x) vary

continuously with x ∈ Λ. That is, if xm → x when m → ∞, with
xm, x ∈ Λ, for each m ∈ N, then

d(E s(xm),E
s(x)) → 0 when m → ∞;

d(Eu(xm),E
u(x)) → 0 when m → ∞.

Let (xm)m∈N be a sequence as in the statement of the theorem.

By Lemmas 3 and 4, given δ > 0, there exist p, q ∈ N, such that

d(E s(xm),E
s (x)) < 2δ, for m > max {p, q}.

The result for unstable spaces is obtained similarly.
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Subsection 3

Hyperbolic Sets and Invariant Families of Cones
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The Setup

Let f : M → M be a C 1 diffeomorphism.

Let Λ ⊆ M be a compact f -invariant set.

For each x ∈ Λ, we consider a decomposition

TxM = F s(x)⊕ F u(x)

and an inner product 〈·, ·〉′ = 〈·, ·〉′x in TxM.

We emphasize that this may not be the original inner product.

We always assume that the dimensions dimF s(x) and dimF u(x) are
independent of x .

On the other hand, we do not require that

dx fF
s(x) = F s(f (x)), dx fF

u(x) = F u(f (x)), for x ∈ Λ.
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The Cones

Definition

Given γ ∈ (0, 1) and x ∈ Λ, we define the cones

C s(x) = {(v ,w) ∈ F s(x)⊕ F u(x) : ‖w‖′ < γ‖v‖′} ∪ {0}
and

Cu(x) = {(v ,w) ∈ F s(x)⊕ F u(x) : ‖v‖′ < γ‖w‖′} ∪ {0}.

George Voutsadakis (LSSU) Dynamical Systems May 2024 44 / 65



Hyperbolic Dynamics I Hyperbolic Sets and Invariant Families of Cones

Characterization of Hyperbolic Sets

Theorem

Let f : M → M be a C 1 diffeomorphism. Let Λ ⊆ M be a compact
f -invariant set. Then Λ is a hyperbolic set for f if and only if there exist a
decomposition TxM = F s(x)⊕ F u(x) and an inner product 〈·, ·〉′x in TxM,
for each x ∈ Λ, and constants µ, γ ∈ (0, 1) such that:

1. For any x ∈ Λ,

dx f Cu(x) ⊆ Cu(f (x)) and dx f
−1C s(x) ⊆ C s(f −1(x));

2. For any x ∈ Λ,

‖dx fv‖′ ≥ 1
µ‖v‖′, for v ∈ Cu(x);

‖dx f −1v‖′ ≥ 1
µ‖v‖′, for v ∈ C s(x).

The theorem follows from the next two theorems.
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Existence of Invariant Families of Cones

Theorem

Let f : M → M be a C 1 diffeomorphism. Let Λ ⊆ M be a hyperbolic set
for f . Then there exist an inner product 〈·, ·〉′x in TxM varying
continuously with x ∈ Λ and constants µ, γ ∈ (0, 1), such that

C s(x) = {(v ,w) ∈ E s(x)⊕ Eu(x) : ‖w‖′ < γ‖v‖′} ∪ {0},
Cu(x) = {(v ,w) ∈ E s(x)⊕ Eu(x) : ‖v‖′ < γ‖w‖′} ∪ {0},

satisfy, for any x ∈ Λ,

1. dx f Cu(x) ⊆ Cu(f (x)) and dx f
−1C s(x) ⊆ C s(f −1(x));

2. ‖dx fv‖′ ≥ 1
µ‖v‖′, for v ∈ Cu(x);

3. ‖dx f −1v‖′ ≥ 1
µ‖v‖′, for v ∈ C s(x).

We divide the proof into steps.
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Existence of Invariant Families of Cones (Inner Product)

Take m ∈ N such that cλm < 1.

Given v ,w ∈ E s(x), we define

〈v ,w〉′ =
m−1
∑

n=0

〈dx f nv , dx f nw〉.

For each v ∈ E s(x), we have

(‖dx fv‖′)2 =
∑m−1

n=0 ‖dx f n+1v‖2

=
∑m−1

n=0 ‖dx f nv‖2 − ‖v‖2 + ‖dx f mv‖2

≤ (‖v‖′)2 − (1− c2λ2m)‖v‖2.
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Existence of Invariant Families of Cones (Cont’d)

We got, for each v ∈ E s(x),

(‖dx fv‖′)2 ≤ (‖v‖′)2 − (1− c2λ2m)‖v‖2.

On the other hand,

(‖v‖′)2 ≤
m−1
∑

n=0

c2λ2n‖v‖2 ≤ c2m‖v‖2.

Thus, ‖dx fv‖′ ≤ τ‖v‖′, where τ =
√

1− 1−c2λ2m

c2m
< 1.

