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A set M is said to admit a differentiable structure of dimension n € IN if
there exist injective maps

i : Ui — M in open sets U; CR", i € [,
such that:

Uier ¢i(Ui) = M;
For any i,j € I, such that V = ¢;(U;) N ;(U;) # 0, the preimages
gpi_l(V) and gpj_l(V) are open and the map <pj_1 o ¢; is of class C.

o Each map ¢; : Ui — M is called a chart or a coordinate system.
o Given a differentiable structure on M, we consider the topology on M
formed by the sets A C M, such that

goflA C R" is open for every i € I.
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o A topological space is said to be HausdorfF if any distinct points have
disjoint open neighborhoods.

o A topological space is said to have a countable basis if there exists
a countable family of open sets such that each open set can be
written as a union of elements of this family.

A set M is said to be a (smooth) manifold of dimension n if:
o It admits a differentiable structure of dimension n;
o It is a Hausdorff topological space;

o It has a countable basis.
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o Let ¢ : U — R™ be a function of class C! in an open set U C R".
Then the graph

M={(x,p(x)) : xe Ut CR" x R™

is a manifold of dimension n.

A differentiable structure is given by the single map
¥ U — R" x R™ defined by

P(x) = (x; ¢(x))-
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o The set
T ={(x,y) € R?: x* + y?> = 1}
is a manifold of dimension 1.
A differentiable structure is given by the maps ¢; : (=1,1) — T,
i=1,2,3,4, defined by
01(x) = (x5, V1 = x2), @a(x) = (x,—V1—x?),
903(X) = (V i X27X)a 904(X) = (_ v1-— X2,X).

o We note that T can be identified with S?.
In particular, the map x : S* — T defined by

X(x) = (cos (27x), sin (27x))

is a homeomorphism.
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o The torus T" = S” is a manifold of dimension n.
Recall the maps ¢; : (—1,1) — T, i = 1,2,3,4, defined by

e1(x) = (x, V1=x2), ¢a(x) = (x,—V1—x?),
@3(X) = (V _X27X)a ‘P4(X) = (_ V1 —X2,X).

A differentiable structure is given by the maps ¢ : (—=1,1)" — T",
defined by

¢(le oo ,X,,) = ((X_l © ¢1)(X1)7 coog (X_l © ¢n)(Xn))v

where each v; is any of the functions 1, vo, 3 and 4.
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A map f : M — N between manifolds is said to be differentiable at a
point x € M if there exist charts

p:U—-M and ¢:V =N,

such that:
x € p(U) and f(p(U)) € p(V);
Y=L o f o is differentiable at ¢~ 1(x).

Moreover, f is said to be of class CX in an open set W C M if all maps
Y1 o f o areof class CXin o 1 (W).
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o Let M be a manifold of dimension n.

o Let Dy be the set of all functions g : M — R that are differentiable
at x € M.

The tangent vector to a differentiable path o : (—¢,¢) — M, with
a(0) = x at t = 0, is the function v, : Dy — R defined by

Va(g) = d(gdj a) 0 0

We also say that v, is a tangent vector at x.
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o One can show that the set T,M of all tangent vectors at x is a vector
space of dimension n.

o The space T, M is called the tangent space of M at x.

o Moreover, the set
™ ={(x,v): x € M,v € T,M}

is a manifold of dimension 2n.
o TM is called the tangent bundle of M.
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o Let ¢: U— M be a chart.
o Let (x1,...,x,) be the coordinates in U.
o Let
(e1,...,€n)
is the standard basis of R,,.

o Consider the differentiable paths o : (—¢,e) = M for i=1,...,n,
defined by

aj(t) = ¢(te;).
o The tangent vector to the path «; at t = 0 is denoted by 3%_.
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o One can show that

O
ox1” " Oxn

is a basis of the tangent space T,o)M.

o Moreover, a differentiable structure on
T™ = {(x,v) : x € M,v e TM}

is given by the maps
Y:UxR"— TM

defined by

E 0
¢(X1,--- ,Xnyylv"' ’yn) = ((p(Xl,... ,Xn),zyi§> o
i=1 !
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Subsection 2
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o A diffeomorphism of a manifold M is an invertible C1 map
f: M — M, whose inverse is also of class C!.

o Let f: M — M be a C! diffeomorphism of a manifold M.

o For each x € M, define a linear transformation
dif : TuM — Te )M
between the tangent spaces TxM and T¢(, M by
dyfVv = Vfoq,

for any differentiable path « : (—¢,e) — M, such that «(0) = x and
Vo = V.

o One can show that the definition does not depend on the path .
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o We always assume that M is a Riemannian manifold.

o That is, each tangent space T,M is equipped with an inner product
(-, *)x, such that the map

T™M 3 (x,v) — (v, v)x

is differentiable.

o This inner product induces the norm
IVix = (v, V)2, ve TM.

o For simplicity of notation, we always write (-,-) and ||-||, without
indicating the dependence on x (deduced from the context).

