Introduction to Dynamical Systems

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

lyperbolic Dynamics I

- Smooth Manifolds
- Hyperbolic Sets
- Hyperbolic Sets and Invariant Families of Cones
- Stability of Hyperbolic Sets

Subsection 1

Smooth Manifolds

Differentiable Structures

Definition

A set *M* is said to admit a **differentiable structure** of dimension $n \in \mathbb{N}$ if there exist injective maps

$$\varphi_i: U_i \to M$$
 in open sets $U_i \subseteq \mathbb{R}^n, i \in I$,

such that:

1.
$$\bigcup_{i \in I} \varphi_i(U_i) = M$$
;
2. For any $i, j \in I$, such that $V = \varphi_i(U_i) \cap \varphi_j(U_j) \neq \emptyset$, the preimages $\varphi_i^{-1}(V)$ and $\varphi_j^{-1}(V)$ are open and the map $\varphi_j^{-1} \circ \varphi_i$ is of class C^1 .

- Each map $\varphi_i : U_i \to M$ is called a **chart** or a **coordinate system**.
- Given a differentiable structure on M, we consider the topology on M formed by the sets $A \subseteq M$, such that

$$\varphi_i^{-1}A \subseteq \mathbb{R}^n$$
 is open for every $i \in I$.

Smooth Manifolds

- A topological space is said to be **Hausdorff** if any distinct points have disjoint open neighborhoods.
- A topological space is said to **have a countable basis** if there exists a countable family of open sets such that each open set can be written as a union of elements of this family.

Definition

- A set M is said to be a (smooth) manifold of dimension n if:
 - It admits a differentiable structure of dimension *n*;
 - It is a Hausdorff topological space;
 - It has a countable basis.

• Let $\varphi: U \to \mathbb{R}^m$ be a function of class C^1 in an open set $U \subseteq \mathbb{R}^n$. Then the graph

$$M = \{(x, \varphi(x)) : x \in U\} \subseteq \mathbb{R}^n \times \mathbb{R}^m$$

is a manifold of dimension n.

A differentiable structure is given by the single map $\psi: U \to \mathbb{R}^n \times \mathbb{R}^m$ defined by

$$\psi(x)=(x,\varphi(x)).$$

The set

$$\mathbb{T} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

is a manifold of dimension 1.

A differentiable structure is given by the maps $\varphi_i:(-1,1) \to \mathbb{T}$, i = 1, 2, 3, 4, defined by

$$\begin{aligned} \varphi_1(x) &= (x, \sqrt{1-x^2}), \quad \varphi_2(x) = (x, -\sqrt{1-x^2}), \\ \varphi_3(x) &= (\sqrt{1-x^2}, x), \quad \varphi_4(x) = (-\sqrt{1-x^2}, x). \end{aligned}$$

• We note that \mathbb{T} can be identified with S^1 . In particular, the map $\chi: S^1 \to \mathbb{T}$ defined by

$$\chi(x) = (\cos(2\pi x), \sin(2\pi x))$$

is a homeomorphism.

• The torus $\mathbb{T}^n = S^n$ is a manifold of dimension n.

Recall the maps $arphi_i:(-1,1)
ightarrow \mathbb{T}$, i=1,2,3,4, defined by

$$\varphi_1(x) = (x, \sqrt{1-x^2}), \quad \varphi_2(x) = (x, -\sqrt{1-x^2}),$$

 $\varphi_3(x) = (\sqrt{1-x^2}, x), \quad \varphi_4(x) = (-\sqrt{1-x^2}, x).$

A differentiable structure is given by the maps $\psi: (-1,1)^n \to \mathbb{T}^n$, defined by

$$\psi(x_1,\ldots,x_n)=((\chi^{-1}\circ\psi_1)(x_1),\ldots,(\chi^{-1}\circ\psi_n)(x_n)),$$

where each ψ_i is any of the functions $\varphi_1, \varphi_2, \varphi_3$ and φ_4 .

Differentiable Maps

Definition

A map $f : M \to N$ between manifolds is said to be **differentiable at a point** $x \in M$ if there exist charts

 $\varphi: U \to M$ and $\psi: V \to N$,

such that:

x ∈ φ(U) and f(φ(U)) ⊆ ψ(V);
 ψ⁻¹ ∘ f ∘ φ is differentiable at φ⁻¹(x).
 Moreover, f is said to be of class C^k in an open set W ⊆ M if all maps ψ⁻¹ ∘ f ∘ φ are of class C^k in φ⁻¹(W).

Tangent Vectors

- Let *M* be a manifold of dimension *n*.
- Let D_x be the set of all functions g : M → ℝ that are differentiable at x ∈ M.

Definition

The **tangent vector** to a differentiable path $\alpha : (-\varepsilon, \varepsilon) \to M$, with $\alpha(0) = x$ at t = 0, is the function $v_{\alpha} : D_x \to \mathbb{R}$ defined by

$$v_{lpha}(g) = \left. rac{d(g \circ lpha)}{dt}
ight|_{t=0}$$

We also say that v_{α} is a **tangent vector** at *x*.

Tangent Spaces and Tangent Bundles

- One can show that the set T_xM of all tangent vectors at x is a vector space of dimension n.
- The space $T_X M$ is called the **tangent space of** M at x.
- Moreover, the set

$$TM = \{(x, v) : x \in M, v \in T_x M\}$$

is a manifold of dimension 2n.

• *TM* is called the **tangent bundle** of *M*.

Differentiable Structure on the Tangent Bundle

- Let $\varphi: U \to M$ be a chart.
- Let (x_1, \ldots, x_n) be the coordinates in U.

Let

$$(e_1,\ldots,e_n)$$

is the standard basis of \mathbb{R}_n .

Consider the differentiable paths α_i : (−ε, ε) → M for i = 1,..., n, defined by

$$\alpha_i(t) = \varphi(te_i).$$

• The tangent vector to the path α_i at t = 0 is denoted by $\frac{\partial}{\partial x_i}$.

Differentiable Structure on the Tangent Bundle (Cont'd)

One can show that

$$\left(\frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\right)$$

is a basis of the tangent space $T_{\varphi(0)}M$.