Analogously, given v ,w ∈ Eu(x), we define

〈v ,w〉′ =
m−1
∑

n=0

〈dx f −nv , dx f
−nw〉.

We verify similarly that ‖dx f −1v‖′ ≤ τ‖v‖′, for v ∈ Eu(x).
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Existence of Invariant Families (Inner Product Cont’d)

Now we consider an inner product 〈·, ·〉 = 〈·, ·〉x in TxM.

Let v ,w ∈ TxM, where

v = v s + vu and w = w s + wu,

with v s ,w s ∈ E s(x) and vu,wu ∈ Eu(x).

Then we set
〈v ,w〉′ = 〈v s ,w s〉′ + 〈vu ,wu〉′.

Consider, next, the cones C s(x) and Cu(x), with the norm ‖·‖′
induced from the inner product 〈·, ·〉′.

George Voutsadakis (LSSU) Dynamical Systems May 2024 49 / 65



Hyperbolic Dynamics I Hyperbolic Sets and Invariant Families of Cones

Existence of Invariant Families (Inner Product Cont’d)

Given (v ,w) ∈ Cu(x), we have, by definition, ‖v‖′ ≤ γ‖w‖′.
We also have dx fE

s(x) = E s(f (x)) and dx fE
u(x) = Eu(f (x)).

Hence,

dx f (v ,w) = (dx fv , dx fw) ∈ E s(f (x))⊕ Eu(f (x)).

We know ‖dx fv‖′ ≤ τ‖v‖′ and ‖dx f −1v‖′ ≤ τ‖v‖′.
These give

‖dx fv‖′ ≤ τ‖v‖′ ≤ τγ‖w‖′ ≤ τ2γ‖dx fw‖′.

Thus, dx f (v ,w) ∈ Cu(f (x)).

Analogously, given (v ,w) ∈ C s(x), we have ‖w‖′ ≤ γ‖v‖′. Thus,

‖dx f −1w‖′ ≤ τ‖w‖′ ≤ τγ‖v‖′ ≤ τ2γ‖dx f −1v‖′.

This shows that dx f
−1(v ,w) ∈ C s(f −1(x)) proving Part 1.
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Existence of Invariant Families (Estimates Inside Cones)

Let (v ,w) ∈ Cu(x).

We have ‖dx fv‖′ ≤ τ‖v‖′ and ‖dx f −1w‖′ ≤ τ‖w‖′.
Therefore,

‖dx f (v ,w)‖′ ≥ ‖dx fw‖′ − ‖dx fv‖′

≥ τ−1‖w‖′ − τ‖v‖′

≥ τ−1‖w‖′ − τγ‖w‖′.

But ‖(v ,w)‖′ < (1 + γ)‖w‖′.
So we have

‖dx f (v ,w)‖′ ≥ τ−1 − τγ

1 + γ
‖(v ,w)‖′.

Choose γ sufficiently small so that µ :=
(

τ−1−τγ
1+γ

)−1
> 1.

Then we obtain ‖dx fv‖′ ≥ µ−1‖v‖′.
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Existence of Invariant Families (Cont’d)

Analogously, let (v ,w) ∈ C s(x).

Again, ‖dx fv‖′ ≤ τ‖v‖′ and ‖dx f −1w‖′ ≤ τ‖w‖′.
We get that

‖dx f −1(v ,w)‖′ ≥ ‖dx f −1v‖′ − ‖dx f −1w‖′

≥ τ−1‖v‖′ − τ‖w‖′

≥ τ−1−τγ
1+γ ‖(v ,w)‖′

= µ−1‖(v ,w)‖′.

This completes the proof.
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Criterion for Hyperbolicity

Theorem

Let f : M → M be a C 1 diffeomorphism. Let Λ ⊆ M be a compact
f -invariant set. Suppose there exist a decomposition

TxM = F s(x)⊕ F u(x)

and an inner product 〈·, ·〉′x in TxM, for each x ∈ Λ, and constants
µ, γ ∈ (0, 1), such that the cones C s(x) and Cu(x) satisfy, for any x ∈ Λ:

1. dx f Cu(x) ⊆ Cu(f (x)) and dx f
−1C s(x) ⊆ C s(f −1(x));

2. ‖dx fv‖′ ≥ 1
µ‖v‖′, for v ∈ Cu(x);

3. ‖dx f −1v‖′ ≥ 1
µ‖v‖′, for v ∈ C s(x).
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Criterion for Hyperbolicity (Cont’d)

Theorem (Cont’d)

Then Λ is a hyperbolic set for f , taking λ = µ and c = 1. Moreover, the
stable and unstable spaces are given by

E s(x) =

∞
⋂

n=0

df n(x)C
s(f n(x)), Eu(x) =

∞
⋂

n=0

df −n(x)C
u(f −n(x)).