George Voutsadakis (LSSU)



Hyperbolic Dynamics |

Definition
A compact f-invariant set A C M is said to be a hyperbolic set for f if
there exist A € (0,1), ¢ > 0, and a decomposition

T«M = E°(x) ® E“(x),
for each x € A, such that:

dyifE°(x) = E°(f(x)) and dyfEY(x) = EY(f(x));

George Voutsadakis (LSSU) Dynamical Systems



Hyperbolic Dynamics |

Definition (Cont'd)

If v € E(x) and n € IN, then

[l Fov]| < eA"[|v][;
If v € EY(x) and n € N, then

[ f ]| < eA"[|v]].

The linear spaces E°(x) and EY(x) are called, respectively, the stable and
unstable spaces at the point x.
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o Let a€(0,1) and b > 1.
Define the linear transformation f : R?> — R? by

f(x,y) = (ax, by).

We have f(0) = 0. Hence, the origin is a fixed point.
Consider the decomposition R? = E* @ EY, where:

o E*® is the horizontal axis;
o EY is the vertical axes.

Consider the linear transformation

A= dof = f.
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o For the linear transformation
A=dyf =f

we have:
AES = E* and AEY = EVY;
IAv| < allv]|, for v € E*;
|A=tv]| < b7Y|v|, for v € EY.

Take A = max{a,b~!} and c = 1.
We see that {0} C R? is a hyperbolic set for the diffeomorphism f.
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o Let f be a diffeomorphism on an open neighborhood of the square
Q = [0,1]? with the behavior shown on he left.

We consider the following horizontal and vertical strips, for some
constant a € (0, 3).

Hy=1[0,1] x [0,a], H»=[0,1] x [1 — a,1];
Vi=1[0,a] x [0,1], Va=[l—a1]x][0,1].
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o We assume that f(Hy) = Vi and f(H,) = V5.

This yields the identity
QN f(Q) = ViU W,.
We also assume that the restrictions f |y, and f |y, are affine, with
| (ax, by), if (x,y) € Hy 1
fooy) = { (cax+1,—by+b), if(xy)eH = 273

We shall see that the construction of the Smale horseshoe only
depends on the restriction f |y, UH,.
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o Now we consider the diffeomorphism 1.
We have f~1(V;) = H; and f~1(V,) = H,.
Taking into account Q N f(Q) = V1 U V5, we get

FFANQ=FT(V)Uf (V)=

From these two relations, we get U @nen @

m fn H1UH2)ﬂ(V1UV2)
k=-—1

So f~1(Q) N Q N f(Q) is the union of four
squares of size a.
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o We iterate this procedure, i.e., consider successively the images f"(Q)
and the preimages f~"(Q). The intersection

Ap= ﬂ fk(Q)

k=—n

is the union of 4”7 squares of size a".

A=} Q) A= 1@

1T O ho oo oo og
0 O OO o oo 88 og
1 O O O o oo 88 og

O 1 Re.o8 oo

Now A, is a decreasing sequence of nonempty closed sets.
Thus, the compact set A = (o An = Nz F<(Q) is nonempty.
It is called a Smale horseshoe (for f).
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o Clearly, the set A has no interior points since the diameters of the 4"
squares in A\, tend to zero when n — oco.

One can also verify that A has no isolated points.

Hence, it is a Cantor set (closed with neither interior nor isolated
points).
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A is a hyperbolic set for the diffeomorphism f.

o We have

A=) F(Q).

kEZ

So A is f-invariant, i.e., f~IA = A.
On the other hand, by the definition of f, we have:
o dyf = < 8 2>,foerH1;

— 0
o dxf=< 8 _b>,forx€H2.
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o For each x € A, we consider the decomposition
R? = E*(x) @ E(x),

where E*(x) is the horizontal and EY(x) the vertical axis.
The matrices for dif are diagonal.