Moreover, a differentiable structure on

$$TM = \{(x, v) : x \in M, v \in T_xM\}$$

is given by the maps

 $\psi: U \times \mathbb{R}^n \to TM$

defined by

$$\psi(x_1,\ldots,x_n,y_1,\ldots,y_n) = \left(\varphi(x_1,\ldots,x_n),\sum_{i=1}^n y_i\frac{\partial}{\partial x_i}\right).$$

Subsection 2

Hyperbolic Sets

The Setup

- A diffeomorphism of a manifold *M* is an invertible C¹ map *f* : *M* → *M*, whose inverse is also of class C¹.
- Let $f: M \to M$ be a C^1 diffeomorphism of a manifold M.
- For each $x \in M$, define a linear transformation

$$d_x f: T_x M \to T_{f(x)} M$$

between the tangent spaces $T_X M$ and $T_{f(x)} M$ by

$$d_x f v = v_{f \circ \alpha},$$

for any differentiable path $\alpha : (-\varepsilon, \varepsilon) \to M$, such that $\alpha(0) = x$ and $v_{\alpha} = v$.

• One can show that the definition does not depend on the path α .

Riemannian Manifolds

- We always assume that *M* is a Riemannian manifold.
- That is, each tangent space $T_x M$ is equipped with an inner product $\langle \cdot, \cdot \rangle_x$, such that the map

$$TM
i (x, v) \mapsto \langle v, v \rangle_x$$

is differentiable.

• This inner product induces the norm

$$\|v\|_{x} = \langle v, v \rangle_{x}^{1/2}, \quad v \in T_{x}M.$$

 For simplicity of notation, we always write ⟨·, ·⟩ and ||·||, without indicating the dependence on x (deduced from the context).

Hyperbolic Sets

Definition

A compact *f*-invariant set $\Lambda \subseteq M$ is said to be a **hyperbolic set** for *f* if there exist $\lambda \in (0, 1)$, c > 0, and a decomposition

$$T_{x}M=E^{s}(x)\oplus E^{u}(x),$$

for each $x \in \Lambda$, such that:

 $d_x f E^s(x) = E^s(f(x))$ and $d_x f E^u(x) = E^u(f(x));$

Hyperbolic Sets (Cont'd)

Definition (Cont'd)

2. If $v \in E^s(x)$ and $n \in \mathbb{N}$, then

$$\|d_x f^n v\| \leq c\lambda^n \|v\|;$$

3. If
$$v \in E^u(x)$$
 and $n \in \mathbb{N}$, then

$$\|d_{x}f^{-n}v\|\leq c\lambda^{n}\|v\|.$$

The linear spaces $E^{s}(x)$ and $E^{u}(x)$ are called, respectively, the **stable** and **unstable spaces** at the point x.

• Let $a \in (0, 1)$ and b > 1.

Define the linear transformation $f : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(x,y) = (ax, by).$$

We have f(0) = 0. Hence, the origin is a fixed point. Consider the decomposition $\mathbb{R}^2 = E^s \oplus E^u$, where:

- E^s is the horizontal axis;
- E^u is the vertical axes.

Consider the linear transformation

$$A=d_0f=f.$$

Example (Cont'd)

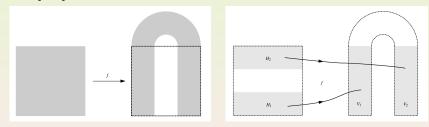
• For the linear transformation

$$A=d_0f=f$$

we have: 1. $AE^s = E^s$ and $AE^u = E^u$; 2. $||Av|| \le a||v||$, for $v \in E^s$; 3. $||A^{-1}v|| \le b^{-1}||v||$, for $v \in E^u$. Take $\lambda = \max\{a, b^{-1}\}$ and c = 1. We see that $\{0\} \subseteq \mathbb{R}^2$ is a hyperbolic set for the diffeomorphism f.

The Smale Horseshoe

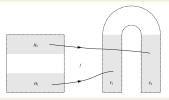
• Let f be a diffeomorphism on an open neighborhood of the square $Q = [0, 1]^2$ with the behavior shown on he left.



We consider the following horizontal and vertical strips, for some constant $a \in (0, \frac{1}{2})$.

$$\begin{split} & H_1 = [0,1] \times [0,a], \quad H_2 = [0,1] \times [1-a,1]; \\ & V_1 = [0,a] \times [0,1], \quad V_2 = [1-a,1] \times [0,1]. \end{split}$$

• We assume that $f(H_1) = V_1$ and $f(H_2) = V_2$.



This yields the identity

$$Q\cap f(Q)=V_1\cup V_2.$$

We also assume that the restrictions $f \mid_{H_1}$ and $f \mid_{H_2}$ are affine, with

$$f(x,y) = \begin{cases} (ax, by), & \text{if } (x,y) \in H_1 \\ (-ax+1, -by+b), & \text{if } (x,y) \in H_2 \end{cases}, \quad b = \frac{1}{a}.$$

We shall see that the construction of the Smale horseshoe only depends on the restriction $f \mid_{H_1 \cup H_2}$.

George Voutsadakis (LSSU)

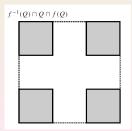
• Now we consider the diffeomorphism f^{-1} . We have $f^{-1}(V_1) = H_1$ and $f^{-1}(V_2) = H_2$. Taking into account $Q \cap f(Q) = V_1 \cup V_2$, we get

$$f^{-1}(Q) \cap Q = f^{-1}(V_1) \cup f^{-1}(V_2) = H_1 \cup H_2.$$

From these two relations, we get

$$\bigcap_{k=-1}^{1} f^{n}(Q) = (H_{1} \cup H_{2}) \cap (V_{1} \cup V_{2}).$$

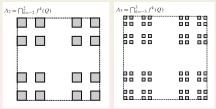
So $f^{-1}(Q) \cap Q \cap f(Q)$ is the union of four squares of size *a*.



• We iterate this procedure, i.e., consider successively the images $f^n(Q)$ and the preimages $f^{-n}(Q)$. The intersection

$$\Lambda_n = \bigcap_{k=-n}^n f^k(Q)$$

is the union of 4^n squares of size a^n .



Now Λ_n is a decreasing sequence of nonempty closed sets. Thus, the compact set $\Lambda = \bigcap_{n \in \mathbb{N}} \Lambda_n = \bigcap_{k \in \mathbb{Z}} f^k(Q)$ is nonempty. It is called a **Smale horseshoe** (for f).

