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Symbolic Dynamics Basic Notions

The Shift Map

Let k > 1 be an integer.

Consider the set
Σ+
k = {1, . . . , k}N

of sequences
ω = (i1(ω)i2(ω) · · · ),

where in(ω) ∈ {1, . . . , k}, for all n ∈ N.

Definition

The shift map σ : Σ+
k → Σ+

k is defined by

σ(ω) = (i2(ω)i3(ω) · · · ).

Clearly, the map σ is not invertible.
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Symbolic Dynamics Basic Notions

Number of m-Periodic Points

Given m ∈ N, we compute the number of m-periodic points of σ.

These are the sequences ω ∈ Σ+
k , such that σm(ω) = ω.

By definition of σ, ω is m-periodic if and only if

in+m(ω) = in(ω), for n ∈ N.

Equivalently, the first m elements of σ are repeated indefinitely.

Thus, in order to specify an m-periodic point it is sufficient to specify
its first m elements.

Conversely, consider integers j1, . . . , jm ∈ {1, . . . , k}.
Let ω ∈ Σ+

k be such that:
in(ω) = jn, for n = 1, . . . ,m;
in+m(ω) = in(ω), for n ∈ N.

ω is an m-periodic point.

So the number of m-periodic points is card({1, . . . , k}m) = km.
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Symbolic Dynamics Basic Notions

Distance and Topology on Σ+
k

Fix β > 1.

Consider ω, ω′ ∈ Σ+
k .

Denote by
n = n(ω, ω′) ∈ N

the smallest positive integer such that in(ω) 6= in(ω
′).

Define, for all ω, ω′ ∈ Σ+
k ,

d(ω, ω′) =

{

β−n, if ω 6= ω′,
0, if ω = ω′.
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Symbolic Dynamics Basic Notions

Distance, Topology and Shift

Proposition

For each β > 1, the following properties hold:

1. d is a distance on Σ+
k ;

2. (Σ+
k , d) is a compact metric space;

3. The shift map σ : Σ+
k → Σ+

k is continuous.

By the definition of d ,

d(ω′, ω) = d(ω, ω′).

Moreover, d(ω, ω′) = 0 if and only if ω = ω′.
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Symbolic Dynamics Basic Notions

Proof (The Triangle Inequality)

Let ω, ω′, ω′′ ∈ Σ+
k .

We have

d(ω, ω′′) = β−n1 , d(ω, ω′) = β−n2 , d(ω′, ω′′) = β−n3 ,

where n1, n2 and n3 are, respectively, the smallest positive integers
such that

in1(ω) 6= in1(ω
′′), in2(ω) 6= in2(ω

′), in3(ω
′) 6= in3(ω

′′).

If n2 > n1 and n3 > n1, then in1(ω) = in1(ω
′) = in1(ω

′′).

This contradicts the preceding inequations.

Hence, n2 ≤ n1 or n3 ≤ n1.

Thus, β−n1 ≤ β−n2 or β−n1 ≤ β−n3 .

This establishes the triangle inequality.
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Symbolic Dynamics Basic Notions

Proof (Compactness)

We now show that Σ+
k is compact.

Consider, for j1, . . . , jm ∈ {1, . . . , k}, the sets

Cj1···jm = {ω ∈ Σ+
k : in(ω) = jn, for n = 1, . . . ,m}.

Those are exactly the d -open balls.

Equip {1, . . . , k} with the discrete topology (in which all subsets of
{1, . . . , k} are open).

The product topology on Σ+
k = {1, . . . , k}N coincides with the

topology generated by the open balls Cj1···jm .

In other words, it coincides with the topology induced by d .

So (Σ+
k , d) is the product of compact topological spaces, with the

product topology.

By Tychonoff’s Theorem, (Σ+
k , d) is a compact topological space.
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Symbolic Dynamics Basic Notions

Proof (Continuity)

Finally, we show that σ : Σ+
k → Σ+

k is continuous.

Suppose d(ω, ω′) = β−n.

Then
d(σ(ω), σ(ω′)) ≤ β−(n−1) = βd(ω, ω′).

So the shift map is continuous.