So we get
dyfE®(x) = E*(f(x)) and difEY(x) = EY(f(x)).
Moreover, by the matrix expressions,

[ el ifve B
ldfell = { Bllv]. if v e E¥(x).

We take A = a and ¢ = 1 in the definition of a hyperbolic set.
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o let g be a diffeomorphism on an open neighborhood of the square @
with the behavior shown.

Assume g(Hl) = V1, g(H2) = V2.
Moreover, let

g(x,y)
:{ 3.3y). i (x,y) € Hh,
(%+§a3y—2)7 If(Xv.y)EH2-

Then the compact g-invariant set Ay = (,cz &"(Q) cincides with
the A of the Smale's horseshoe.

Ag is a hyperbolic set for the diffeomorphism g.
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o Let h be a diffeomorphism on an open neighborhood of the square @,
such that Q N h(Q) has a finite number of connected components.

More precisely, consider pairwise disjoint
closed horizontal strips Hy,...,H, € Q
(figure shows m = 3).

We assume that the images V; = h(H;),
for i = 1,..., m, are vertical strips in Q
(necessarily disjoint since h is invertible).
Moreover, we assume that h |y, is an affine transformation of the form

h|H (x,y) = (Aix + ai, piy + bi),

for i=1,...,m, with |\;] <1 and |u;| > 1.
Let = max {|\;|, |wi|™t:i=1,...,m}.
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o For each n € N, consider the intersection
n
A=) HQ).
k=—n

It is the union of m?" rectangles with sides of length at most 1"

Consider, moreover, the compact h-invariant set
A=) h"(Q).
neZ

Ap has no interior points.
We can also verify that A has no isolated points.

Ap is a hyperbolic set for the diffeomorphism h, taking A = p and ¢ = 1.
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o Let EC RP and v € R”.

o Define
d(v,E) =min{|lv—w| : w e E}.

o Moreover, given subspaces E, F C RP, we define

d(E, F) = max max d(v,F), max d(w,E);.
( ) {veE,||v||:1 ( )WGF,||W||:1 ( )}
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o Let E, F C R? be subspaces of dimension 1.
Then
d(E,F) =sina,
where a € [0, 7] is the angle between E and F.
Indeed, in this case, we have:

Qo

d(v,F) = d(ve,F
Lemax_ d(v, F) = d(ve, F),

where vg € E is any vector with norm 1;
Qo

max d(w, E)=d(vg, E),
vEF,||lw|=1 ( ) (F )

where ve € F is any vector with norm 1.
These numbers coincide.

Hence,
d(E,F)=d(ve,F) =d(vg,E) =sina.
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Let A C IRP be a hyperbolic set and x € A. Consider the stable and
unstable spaces E£°(x) and EY(x). Let x, € A, for all m € IN, such that
Xm — X when m — co. Any sublimit of a sequence v, € E*(x) C RP,

with ||vp,|| = 1 is in E%(x).
o Note that the closed unit sphere of RP is compact.

So the sequence v,, has sublimits.
Sincevy, € E*(xm), we have

e f Vil < A" ||Viml[,  m,n € N.
Letting m — oo, we obtain
[dfv[| < cA?|lv]l, neNN,

where v is any sublimit of the sequence v,,.
By definition, v has no component in E¥(x). Thus, v € E*(x).
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Let A C RP be a hyperbolic set and x € A. Consider the stable and
unstable spaces E°(x) and EY(x). Let x, € A, for all m € IN, such that
Xm — x when m — oco. Then, there exists an m € IN, such that, for any
p,q > m:

o dimE®(x,) = dimE*(xq);

o dimEY(xp) = dimE*(xq).

o The dimensions dimE®(x,,) and dimE"(x,,) can only take finitely
many values.

So there exists a subsequence y,, of x,,, such that the numbers
dimE*(ym,) and dimEY(y,,) are independent of m.

Let vim, ..., Vkm € E*(¥m) € R be an orthonormal basis of E*(yy,),
where k = dimE*(y,,) (which, by hypothesis, is independent of m).
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o The closed unit sphere of IRP is compact.
So the sequence (vim, ..., Vkm) has sublimits.
Moreover, each sublimit (vi, ..., vk) is still an orthonormal set.
By the preceding lemma, vi, ..., v, € E3(x).
Thus, since (vi, ..., vk) is an orthonormal set,

dimE®*(x) > k.
Proceeding analogously for the unstable spaces, we obtain
dimEY(x) > dimM — k.