• Clearly, the set Λ has no interior points since the diameters of the 4^n squares in Λ_n tend to zero when $n \to \infty$.

One can also verify that Λ has no isolated points.

Hence, it is a Cantor set (closed with neither interior nor isolated points).

Hyperbolic Character of the Smale Horseshoe

Proposition

 Λ is a hyperbolic set for the diffeomorphism f.

We have

$$\Lambda = \bigcap_{k \in \mathbb{Z}} f^k(Q).$$

So Λ is *f*-invariant, i.e., $f^{-1}\Lambda = \Lambda$.

On the other hand, by the definition of f, we have:

•
$$d_x f = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
, for $x \in H_1$;
• $d_x f = \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix}$, for $x \in H_2$.

Hyperbolic Character of the Smale Horseshoe (Cont'd)

• For each $x \in \Lambda$, we consider the decomposition

$$\mathbb{R}^2 = E^s(x) \oplus E^u(x),$$

where $E^{s}(x)$ is the horizontal and $E^{u}(x)$ the vertical axis. The matrices for $d_{x}f$ are diagonal. So we get

$$d_x f E^s(x) = E^s(f(x))$$
 and $d_x f E^u(x) = E^u(f(x))$.

Moreover, by the matrix expressions,

$$\|d_x fv\| = \begin{cases} a\|v\|, & \text{if } v \in E^s(x), \\ b\|v\|, & \text{if } v \in E^u(x). \end{cases}$$

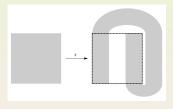
We take $\lambda = a$ and c = 1 in the definition of a hyperbolic set.

A Second Construction

 let g be a diffeomorphism on an open neighborhood of the square Q with the behavior shown.

Assume $g(H_1) = V_1$, $g(H_2) = V_2$. Moreover, let

$$g(x,y) = \begin{cases} (\frac{x}{3},3y), & \text{if } (x,y) \in H_1, \\ (\frac{x}{3}+\frac{2}{3},3y-2), & \text{if } (x,y) \in H_2. \end{cases}$$



Then the compact g-invariant set $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(Q)$ cincides with the Λ of the Smale's horseshoe.

Proposition

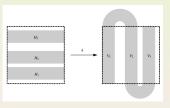
 Λ_g is a hyperbolic set for the diffeomorphism g.

A More General Construction

Let h be a diffeomorphism on an open neighborhood of the square Q, such that Q ∩ h(Q) has a finite number of connected components.

More precisely, consider pairwise disjoint closed horizontal strips $H_1, \ldots, H_m \subseteq Q$ (figure shows m = 3). We assume that the images $V_i = h(H_i)$,

for i = 1, ..., m, are vertical strips in Q (necessarily disjoint since h is invertible).



Moreover, we assume that $h \mid_{H_i}$ is an affine transformation of the form

$$h|_{H_i}(x,y) = (\lambda_i x + a_i, \mu_i y + b_i),$$

for i = 1, ..., m, with $|\lambda_i| < 1$ and $|\mu_i| > 1$. Let $\mu = \max\{|\lambda_i|, |\mu_i|^{-1} : i = 1, ..., m\}.$

A More General Construction (Cont'd)

• For each $n \in \mathbb{N}$, consider the intersection

$$\Lambda_n^h = \bigcap_{k=-n}^n h^k(Q).$$

It is the union of m^{2n} rectangles with sides of length at most μ^n . Consider, moreover, the compact *h*-invariant set

$$\Lambda_h=\bigcap_{n\in\mathbb{Z}}h^n(Q).$$

 Λ_h has no interior points.

We can also verify that Λ_h has no isolated points.

Proposition

 Λ_h is a hyperbolic set for the diffeomorphism *h*, taking $\lambda = \mu$ and c = 1.

Distance Between Subspaces

• Let $E \subseteq \mathbb{R}^p$ and $v \in \mathbb{R}^p$.

Optime Define

$$d(v, E) = \min \{ ||v - w|| : w \in E \}.$$

• Moreover, given subspaces $E, F \subseteq \mathbb{R}^{p}$, we define

$$d(E,F) = \max\left\{\max_{v\in E, \|v\|=1} d(v,F), \max_{w\in F, \|w\|=1} d(w,E)\right\}.$$

• Let $E, F \subseteq \mathbb{R}^2$ be subspaces of dimension 1. Then

$$d(E,F)=\sin\alpha,$$

where $\alpha \in [0, \frac{\pi}{2}]$ is the angle between *E* and *F*. Indeed, in this case, we have:

 $\max_{v\in E, \|v\|=1} d(v,F) = d(v_E,F),$

where $v_E \in E$ is any vector with norm 1;

 $\max_{v\in F, \|w\|=1} d(w, E) = d(v_F, E),$

where $v_F \in F$ is any vector with norm 1. These numbers coincide.

Hence,

0

٥

$$d(E,F) = d(v_E,F) = d(v_F,E) = \sin \alpha.$$

emma 1: Sublimits of Sequences of Unit Length

Lemma

Let $\Lambda \subseteq \mathbb{R}^p$ be a hyperbolic set and $x \in \Lambda$. Consider the stable and unstable spaces $E^s(x)$ and $E^u(x)$. Let $x_m \in \Lambda$, for all $m \in \mathbb{N}$, such that $x_m \to x$ when $m \to \infty$. Any sublimit of a sequence $v_m \in E^s(x_m) \subseteq \mathbb{R}^p$, with $||v_m|| = 1$ is in $E^s(x)$.

 Note that the closed unit sphere of ℝ^p is compact. So the sequence v_m has sublimits. Sincev_m ∈ E^s(x_m), we have

$$\|d_{x_m}f^nv_m\| \leq c\lambda^n\|v_m\|, \quad m,n\in\mathbb{N}.$$

Letting $m \to \infty$, we obtain

$$\|d_x f^n v\| \leq c\lambda^n \|v\|, \quad n \in \mathbb{N},$$

where v is any sublimit of the sequence v_m . By definition, v has no component in $E^u(x)$. Thus, $v \in E^s(x)$.