We divide the proof into steps.
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Criterion (Construction of Invariant Sets)

For each x ∈ Λ, we consider the sets

G s(x) =
⋂∞

n=0 df n(x)f
−nC s(f n(x));

G u(x) =
⋂∞

n=0 df −n(x)f
nCu(f −n(x)).

By hypothesis,

dx f Cu(x) ⊆ Cu(f (x)) and dx f
−1C s(x) ⊆ C s(f −1(x)).

So we have

G s(x) =
⋂∞

n=0 df n(x)f
−nC s(f n(x))

⊆ ⋂∞
n=0 C

s(f −n(f n(x)))

= C s(x).

Similarly,
G u(x) ⊆ Cu(x).
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Criterion (Construction Cont’d)

It now follows that

dx f
−1G s(x) ⊆ C s(f −1(x)) and dx fG

u(x) ⊆ Cu(f (x)).

Writing y = f −1(x), we obtain

dx f
−1G s(x) = C s(y) ∩ dx f

−1G s(x)

= C s(y) ∩⋂∞
n=0 df n(x)f

−(n+1)C s(f n(x))

= C s(y) ∩⋂∞
n=0 df n+1(y)f

−(n+1)C s(f n+1(y))

= G s(y).

Analogously, dx fG
u(x) = G u(f (x)).
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Criterion (Construction of Stable and Unstable Spaces)

By hypothesis, the dimensions k = dimF s(x) and ℓ = dimF u(x) are
independent of x .

So, for each m ∈ N, the sets

⋂m
n=0 df n(x)f

−nC s(f n(x)) = df m(x)f
−mC s(f m(x)),

⋂m
n=0 df −n(x)f

nCu(f −n(x)) = df −m(x)f
mCu(f −m(x))

contain subspaces E s
m(x) and Eu

m(x), respectively, of dimensions
dimE s

m(x) = k and dimEu
m(x) = ℓ.

For each m ∈ N, let v1m, . . . , vkm be an orthonormal basis of E s
m(x).

Then there exists a convergent subsequence, say with limits v1, . . . , vk
that also form an orthonormal set.

This shows that G s(x) contains a subspace E s(x) of dimension k

(generated by v1, . . . , vk).

Similarly, G u(x) contains a subspace Eu(x) of dimension ℓ.
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Criterion (Construction of Stable/Unstable Spaces Cont’d)

Recall we have

G s(x) ⊆ C s(x) and G u(x) ⊆ Cu(x).

Thus, we get

E s(x) ∩ Eu(x) ⊆ G s(x) ∩ G u(x)

⊆ C s(x) ∩ Cu(x)

= {0}. (since γ < 1.)

Moreover, by hypothesis, TxM = F s(x)⊕ F u(x). Hence,

dimM = dimF s(x) + dimF u(x)

= k + ℓ

= dimE s(x) + dimEu(x).

Thus, the spaces E s(x) and Eu(x) generate TxM.

Hence, we obtain the direct sum TxM = E s(x)⊕ Eu(x).
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Criterion (Estimates on Spaces E s(x) and E
u(x))

Recall we have, for all x ∈ Λ,

dx f
−1C s(x) = C s(f −1(x)), dx f Cu(x) = Cu(f (x));

G s(x) ⊆ C s(x), G u(x) ⊆ Cu(x);
dx f

−1G s(x) = G s(f −1(x)), dx fG
u(x) = G u(f (x)).

Let v ∈ E s(x) and n ∈ N.

We get, for k = 0, . . . , n,

dx f
kv ∈ dx f

kE s(x) ⊆ dx f
kG s(x) = G s(f k(x)) ⊆ C s(f k(x)).

But we know ‖dx f −1v‖′ ≥ µ−1‖v‖′, v ∈ C s(x).

Hence, ‖dx f nv‖′ ≤ µn‖v‖′.
Let, similarly, v ∈ Eu(x) and n ∈ N.

We know ‖dx fv‖′ ≥ µ−1‖v‖′, v ∈ Cu(x).

It follows that ‖dx f −nv‖′ ≤ µn‖v‖′.
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Criterion (Estimates on Spaces E s(x) and E
u(x) Cont’d)

Now we show that E s(x) = G s(x) and Eu(x) = G u(x) for any x ∈ Λ.

Suppose there existed a v ∈ G s(x)\E s (x) ⊆ C s(x).

Then v = v s + vu, where v s ∈ E s(x) and vu ∈ Eu(x)\{0}.
For each n ∈ N, we would have

µ−n‖vu‖′ ≤ ‖dx f nvn‖′

≤ ‖dx f nv‖′ + ‖dx f nv s‖′

≤ µn(‖v‖′ + ‖v s‖′).