But we have T,M = E*(x) & E"(x).
Therefore,

dimE®(x) = k and dimEY(x) =dimM — k.
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o In particular, the vectors vy, ..., vk generate E°(x).
We show that each vector v € E*(x) with norm ||v|| =1 is a sublimit
of some sequence vy, € E*(ym) with [|vy| = 1.
Write v = Zf-;l a;jvj with Zf-;l a? =1.
Then take

k
_ 2oi1 QiVim
===l 7
|21 @ivim||
Suppose z,, is another subsequence of x,, such that the dimensions
dimE®(z;,) and dimEY(z,,) are independent of m.

Say, dimE®*(zp,) = ¢ and dimEY(z,,) = dimM — £.
Then we also have dimE*(x) = ¢ and dimE"(x) = dimM — /.
Thus, ¢ = k.

So dimE*(xp,) and dimEY(xy,) are constant for sufficiently large m.
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Let A C IRP be a hyperbolic set and x € A. Consider the stable and
unstable spaces E°(x) and EY(x). Let x, € A, for all m € IN, such that
Xm — x when m — oco. Given § > 0, there exists a p € IN, such that

max d(w, E°(x)) <4, form>p.
wEES(xm),||w|=1 ( ( ))

o Note that given £ > 0 and a sequence wy, € E*(xy,) with ||wy,| =1,
we have d(wp, E°(x)) < € for any sufficiently large m.
Otherwise, there would exist a subsequence wy_, such that

d(wk,, E°(x)) > e, for me IN.

Then, any sublimit w of wy satisfies d(w, E5(x)) > e.
But this is impossible since, by Lemma 1, w € E*(x).
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o We consider orthonormal bases (vipm, ..., Vkm) of E*(xm) (for each
sufficiently large m, such that dimE*(x,,) = k).
By the preceding paragraph, there exist integers ps, ..., px € IN, such
that, for m > p;,

d(vim, E*(x)) < e.

We also take vectors wy, € E*(xm), with norm ||w,|| = 1, and we
write w,, = fozl QjmVim With Zf‘(:l oz,?m =1
Now, for each i=1,... , k and m > p:= max{ps,..., px}, there
exists a wijm € E*(x), such that ||Vim — wim|| < e. Then

d(Wm, E5(x)) < Wi — X QimWim|

< X fim] - [Vim — Wi
< ke
Hence, max d(w, E*(x)) < ke, for m > p.

WEE®(xm),||w|=1
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Let A C IRP be a hyperbolic set and x € A. Consider the stable and
unstable spaces E£°(x) and EY(x). Let x, € A, for all m € IN, such that
Xm — X when m — oco. Given § > 0, there exists a g € IN, such that

max  d(v,E°(xm)) <9, for m> gq.
vEE*(x),||v||=1 (V (X )) Y

o Lete >0 and v € E5(x).
We show that d(v, E*(xm)) < ¢, for any sufficiently large m.
Otherwise, there would exist a sequence x_, such that

d(v, E°(xk,)) >, formeIN.

Consider wy, € E*(xk, ) with [[wn|| = 1, having v as a sublimit (each
v € E*(x) is obtained as a sublimit of such a sequence).
Then ||v — wp| > e, me N. So 0= ||v— v| > ¢, a contradiction.
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o Now consider an orthonormal basis v, ..., vk of E*(x).
Take integers qi, ..., qx € IN, such that

d(vi, E°(xm)) <&, for m> g.

For each i, there exists a vjm, € E°(xm) with ||vi — vim| < e.
Given v € E*(x), with |lv|| =1, write

V= Z;{:I QiVi, Z;{:I af =1
Then, for m > q := max{qi1,..., 9k},
d(v, E5(xm)) < |lv— iy iviml|

k
Yoic el - lvi = Viml|
ke.

VASVAN

Hence, d(v, E*(xm)) < ke, for m > q.

max
veEs(x),|lv]=1
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If A C RP is a hyperbolic set, then the spaces E°(x) and EY(x) vary
continuously with x € A. That is, if x,, — x when m — oo, with
Xm, X € N\, for each m € N, then

d(E*(xm), E*(x)) = 0 when m — oc;
d(EY(xm), EY(x)) — 0 when m — oc.
o Let (xm)men be a sequence as in the statement of the theorem.
By Lemmas 3 and 4, given § > 0, there exist p,q € N, such that
d(E*(xm), E°(x)) < 20, for m > max{p, q}.