Note that, from the proof of the proposition, we have

d(ω, ω′′) ≤ max {d(ω, ω′), d(ω′, ω′′)}.
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Symbolic Dynamics Basic Notions

Topological Entropy Revisited

Let f : X → X be a continuous map of a compact metric space
(X , d).

For each n ∈ N, we introduced a new distance on X by

dn(x , y) = max {d(f k(x), f k(y)) : 0 ≤ k ≤ n − 1}.

Denote by N(n, ε) the largest number of points p1, . . . , pm ∈ X such
that

dn(pi , pj) ≥ ε, for i 6= j .

The topological entropy of f was defined by

h(f ) = lim
ε→0

lim sup
n→∞

1

n
logN(n, ε).

By the preceding proposition, σ : Σ+
k → Σ+

k is a continuous map of a
compact metric space.

Hence, its topological entropy is well defined.
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Symbolic Dynamics Basic Notions

Topological Entropy of the Shift Map

Proposition

We have h(σ |Σ+
k
) = log k .

Let m, p ∈ N and ω, ω′ ∈ Σ+
k .

We have

dm(ω, ω
′) = max {d(σj (ω), σj (ω′)) : j = 0, . . . ,m − 1}.

Clearly,

d(σj(ω), σj (ω′)) ≥ β−p iff n = n(ω, ω′) ∈ {1 + j , . . . , p + j}.

Thus, dm(ω, ω
′) ≥ β−p if and only if n ≤ p +m − 1.

The largest number of distinct sequences in Σ+
k that differ in some of

their first p +m − 1 elements is kp+m−1.

Therefore, N(m, β−p) ≤ kp+m−1.
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Symbolic Dynamics Basic Notions

Topological Entropy of the Shift Map (Cont’d)

The number of (p +m − 1)-periodic points of σ is kp+m−1.

Let ω and ω′ be two of these points.

Then n(ω, ω′) ∈ {1, . . . , p +m − 1}.
Therefore,

dm(ω, ω
′) = max {d(σj(ω), σj (ω′)) : j = 0, . . . ,m − 1} ≥ β−p.

Hence, N(m, β−p) ≥ kp+m−1.

We conclude N(m, β−p) = kp+m−1.

Finally,
h(σ |Σ+

k
) = lim

p→∞
lim

m→∞
1
m
logN(m, β−p)

= lim
p→∞

lim
m→∞

p+m−1
m

log k

= log k .
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Symbolic Dynamics Basic Notions

Two-Sided Sequences

We consider in an analogous manner the case of two-sided sequences.

Given an integer k > 1, consider the set Σk = {1, . . . , k}Z of
sequences

ω = (· · · i−1(ω)i0(ω)i1(ω) · · · ).

Definition

The shift map σ : Σk → Σk is defined by σ(ω) = ω′, where

in(ω
′) = in+1(ω), for n ∈ Z.

Note that the shift map on Σk is invertible.
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Symbolic Dynamics Basic Notions

Number of Periodic Points

Given m ∈ N, a point ω ∈ Σk is m-periodic if and only if

in+m(ω) = in(ω), for n ∈ Z.

Hence, in order to specify an m-periodic point ω ∈ Σk it is sufficient
to specify the elements i1(ω), . . . , im(ω).

On the other hand, let j1, . . . , jm ∈ {1, . . . , k}.
Consider the sequence ω ∈ Σk , with:

in(ω) = jn, for n = 1, . . . ,m;
in+m(ω) = in(ω), for n ∈ Z.

It is an m-periodic point.

So the number of m-periodic points of σ |Σk
is km.
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Symbolic Dynamics Basic Notions

Distance and Topology on Σk

We introduce a distance and, thus, also a topology on Σk .

Let β > 1 and ω, ω′ ∈ Σk .

Denote by n = n(ω, ω′) ∈ N the smallest integer such that

in(ω) 6= in(ω
′) or i−n(ω) 6= i−n(ω

′).

Define

d(ω, ω′) =

{

β−n, if ω 6= ω′,
0, if ω = ω′,

One can verify that d is a distance on Σk .
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Symbolic Dynamics Examples of Codings

Subsection 2

Examples of Codings
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Symbolic Dynamics Examples of Codings

Codings

A coding is a symbolic dynamics, i.e., a shift map on some space Σ+
k

or Σk .