Lemma 2: Dimension of Stable and Unstable Spaces

Lemma

Let $\Lambda \subseteq \mathbb{R}^p$ be a hyperbolic set and $x \in \Lambda$. Consider the stable and unstable spaces $E^s(x)$ and $E^u(x)$. Let $x_m \in \Lambda$, for all $m \in \mathbb{N}$, such that $x_m \to x$ when $m \to \infty$. Then, there exists an $m \in \mathbb{N}$, such that, for any p, q > m:

- dim $E^{s}(x_{p}) = \dim E^{s}(x_{q});$
- dim $E^u(x_p) = \dim E^s(x_q)$.
- The dimensions dim $E^{s}(x_m)$ and dim $E^{u}(x_m)$ can only take finitely many values.

So there exists a subsequence y_m of x_m such that the numbers $\dim E^s(y_m)$ and $\dim E^u(y_m)$ are independent of m.

Let $v_{1m}, \ldots, v_{km} \in E^s(y_m) \subseteq \mathbb{R}^p$ be an orthonormal basis of $E^s(y_m)$, where $k = \dim E^s(y_m)$ (which, by hypothesis, is independent of m).

_emma 2: Dimension (Cont'd)

The closed unit sphere of ℝ^p is compact.
So the sequence (v_{1m},..., v_{km}) has sublimits.
Moreover, each sublimit (v₁,..., v_k) is still an orthonormal set.
By the preceding lemma, v₁,..., v_k ∈ E^s(x).
Thus, since (v₁,..., v_k) is an orthonormal set,

$$\dim E^s(x) \ge k.$$

Proceeding analogously for the unstable spaces, we obtain

```
\dim E^u(x) \geq \dim M - k.
```

But we have $T_x M = E^s(x) \oplus E^u(x)$. Therefore,

$$\dim E^{s}(x) = k$$
 and $\dim E^{u}(x) = \dim M - k$.

Lemma 2: Dimension (Cont'd)

In particular, the vectors v₁,..., v_k generate E^s(x).
We show that each vector v ∈ E^s(x) with norm ||v|| = 1 is a sublimit of some sequence v_m ∈ E^s(y_m) with ||v_m|| = 1.
Write v = ∑_{i=1}^k α_iv_i with ∑_{i=1}^k α_i² = 1.
Then take

$$\mathbf{v}_m = \frac{\sum_{i=1}^k \alpha_i \mathbf{v}_{im}}{\|\sum_{i=1}^k \alpha_i \mathbf{v}_{im}\|}.$$

Suppose z_m is another subsequence of x_m such that the dimensions $\dim E^s(z_m)$ and $\dim E^u(z_m)$ are independent of m. Say, $\dim E^s(z_m) = \ell$ and $\dim E^u(z_m) = \dim M - \ell$. Then we also have $\dim E^s(x) = \ell$ and $\dim E^u(x) = \dim M - \ell$. Thus, $\ell = k$.

So dim $E^{s}(x_{m})$ and dim $E^{u}(x_{m})$ are constant for sufficiently large m.

Lemma 3: Estimating Distance Between Stable Subspaces

Lemma

Let $\Lambda \subseteq \mathbb{R}^p$ be a hyperbolic set and $x \in \Lambda$. Consider the stable and unstable spaces $E^s(x)$ and $E^u(x)$. Let $x_m \in \Lambda$, for all $m \in \mathbb{N}$, such that $x_m \to x$ when $m \to \infty$. Given $\delta > 0$, there exists a $p \in \mathbb{N}$, such that

$$\max_{w\in E^s(x_m), \|w\|=1} d(w, E^s(x)) < \delta, \quad ext{for } m > p.$$

Note that given ε > 0 and a sequence w_m ∈ E^s(x_m) with ||w_m|| = 1, we have d(w_m, E^s(x)) < ε for any sufficiently large m.
 Otherwise, there would exist a subsequence w_{km}, such that

$$d(w_{k_m}, E^s(x)) \ge \varepsilon$$
, for $m \in \mathbb{N}$.

Then, any sublimit w of w_{k_m} satisfies $d(w, E^s(x)) \ge \varepsilon$. But this is impossible since, by Lemma 1, $w \in E^s(x)$.

_emma 3: Estimating Distance (Cont'd)

We consider orthonormal bases (v_{1m},..., v_{km}) of E^s(x_m) (for each sufficiently large m, such that dimE^s(x_m) = k).
 By the preceding paragraph, there exist integers p₁,..., p_k ∈ N, such

that, for $m > p_i$,

$$d(v_{im}, E^s(x)) < \varepsilon.$$

We also take vectors $w_m \in E^s(x_m)$, with norm $||w_m|| = 1$, and we write $w_m = \sum_{i=1}^k \alpha_{im} v_{im}$ with $\sum_{i=1}^k \alpha_{im}^2 = 1$. Now, for each $i = 1, \ldots, k$ and $m > p := \max \{p_1, \ldots, p_k\}$, there exists a $w_{im} \in E^s(x)$, such that $||v_{im} - w_{im}|| < \varepsilon$. Then

$$d(w_m, E^s(x)) \leq \|w_m - \sum_{i=1}^k \alpha_{im} w_{im}\| \\ \leq \sum_{i=1}^k |\alpha_{im}| \cdot \|v_{im} - w_{im}\| \\ < k\epsilon.$$

Hence, $\underset{w \in E^{s}(x_{m}), \|w\|=1}{\max} d(w, E^{s}(x)) < k\varepsilon$, for m > p.

Lemma 4: Estimating Distance Between Stable Subspaces

Lemma

Let $\Lambda \subseteq \mathbb{R}^p$ be a hyperbolic set and $x \in \Lambda$. Consider the stable and unstable spaces $E^s(x)$ and $E^u(x)$. Let $x_m \in \Lambda$, for all $m \in \mathbb{N}$, such that $x_m \to x$ when $m \to \infty$. Given $\delta > 0$, there exists a $q \in \mathbb{N}$, such that

$$\max_{v\in E^s(x), \|v\|=1} d(v, E^s(x_m)) < \delta, \quad \text{for } m > q.$$

Let ε > 0 and v ∈ E^s(x).
 We show that d(v, E^s(x_m)) < ε, for any sufficiently large m.
 Otherwise, there would exist a sequence x_{k_m}, such that

$$d(v, E^s(x_{k_m})) \geq \varepsilon$$
, for $m \in \mathbb{N}$.