The result for unstable spaces is obtained similarly.
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Subsection 3
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o Let f: M — M be a C! diffeomorphism.
o Let A € M be a compact f-invariant set.
o For each x € A, we consider a decomposition

XM = F*(x) ® F“(x)

and an inner product (-,-) = (-,-), in T M.
o We emphasize that this may not be the original inner product.

o We always assume that the dimensions dimF*(x) and dimF“(x) are
independent of x.

o On the other hand, we do not require that

dfF(x) = F(f(x)), dxfF¥(x) = F¥(f(x)), for x € A.
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Given v € (0,1) and x € A, we define the cones

C*(x) = {(v,w) € F*(x) ® F(x) : [w]" < ~llv]'} U {0}
and
C'(x) = {(v,w) € F*(x) ® F(x) : [[vI" < ~vllw|} U {0}.
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Let f: M — M be a C! diffeomorphism. Let A C M be a compact
f-invariant set. Then A is a hyperbolic set for f if and only if there exist a
decomposition T,M = F*(x) @ F“(x) and an inner product (-, -), in T, M,
for each x € A, and constants u,y € (0,1) such that:

For any x € A,

d fCU(x) C CU(f(x)) and dyf1Cs(x) C C°(F1(x));
For any x € A,
|y V]| > %HV”/, for v e CY(x);
ldxf~Lv| > %||v||’, for v e C°(x).

o The theorem follows from the next two theorems.
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Let f : M — M be a C! diffeomorphism. Let A C M be a hyperbolic set

for f. Then there exist an inner product (-,-), in T, M varying
continuously with x € A and constants pu,~y € (0,1), such that

C(x) = {(v,w) € E°(x) ® E"(x) : [lw]]" <~llv['} U{0},
C'(x) = {(v,w) e E5(x) ® E“(x) : [[v]I" < ~llw|"} U {0},

satisfy, for any x € A,
di fCU(x) C CU(f(x)) and dyf~1C5(x) C C5(F~1(x));
lldyfv]| > %”VHI for v € CY(x);
lldxf~1v|" > %||v||’ for v € C°(x).

o We divide the proof into steps.
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o Take m € N such that cA™ < 1.

Given v, w € E*(x), we define

m—1
(v,w) = (dxf"v, dxf"w).
n=0
For each v € E*(x), we have
() = S0 "y

= 2o e VIP = IVl + lldfmv >
< (Ivl')? = @=cx2m)v]?.
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o We got, for each v € E*(x),
(ldxfell'Y < (IvIF)? = (1 = X2 v |2

On the other hand,

m—1
(VI < 7 2X27vi? < c2miv]?.
n=0
Thus, ||dva||’ < THVH/v o) = oL — 1_c2)\2m <1

c2m
Analogously, given v, w € EY(x), we define

m—1

(v,w) = Z (dyf ™ "v, dxf"w).
n=0

We verify similarly that ||dyxf v’ < 7|jv|/’, for v € E¥(x).
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o Now we consider an inner product (-,-) = (-,-)x in T,M.
Let v,w € T,M, where
v=v:+vY and w=w’+w",

with v, w® € E*(x) and v¥, w" € EY(x).
Then we set
(v, W) = (v, W)+ (v, we.

Consider, next, the cones C*(x) and CY(x), with the norm ||-||’
induced from the inner product (-, -)’.
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o Given (v,w) € CU(x), we have, by definition, |[v||" < ~y[w]".
We also have dyfE°(x) = E*(f(x)) and dyfEY(x) = E“(f(x)).
Hence,

dyf(v,w) = (dxfv,difw) € E*(f(x)) & EY(f(x)).
We know ||dyfv||’ < 7||v||" and ||dxf~tv|’ < 7| v
These give
ldxfill” < 7llv]l” < Tyllwll” < 72yl dx fiw] "

Thus, dyf(v,w) € CY(f(x)).

Analogously, given (v, w) € C5(x), we have ||w|" < v||v|]". Thus,
et ~twl” < Tllwll” < 7ylIvl < Py lldef ol

This shows that d,f (v, w) € C5(f~1(x)) proving Part 1.
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o Let (v,w) € CY(x).
We have ||dyifv|’ < 7||v]|" and def_le’ < 7w’
Therefore,

[l f (v, w)ll [ fw " — [l frl

T Hwl = Tlvil

AV VALY,

T Hwl =y flwl)”

But [|(v, w)[I" < (T +)wl".