This implies that ‖vu‖′ ≤ µ2n(‖v‖′ + ‖v s‖′) → 0 when n → ∞.

Thus vu = 0. This contradiction shows that E s(x) = G s(x).

One can show in an analogous manner that Eu(x) = G u(x).

But dx f
−1G s(x) = G s(f −1(x)) and dx fG

u(x) = G u(f (x)).

So dx f
−1E s(x) = E s(f −1(x)) and dx fE

u(x) = Eu(f (x)).

Therefore, Λ is a hyperbolic set, taking λ = µ and c = 1.
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Subsection 4

Stability of Hyperbolic Sets
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Stability of Hyperbolic Sets

Given differentiable maps f , g : M → M, we define

d(f , g) = sup
x∈M

d(f (x), g(x)) + sup
x∈M

‖dx f − dxg‖.

Recall Tietze’s Extension Theorem from Analysis:

Suppose f : A → R is a continuous function in a closed subset A ⊆ X

of a normal space (a space such that any two disjoint closed sets have
disjoint open neighborhoods). Then there exists a continuous function
g : X → R, such that g |A= f .

Theorem

Let Λ be a hyperbolic set for a C 1 diffeomorphism f : M → M. Then
there exist ε > 0 and an open set U ⊇ Λ, such that, if g : M → M is a C 1

diffeomorphism with d(f , g) < ε and Λ′ ⊆ U is a compact g -invariant set,
then Λ′ is a hyperbolic set for g .
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Proof of Stability

By a previous theorem, the stable and unstable spaces E s(x) and
Eu(x) vary continuously with x ∈ Λ.

We apply Tietze’s Extension Theorem.

We obtain continuous extensions F s(x) and F u(x), respectively, of
E s(x) and Eu(x), for x in some open neighborhood U of Λ, such that

TxM = F s(x) ⊕ F u(x) for x ∈ U.

Let γ > 0 be given.

Let C s(x) and Cu(x) be the cones associated to this decomposition.

By the Existence Theorem for Invariant Families of Cones, there exist
constants µ, γ ∈ (0, 1) and an inner product 〈·, ·〉′ = 〈·, ·〉′x in TxM,
varying continuously with x , such that, for each x ∈ Λ:

1. dx f C u(x) ( C u(f (x)) and dx f
−1C s(x) ( C s(f −1(x));

2. ‖dx fv‖′ > µ−1‖v‖′, for v ∈ C u(x)\{0};
3. ‖dx f −1v‖′ > µ−1‖v‖′, for v ∈ C s(x)\{0}.

George Voutsadakis (LSSU) Dynamical Systems May 2024 63 / 65



Hyperbolic Dynamics I Stability of Hyperbolic Sets

Proof of Stability (Cont’d)

Let Sx be the closed unit sphere in TxM (with respect to ‖·‖ = ‖·‖′x).
These properties are equivalent, for each x ∈ Λ, to:

1. dx f (Sx ∩ C u(x)) ( C u(f (x)) and dx f
−1(Sx ∩ C s(x)) ( C s(f −1(x));

2. ‖dx fv‖′ > µ−1, for v ∈ Sx ∩ C u(x);
3. ‖dx f −1v‖′ > µ−1, for v ∈ Sx ∩ C s(x).

The product 〈·, ·〉′x and, thus, also ‖·‖′x , vary continuously with x .

So the set {(x , v) ∈ Λ× TxM : ‖v‖′x = 1} is compact.

For any sufficiently small open neighborhood U ⊆ Λ, the properties
above hold for any x ∈ U (and some continuous extension of the
inner product).

Moreover, for any sufficiently small ε the same properties also hold for
any x ∈ U with f replaced by g .

By the preceding theorem, any compact g -invariant set Λ′ ⊆ U is a
hyperbolic set for g .
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The Case of Anosov Diffeomorphisms

Definition

A diffeomorphism f : M → M of a compact manifold M is called an
Anosov diffeomorphism if M is a hyperbolic set for f .

Example: Any automorphism of the torus induced by a matrix
without eigenvalues with modulus 1 (called a hyperbolic
automorphism of the torus) is an Anosov diffeomorphism.

The following result is an immediate consequence of the preceding
theorem.

Theorem

The set of Anosov diffeomorphisms of class C 1 of a compact manifold M

is open with respect to the topology induced by the distance d .

George Voutsadakis (LSSU) Dynamical Systems May 2024 65 / 65


	Outline
	Hyperbolic Dynamics I
	Smooth Manifolds
	Hyperbolic Sets
	Hyperbolic Sets and Invariant Families of Cones
	Stability of Hyperbolic Sets