Consider $w_m \in E^s(x_{k_m})$ with $||w_m|| = 1$, having v as a sublimit (each $v \in E^s(x)$ is obtained as a sublimit of such a sequence). Then $||v - w_m|| \ge \varepsilon$, $m \in \mathbb{N}$. So $0 = ||v - v|| \ge \varepsilon$, a contradiction.

_emma 4: Estimating Distance (Cont'd)

• Now consider an orthonormal basis v_1, \ldots, v_k of $E^s(x)$. Take integers $q_1, \ldots, q_k \in \mathbb{N}$, such that

$$d(v_i, E^s(x_m)) < \varepsilon$$
, for $m > q_i$.

For each *i*, there exists a $v_{im} \in E^s(x_m)$ with $||v_i - v_{im}|| < \varepsilon$. Given $v \in E^s(x)$, with ||v|| = 1, write

$$\mathbf{v} = \sum_{i=1}^{k} \alpha_i \mathbf{v}_i, \quad \sum_{i=1}^{k} \alpha_i^2 = 1.$$

Then, for $m > q := \max\{q_1, \ldots, q_k\}$,

$$d(v, E^{s}(x_{m})) \leq \|v - \sum_{i=1}^{k} \alpha_{i} v_{im}\|$$

$$\leq \sum_{i=1}^{k} |\alpha_{i}| \cdot \|v_{i} - v_{im}\|$$

$$< k\epsilon.$$

Hence, $\max_{v \in E^s(x), \|v\|=1} d(v, E^s(x_m)) < k\varepsilon$, for m > q.

Convergence and Distance

Theorem

If $\Lambda \subseteq \mathbb{R}^p$ is a hyperbolic set, then the spaces $E^s(x)$ and $E^u(x)$ vary continuously with $x \in \Lambda$. That is, if $x_m \to x$ when $m \to \infty$, with $x_m, x \in \Lambda$, for each $m \in \mathbb{N}$, then

$$d(E^{s}(x_{m}), E^{s}(x)) \to 0 \quad \text{when } m \to \infty;$$

$$d(E^{u}(x_{m}), E^{u}(x)) \to 0 \quad \text{when } m \to \infty.$$

• Let $(x_m)_{m \in \mathbb{N}}$ be a sequence as in the statement of the theorem. By Lemmas 3 and 4, given $\delta > 0$, there exist $p, q \in \mathbb{N}$, such that

$$d(E^{s}(x_{m}),E^{s}(x)) < 2\delta, \text{ for } m > \max{\{p,q\}}.$$

The result for unstable spaces is obtained similarly.

Subsection 3

Hyperbolic Sets and Invariant Families of Cones

The Setup

- Let $f: M \to M$ be a C^1 diffeomorphism.
- Let $\Lambda \subseteq M$ be a compact *f*-invariant set.
- For each $x \in \Lambda$, we consider a decomposition

$$T_x M = F^s(x) \oplus F^u(x)$$

and an inner product $\langle \cdot, \cdot \rangle' = \langle \cdot, \cdot \rangle'_x$ in $T_x M$.

- We emphasize that this may not be the original inner product.
- We always assume that the dimensions dimF^s(x) and dimF^u(x) are independent of x.
- On the other hand, we do not require that

$$d_x fF^s(x) = F^s(f(x)), \quad d_x fF^u(x) = F^u(f(x)), \quad \text{for } x \in \Lambda.$$

The Cones

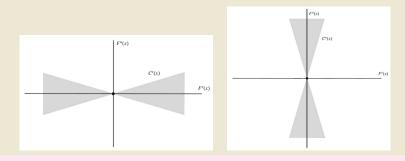
Definition

Given $\gamma \in (0,1)$ and $x \in \Lambda$, we define the **cones**

$$C^{s}(x) = \{(v, w) \in F^{s}(x) \oplus F^{u}(x) : ||w||' < \gamma ||v||'\} \cup \{0\}$$

and

 $C^{u}(x) = \{(v, w) \in F^{s}(x) \oplus F^{u}(x) : \|v\|' < \gamma \|w\|'\} \cup \{0\}.$



George Voutsadakis (LSSU)

Dynamical Systems

May 2024 -

Characterization of Hyperbolic Sets

Theorem

Let $f: M \to M$ be a C^1 diffeomorphism. Let $\Lambda \subseteq M$ be a compact f-invariant set. Then Λ is a hyperbolic set for f if and only if there exist a decomposition $T_xM = F^s(x) \oplus F^u(x)$ and an inner product $\langle \cdot, \cdot \rangle'_x$ in T_xM , for each $x \in \Lambda$, and constants $\mu, \gamma \in (0, 1)$ such that:

1. For any $x \in \Lambda$,

For

$$d_x f \overline{C^u(x)} \subseteq C^u(f(x))$$
 and $d_x f^{-1} \overline{C^s(x)} \subseteq C^s(f^{-1}(x));$
any $x \in \Lambda$,

$$\begin{aligned} \|d_x fv\|' &\geq \frac{1}{\mu} \|v\|', & \text{ for } v \in C^u(x); \\ \|d_x f^{-1}v\|' &\geq \frac{1}{\mu} \|v\|', & \text{ for } v \in C^s(x). \end{aligned}$$

• The theorem follows from the next two theorems.

Existence of Invariant Families of Cones

Theorem

Let $f: M \to M$ be a C^1 diffeomorphism. Let $\Lambda \subseteq M$ be a hyperbolic set for f. Then there exist an inner product $\langle \cdot, \cdot \rangle'_x$ in $T_x M$ varying continuously with $x \in \Lambda$ and constants $\mu, \gamma \in (0, 1)$, such that

$$\begin{array}{rcl} C^{s}(x) & = & \{(v,w) \in E^{s}(x) \oplus E^{u}(x) : \|w\|' < \gamma \|v\|'\} \cup \{0\}, \\ C^{u}(x) & = & \{(v,w) \in E^{s}(x) \oplus E^{u}(x) : \|v\|' < \gamma \|w\|'\} \cup \{0\}, \end{array}$$

satisfy, for any $x \in \Lambda$,

1. $d_x f \overline{C^u(x)} \subseteq C^u(f(x))$ and $d_x f^{-1} \overline{C^s(x)} \subseteq C^s(f^{-1}(x));$

2.
$$||d_x fv||' \ge \frac{1}{\mu} ||v||'$$
, for $v \in C^u(x)$;

3.
$$\|d_x f^{-1}v\|' \ge \frac{1}{\mu} \|v\|'$$
, for $v \in C^s(x)$.