So we have

e Ty

dif(v,w)|’ >
lef (vl > ———

(v, w)ll".

_ ~1
Choose ~ sufficiently small so that p := <711+7_V”> > 1.
Then we obtain ||dyfv||’ > u=t|v].

George Voutsadakis (LSSU)
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o Analogously, let (v, w) € C*(x).
Again, ||difv|” < 7||v|" and |dxftw]’ < 7wl

We get that
ldxf (v, w)ll" > [ldef vl = [ldef ~twl)
> vl = Tfwl
—1_
> TET|(v W)
= (v, wll"

This completes the proof.

George Voutsadakis (LSSU)
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Let f: M — M be a C! diffeomorphism. Let A C M be a compact
f-invariant set. Suppose there exist a decomposition

M = F*(x) @ F“(x)

and an inner product (-, )} in TxM, for each x € A, and constants

i,y € (0,1), such that the cones C*(x) and CY(x) satisfy, for any x € A:
difCU(x) C C“(f(x)) and dy f~1C5(x) C C3(F(x));
ldsfv|" > iHvH' for v e CY(x);
lldxf~1v|" > %||v||’ for v € C°(x).

George Voutsadakis (LSSU)
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Theorem (Cont'd)

Then A is a hyperbolic set for f, taking A = . and ¢ = 1. Moreover, the
stable and unstable spaces are given by

E*(x) =[] din( Co(F(x)),  E“(x) = (") drn() C*(F~"(x)).
n=0 n=0

o We divide the proof into steps.

George Voutsadakis (LSSU) Dynamical Systems
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o For each x € A, we consider the sets
G5 (x) = oo denp)f "C(F(x));
GU(x) = (°2g dr-np)f"CH(F"(X)).
By hypothesis,
defCU(x) C C“(f(x)) and dxf 1C35(x) C C(F1(x)).

So we have
G(x) = a2 def"C(F(x))
S Mo C(F"(F7(x)))
= C(x).
Similarly,

GU(x) C CY(x).

George Voutsadakis (LSSU)
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o It now follows that
d f1G5(x) C C5(FY(x)) and dfGY(x) C CY(f(x)).
Writing y = f~1(x), we obtain

def1G5(x) = C3(y)Ndif1G%(x)
= C(y) NN drn f~HIC3(F7(X))
= W N ﬂzozo dfn+l(y) f—(nt1) Cs(f"'H (y))
= G(y).

Analogously, dyfGY(x) = GY(f(x)).

George Voutsadakis (LSSU)
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o By hypothesis, the dimensions k = dimF*(x) and ¢ = dimF"(x) are
independent of x.
So, for each m € IN, the sets

Nieo den)f~"C3(F7(x)) = dpm)f ~MC3(Fm(x)),
ﬂn:O ffn(X)f C”( "(X)) = dffm(x)fmC”(ffm(X))
contain subspaces E; (x) and EY(x), respectively, of dimensions
dimE;,(x) = k and dimE}X(x) = /.
For each m € IN, let vip, ..., vkm be an orthonormal basis of E; (x).

Then there exists a convergent subsequence, say with limits vy, ..., vk
that also form an orthonormal set.

This shows that G*(x) contains a subspace E*(x) of dimension k
(generated by vy, ..., vg).

Similarly, G!(x) contains a subspace EY(x) of dimension Z.

George Voutsadakis (LSSU)
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o Recall we have
G°(x) C C°(x) and G“(x) C C“(x).
Thus, we get
Es(x)NEY(x) < G*(x)N GY(x)
C C*(x)NCYx)
{0}. (since v < 1.)
Moreover, by hypothesis, T,M = F*(x) & F“(x). Hence,
dimM = dimF*(x) +dimFY(x)
k4 ¢
= dimE*(x) + dimE"(x).

Thus, the spaces E°(x) and EY(x) generate T, M.
Hence, we obtain the direct sum T,M = E*(x) & EY(x).

George Voutsadakis (LSSU)
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o Recall we have, for all x € A,
dyf71Cs(x) = C3(F1(x)), dyxfClU(x) = C“(f(x));
G*(x) € C*(x), GY(x) € CU(x);
dyf71GS(x) = G5(F1(x)), difGY(x) = GU(f(x)).

Let v € E°(x) and n € IN.
We get, for k =0,...,n,

difkv € d FRES(x) C d, FKG5(x) = G5(F¥(x)) C C5(F¥(x)).