• We divide the proof into steps.

Existence of Invariant Families of Cones (Inner Product)

• Take $m \in \mathbb{N}$ such that $c\lambda^m < 1$. Given $v, w \in E^s(x)$, we define

$$\langle v, w \rangle' = \sum_{n=0}^{m-1} \langle d_x f^n v, d_x f^n w \rangle.$$

For each $v \in E^{s}(x)$, we have

$$\begin{aligned} (\|d_{x}fv\|')^{2} &= \sum_{n=0}^{m-1} \|d_{x}f^{n+1}v\|^{2} \\ &= \sum_{n=0}^{m-1} \|d_{x}f^{n}v\|^{2} - \|v\|^{2} + \|d_{x}f^{m}v\|^{2} \\ &\leq (\|v\|')^{2} - (1 - c^{2}\lambda^{2m})\|v\|^{2}. \end{aligned}$$

Existence of Invariant Families of Cones (Cont'd)

• We got, for each $v \in E^{s}(x)$,

$$(\|d_x fv\|')^2 \leq (\|v\|')^2 - (1 - c^2 \lambda^{2m}) \|v\|^2$$

On the other hand,

$$(\|v\|')^2 \leq \sum_{n=0}^{m-1} c^2 \lambda^{2n} \|v\|^2 \leq c^2 m \|v\|^2.$$

Thus, $||d_x fv||' \le \tau ||v||'$, where $\tau = \sqrt{1 - \frac{1 - c^2 \lambda^{2m}}{c^2 m}} < 1$. Analogously, given $v, w \in E^u(x)$, we define

$$\langle v, w \rangle' = \sum_{n=0}^{m-1} \langle d_x f^{-n} v, d_x f^{-n} w \rangle.$$

We verify similarly that $||d_x f^{-1}v||' \le \tau ||v||'$, for $v \in E^u(x)$.

Existence of Invariant Families (Inner Product Cont'd)

Now we consider an inner product ⟨·, ·⟩ = ⟨·, ·⟩_x in T_xM.
 Let v, w ∈ T_xM, where

$$v = v^s + v^u$$
 and $w = w^s + w^u$,

with $v^s, w^s \in E^s(x)$ and $v^u, w^u \in E^u(x)$.

Then we set

$$\langle \mathbf{v}, \mathbf{w} \rangle' = \langle \mathbf{v}^{\mathbf{s}}, \mathbf{w}^{\mathbf{s}} \rangle' + \langle \mathbf{v}^{\mathbf{u}}, \mathbf{w}^{\mathbf{u}} \rangle'.$$

Consider, next, the cones $C^{s}(x)$ and $C^{u}(x)$, with the norm $\|\cdot\|'$ induced from the inner product $\langle \cdot, \cdot \rangle'$.

Existence of Invariant Families (Inner Product Cont'd)

 Given (v, w) ∈ C^u(x), we have, by definition, ||v||' ≤ γ||w||'. We also have d_xfE^s(x) = E^s(f(x)) and d_xfE^u(x) = E^u(f(x)). Hence,

$$d_x f(v, w) = (d_x fv, d_x fw) \in E^s(f(x)) \oplus E^u(f(x)).$$

'e know $||d_x fv||' \le \tau ||v||'$ and $||d_x f^{-1}v||' \le \tau ||v||'.$
hese give

$$\|d_{\mathsf{x}} f \mathsf{v}\|' \leq \tau \|\mathsf{v}\|' \leq \tau \gamma \|\mathsf{w}\|' \leq \tau^2 \gamma \|d_{\mathsf{x}} f \mathsf{w}\|'.$$

Thus, $d_x f(v, w) \in C^u(f(x))$. Analogously, given $(v, w) \in \overline{C^s(x)}$, we have $||w||' \le \gamma ||v||'$. Thus,

$$\|d_{\mathsf{x}}f^{-1}w\|' \leq \tau \|w\|' \leq \tau \gamma \|v\|' \leq \tau^2 \gamma \|d_{\mathsf{x}}f^{-1}v\|'.$$

This shows that $d_x f^{-1}(v, w) \in C^s(f^{-1}(x))$ proving Part 1.

W

Existence of Invariant Families (Estimates Inside Cones)

• Let $(v, w) \in C^u(x)$. We have $\|d_x fv\|' \le \tau \|v\|'$ and $\|d_x f^{-1}w\|' \le \tau \|w\|'$. Therefore,

$$\begin{split} \|d_{x}f(v,w)\|' &\geq \|d_{x}fw\|' - \|d_{x}fv\|' \\ &\geq \tau^{-1}\|w\|' - \tau\|v\|' \\ &\geq \tau^{-1}\|w\|' - \tau\gamma\|w\|' . \end{split}$$

But $\|(v,w)\|' < (1+\gamma)\|w\|'$. So we have

$$\|d_{\mathsf{x}}f(\mathsf{v},\mathsf{w})\|' \geq \frac{\tau^{-1}-\tau\gamma}{1+\gamma}\|(\mathsf{v},\mathsf{w})\|'.$$

Choose γ sufficiently small so that $\mu := \left(\frac{\tau^{-1} - \tau\gamma}{1 + \gamma}\right)^{-1} > 1$. Then we obtain $\|d_x fv\|' \ge \mu^{-1} \|v\|'$.

Existence of Invariant Families (Cont'd)

• Analogously, let $(v, w) \in C^s(x)$. Again, $||d_x fv||' \le \tau ||v||'$ and $||d_x f^{-1}w||' \le \tau ||w||'$. We get that

$$\begin{split} \|d_{x}f^{-1}(v,w)\|' &\geq \|d_{x}f^{-1}v\|' - \|d_{x}f^{-1}w\|'\\ &\geq \tau^{-1}\|v\|' - \tau\|w\|'\\ &\geq \frac{\tau^{-1}-\tau\gamma}{1+\gamma}\|(v,w)\|'\\ &= \mu^{-1}\|(v,w)\|'. \end{split}$$

This completes the proof.