But we know ||dyf~tv| > p v, v € C5(x).
Hence, ||dxf"v||" < p"||v]|.

Let, similarly, v € E¥(x) and n € IN.

We know |[|dy fv|| > p~tv]/, v € C¥(x).

It follows that ||dyf~"v||" < u"||v|.

George Voutsadakis (LSSU)
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o Now we show that E°(x) = G®(x) and EY(x) = G"(x) for any x € A.
Suppose there existed a v € G*(x)\E*(x) C C°(x).
Then v = v® 4 v¥, where v* € E*(x) and v¥ € EY(x)\{0}.
For each n € IN, we would have
plvEl <l el
[ Fov]I + fldf vl
pr (vl =+ vl

This implies that [|[v¥||" < p2"(||v]’ + ||v®]|") — 0 when n — co.
Thus v¥ = 0. This contradiction shows that E°(x) = G*(x).
One can show in an analogous manner that EY(x) = GY(x).
But dyf~1G%(x) = G5(f~1(x)) and dxfGY(x) = GU(f(x)).

So dyfT1ES(x) = ES(f~1(x)) and dyfEY(x) = E“(f(x)).
Therefore, A is a hyperbolic set, taking A = p and ¢ = 1.

<
<
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Subsection 4

George Voutsadakis (LSSU) Dynamical Systems
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o Given differentiable maps f,g : M — M, we define

d(f,g) = sup d(f(x),g(x)) + sup ||dxf — dig].
xeM xeEM

o Recall Tietze's Extension Theorem from Analysis:
Suppose f : A — R is a continuous function in a closed subset A C X
of a normal space (a space such that any two disjoint closed sets have
disjoint open neighborhoods). Then there exists a continuous function

g : X — R, such that g [a= 1.

Let A be a hyperbolic set for a C! diffeomorphism f : M — M. Then
there exist € > 0 and an open set U D A, such that, if g: M — M is a C!
diffeomorphism with d(f,g) < e and A" C U is a compact g-invariant set,
then A is a hyperbolic set for g.

George Voutsadakis (LSSU)
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o By a previous theorem, the stable and unstable spaces E°(x) and
EY(x) vary continuously with x € A.
We apply Tietze's Extension Theorem.

We obtain continuous extensions F*(x) and FY(x), respectively, of
E*(x) and EY(x), for x in some open neighborhood U of A, such that

TxM = F°(x) @ FY(x) for x € U.

Let v > 0 be given.
Let C*(x) and CY(x) be the cones associated to this decomposition.
By the Existence Theorem for Invariant Families of Cones, there exist
constants 1,y € (0,1) and an inner product (-,-) = (-,-), in T,M,
varying continuously with x, such that, for each x € A:

dfCu(x) C CU(f(x)) and dif 1 C5(x) € C5(F1(x));

[d vl > p=Hv]|", for v € C¥(x)\{0};

[t =Hv]l” > p=Hv]l', for v € C5(x)\{0}.

George Voutsadakis (LSSU)
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o Let Sy be the closed unit sphere in T,M (with respect to ||-|| = ||||%)-
These properties are equivalent, for each x € A, to:

di f (S N CH(x)) € CU(f(x)) and dif (5. N C5(x)) € C5(F1(x));
ldxfv|’ > pu=t, for v € S, N C4(x);
lldxf ~tv||’ > pu=t, for v € S, N C5(x).
The product (-, ), and, thus, also ||-||%, vary continuously with x.
So the set {(x,v) € A x TyM : ||v|, = 1} is compact.
For any sufficiently small open neighborhood U C A, the properties
above hold for any x € U (and some continuous extension of the
inner product).

Moreover, for any sufficiently small € the same properties also hold for
any x € U with f replaced by g.

By the preceding theorem, any compact g-invariant set ' C U is a
hyperbolic set for g.

George Voutsadakis (LSSU)
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A diffeomorphism f : M — M of a compact manifold M is called an
Anosov diffeomorphism if M is a hyperbolic set for f.

Example: Any automorphism of the torus induced by a matrix
without eigenvalues with modulus 1 (called a hyperbolic
automorphism of the torus) is an Anosov diffeomorphism.

o The following result is an immediate consequence of the preceding

theorem.

The set of Anosov diffeomorphisms of class C! of a compact manifold M
is open with respect to the topology induced by the distance d.

George Voutsadakis (LSSU)
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