Criterion for Hyperbolicity

Theorem

Let $f : M \to M$ be a C^1 diffeomorphism. Let $\Lambda \subseteq M$ be a compact *f*-invariant set. Suppose there exist a decomposition

$$T_x M = F^s(x) \oplus F^u(x)$$

and an inner product $\langle \cdot, \cdot \rangle'_x$ in $T_x M$, for each $x \in \Lambda$, and constants $\mu, \gamma \in (0, 1)$, such that the cones $C^s(x)$ and $C^u(x)$ satisfy, for any $x \in \Lambda$: 1. $d_x f \overline{C^u(x)} \subseteq C^u(f(x))$ and $d_x f^{-1} \overline{C^s(x)} \subseteq C^s(f^{-1}(x))$; 2. $\|d_x fv\|' \ge \frac{1}{\mu} \|v\|'$, for $v \in C^u(x)$; 3. $\|d_x f^{-1}v\|' \ge \frac{1}{\mu} \|v\|'$, for $v \in C^s(x)$.

Criterion for Hyperbolicity (Cont'd)

Theorem (Cont'd)

Then Λ is a hyperbolic set for f, taking $\lambda = \mu$ and c = 1. Moreover, the stable and unstable spaces are given by

$$E^{s}(x) = \bigcap_{n=0}^{\infty} d_{f^{n}(x)} \overline{C^{s}(f^{n}(x))}, \quad E^{u}(x) = \bigcap_{n=0}^{\infty} d_{f^{-n}(x)} \overline{C^{u}(f^{-n}(x))}.$$

• We divide the proof into steps.

Criterion (Construction of Invariant Sets)

• For each $x \in \Lambda$, we consider the sets

$$G^{s}(x) = \bigcap_{n=0}^{\infty} d_{f^{n}(x)} f^{-n} \overline{C^{s}(f^{n}(x))};$$

$$G^{u}(x) = \bigcap_{n=0}^{\infty} d_{f^{-n}(x)} f^{n} \overline{C^{u}(f^{-n}(x))}.$$

By hypothesis,

$$d_x f \overline{C^u(x)} \subseteq C^u(f(x))$$
 and $d_x f^{-1} \overline{C^s(x)} \subseteq C^s(f^{-1}(x)).$

So we have

$$G^{s}(x) = \bigcap_{n=0}^{\infty} d_{f^{n}(x)} f^{-n} \overline{C^{s}(f^{n}(x))}$$

$$\subseteq \bigcap_{n=0}^{\infty} C^{s}(f^{-n}(f^{n}(x)))$$

$$= C^{s}(x).$$

Similarly,

$$G^{u}(x) \subseteq C^{u}(x).$$

Criterion (Construction Cont'd)

It now follows that

 $d_x f^{-1}G^s(x) \subseteq C^s(f^{-1}(x))$ and $d_x fG^u(x) \subseteq C^u(f(x)).$

Writing $y = f^{-1}(x)$, we obtain

$$d_{x}f^{-1}G^{s}(x) = \overline{C^{s}(y)} \cap d_{x}f^{-1}G^{s}(x)$$

= $\overline{C^{s}(y)} \cap \bigcap_{n=0}^{\infty} d_{f^{n}(x)}f^{-(n+1)}\overline{C^{s}(f^{n}(x))}$
= $\overline{C^{s}(y)} \cap \bigcap_{n=0}^{\infty} d_{f^{n+1}(y)}f^{-(n+1)}\overline{C^{s}(f^{n+1}(y))}$
= $G^{s}(y).$

Analogously, $d_x f G^u(x) = G^u(f(x))$.

Criterion (Construction of Stable and Unstable Spaces)

- By hypothesis, the dimensions k = dimF^s(x) and ℓ = dimF^u(x) are independent of x.
 - So, for each $m \in \mathbb{N}$, the sets

$$\bigcap_{n=0}^{m} d_{f^n(x)} f^{-n} \overline{C^s(f^n(x))} = d_{f^m(x)} f^{-m} \overline{C^s(f^m(x))},$$

$$\bigcap_{n=0}^{m} d_{f^{-n}(x)} f^n \overline{C^u(f^{-n}(x))} = d_{f^{-m}(x)} f^m \overline{C^u(f^{-m}(x))}$$

contain subspaces $E_m^s(x)$ and $E_m^u(x)$, respectively, of dimensions $\dim E_m^s(x) = k$ and $\dim E_m^u(x) = \ell$.

For each $m \in \mathbb{N}$, let v_{1m}, \ldots, v_{km} be an orthonormal basis of $E_m^s(x)$.

Then there exists a convergent subsequence, say with limits v_1, \ldots, v_k that also form an orthonormal set.

This shows that $G^{s}(x)$ contains a subspace $E^{s}(x)$ of dimension k (generated by v_1, \ldots, v_k).

Similarly, $G^{u}(x)$ contains a subspace $E^{u}(x)$ of dimension ℓ .

Criterion (Construction of Stable/Unstable Spaces Cont'd)

Recall we have

$$G^{s}(x) \subseteq C^{s}(x)$$
 and $G^{u}(x) \subseteq C^{u}(x)$.

Thus, we get

Moreover, by hypothesis, $T_x M = F^s(x) \oplus F^u(x)$. Hence,

$$dim M = dim F^{s}(x) + dim F^{u}(x)$$
$$= k + \ell$$
$$= dim E^{s}(x) + dim E^{u}(x).$$

Thus, the spaces $E^{s}(x)$ and $E^{u}(x)$ generate $T_{x}M$. Hence, we obtain the direct sum $T_{x}M = E^{s}(x) \oplus E^{u}(x)$.

George Voutsadakis (LSSU)

Criterion (Estimates on Spaces $E^{s}(x)$ and $E^{u}(x)$)

• Recall we have, for all $x \in \Lambda$,

Let
$$v \in E^s(x)$$
 and $n \in \mathbb{N}$.
We get, for $k = 0, \dots, n$,

$$d_x f^k v \in d_x f^k E^s(x) \subseteq d_x f^k G^s(x) = G^s(f^k(x)) \subseteq C^s(f^k(x)).$$

But we know $||d_x f^{-1}v||' \ge \mu^{-1} ||v||', v \in C^s(x)$. Hence, $||d_x f^n v||' \le \mu^n ||v||'$. Let, similarly, $v \in E^u(x)$ and $n \in \mathbb{N}$. We know $||d_x fv||' \ge \mu^{-1} ||v||', v \in C^u(x)$. It follows that $||d_x f^{-n}v||' \le \mu^n ||v||'$.

Criterion (Estimates on Spaces $E^s(x)$ and $E^u(x)$ Cont'd)

Now we show that E^s(x) = G^s(x) and E^u(x) = G^u(x) for any x ∈ Λ. Suppose there existed a v ∈ G^s(x)\E^s(x) ⊆ C^s(x). Then v = v^s + v^u, where v^s ∈ E^s(x) and v^u ∈ E^u(x)\{0}. For each n ∈ N, we would have

$$\begin{split} \mu^{-n} \|v^{u}\|' &\leq \|d_{x}f^{n}v^{n}\|' \\ &\leq \|d_{x}f^{n}v\|' + \|d_{x}f^{n}v^{s}\|' \\ &\leq \mu^{n}(\|v\|' + \|v^{s}\|'). \end{split}$$

This implies that $||v^u||' \le \mu^{2n}(||v||' + ||v^s||') \to 0$ when $n \to \infty$. Thus $v^u = 0$. This contradiction shows that $E^s(x) = G^s(x)$. One can show in an analogous manner that $E^u(x) = G^u(x)$. But $d_x f^{-1}G^s(x) = G^s(f^{-1}(x))$ and $d_x fG^u(x) = G^u(f(x))$. So $d_x f^{-1}E^s(x) = E^s(f^{-1}(x))$ and $d_x fE^u(x) = E^u(f(x))$. Therefore, Λ is a hyperbolic set, taking $\lambda = \mu$ and c = 1.

George Voutsadakis (LSSU)

Subsection 4

Stability of Hyperbolic Sets

Stability of Hyperbolic Sets

• Given differentiable maps $f, g: M \to M$, we define

$$d(f,g) = \sup_{x \in M} d(f(x),g(x)) + \sup_{x \in M} \|d_x f - d_x g\|.$$

• Recall Tietze's Extension Theorem from Analysis:

Suppose $f : A \to \mathbb{R}$ is a continuous function in a closed subset $A \subseteq X$ of a normal space (a space such that any two disjoint closed sets have disjoint open neighborhoods). Then there exists a continuous function $g : X \to \mathbb{R}$, such that $g \mid_A = f$.

Theorem

Let Λ be a hyperbolic set for a C^1 diffeomorphism $f: M \to M$. Then there exist $\varepsilon > 0$ and an open set $U \supseteq \Lambda$, such that, if $g: M \to M$ is a C^1 diffeomorphism with $d(f,g) < \varepsilon$ and $\Lambda' \subseteq U$ is a compact g-invariant set, then Λ' is a hyperbolic set for g.

Proof of Stability

• By a previous theorem, the stable and unstable spaces $E^{s}(x)$ and $E^{u}(x)$ vary continuously with $x \in \Lambda$.

We apply Tietze's Extension Theorem.

We obtain continuous extensions $F^{s}(x)$ and $F^{u}(x)$, respectively, of $E^{s}(x)$ and $E^{u}(x)$, for x in some open neighborhood U of Λ , such that

$$T_x M = F^s(x) \oplus F^u(x)$$
 for $x \in U$.

Let $\gamma > 0$ be given.

Let $C^{s}(x)$ and $C^{u}(x)$ be the cones associated to this decomposition. By the Existence Theorem for Invariant Families of Cones, there exist constants $\mu, \gamma \in (0, 1)$ and an inner product $\langle \cdot, \cdot \rangle' = \langle \cdot, \cdot \rangle'_{x}$ in $T_{x}M$, varying continuously with x, such that, for each $x \in \Lambda$:

1.
$$d_x f \overline{C^u(x)} \subsetneq C^u(f(x))$$
 and $d_x f^{-1} \overline{C^s(x)} \subsetneq C^s(f^{-1}(x));$

2.
$$||d_x fv||' > \mu^{-1} ||v||'$$
, for $v \in C^u(x) \setminus \{0\}$;
3. $||d_x f^{-1}v||' > \mu^{-1} ||v||'$, for $v \in C^s(x) \setminus \{0\}$.

Proof of Stability (Cont'd)

- Let S_x be the closed unit sphere in T_xM (with respect to ||·|| = ||·||'_x). These properties are equivalent, for each x ∈ Λ, to:
 - 1. $d_x f(S_x \cap \overline{C^u(x)}) \subsetneq C^u(f(x)) \text{ and } d_x f^{-1}(S_x \cap \overline{C^s(x)}) \subsetneq C^s(f^{-1}(x));$ 2. $\|d_x fv\|' > \mu^{-1}$, for $v \in S_x \cap \overline{C^u(x)};$ 3. $\|d_x f^{-1}v\|' > \mu^{-1}$, for $v \in S_x \cap \overline{C^s(x)}.$

The product $\langle \cdot, \cdot \rangle'_x$ and, thus, also $\|\cdot\|'_x$, vary continuously with x. So the set $\{(x, v) \in \Lambda \times T_x M : \|v\|'_x = 1\}$ is compact.

For any sufficiently small open neighborhood $U \subseteq \Lambda$, the properties above hold for any $x \in U$ (and some continuous extension of the inner product).

Moreover, for any sufficiently small ε the same properties also hold for any $x \in U$ with f replaced by g.

By the preceding theorem, any compact g-invariant set $\Lambda' \subseteq U$ is a hyperbolic set for g.

The Case of Anosov Diffeomorphisms

Definition

A diffeomorphism $f: M \to M$ of a compact manifold M is called an **Anosov diffeomorphism** if M is a hyperbolic set for f.

Example: Any automorphism of the torus induced by a matrix without eigenvalues with modulus 1 (called a hyperbolic automorphism of the torus) is an Anosov diffeomorphism.

• The following result is an immediate consequence of the preceding theorem.

Theorem

The set of Anosov diffeomorphisms of class C^1 of a compact manifold M is open with respect to the topology induced by the distance d.