We illustrate how one can naturally associate a coding to several
dynamical systems introduced in the former chapters.
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Symbolic Dynamics Examples of Codings

Example

Consider the expanding map E2 : S
1 → S1.

Write
x = 0.x1x2 . . . ∈ S1

in base 2 (with xn ∈ {0, 1} for each n).

Then we have
E2(0.x1x2 . . .) = 0.x2x3 . . . .

This is the behavior observed in σ |Σ+
k
.

So one may expect some relation between E2 and σ |Σ+
2
.

We define a function H : Σ+
2 → S1 by

H(i1i2 . . .) =
∞
∑

n=1

(in − 1)2−n = 0.(i1 − 1)(i2 − 1) · · · .
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Symbolic Dynamics Examples of Codings

Example (Cont’d)

Then

(H ◦ σ)(i1i2 · · · ) = H(i2i3 · · · )
=

∑∞
n=1(in+1 − 1)2−n

= 0.(i2 − 1)(i3 − 1) · · ·
= E2(0.(i1 − 1)(i2 − 1) · · · )
= (E2 ◦ H)(i1i2 · · · ).

We discovered that

H ◦ σ = E2 ◦ H in Σ+
2 .
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Symbolic Dynamics Examples of Codings

Example (Cont’d)

The map H is not one-to-one, since, for any i1, . . . , in ∈ {1, 2},

H(i1 · · · in211 · · · ) = H(i1 · · · in122 · · · ).

On the other hand, let B ⊆ Σ+
2 be the subset of all sequences with

infinitely many consecutive 2’s.

Then the map
H |Σ+

2 \B : Σ
+
2 \B → S1

is bijective.
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Symbolic Dynamics Examples of Codings

Periodic Points

We use the preceding example to find the number of m-periodic
points of the expanding map E2.

By a previous example, the number of m-periodic points of the shift
map σΣ+

2
is 2m.

Only one of them belongs to B , namely the constant sequence

(22 . . .).

Thus, the number of m-periodic points of σ |Σ+
2 \B is 2m − 1.

Note that the set Σ+
2 \B is forward σ-invariant.

Hence, the orbits of these points are in fact in Σ+
2 \B .
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Symbolic Dynamics Examples of Codings

Periodic Points (Cont’d)

We know H ◦ σ = E2 ◦ H.

It follows that, in Σ+
2 , for each m ∈ N,

H ◦ σm = Em
2 ◦ H.

Now take ω ∈ Σ+
2 \B and m ∈ N.

The set Σ+
2 \B is forward σ-invariant.

So we have σm(ω) ∈ Σ+
2 \B .

Moreover, the function H |Σ+
2 \B is bijective.

It follows that

σm(ω) = ω iff H(ω) = H(σm(ω)) = Em
2 (H(ω)).

Thus, ω ∈ Σ+
2 \B is an m-periodic point of σ if and only if H(ω) is an

m-periodic point of E2.

So the number of m-periodic points of E2 is 2m − 1.
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Symbolic Dynamics Examples of Codings

Periodic Points (Conclusion)

The 2m − 1 m-periodic points of the expanding map E2 are

xi1...im = H(i1 . . . imi1 . . . im . . .) ∈ S1,

for (i1, . . . , im) ∈ {1, . . . , k}m\{(2, . . . , 2)}.
It follows from the definition of H that

xi1...im =
∑m

n=1(in − 1)2−n(1 + 2−m + 2−2m + · · · )
= 1

1−2−m

∑m
n=1(in − 1)2−n

= 1
2m−1

∑m
n=1(in − 1)2m−n.

The sum
m
∑

n=1

(in − 1)2m−n

takes the values 0, 1, . . . , 2m − 1 since (i1, . . . , im) 6= (2, . . . , 2).

Hence, we recover the periodic points already obtained previously.
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Symbolic Dynamics Examples of Codings

Example

Let A be the compact forward E4-invariant set

A =
⋂

n≥0

E−n
4

([

0,
1

4

]

∪
[

2

4
,
3

4

])

.

Consider the restriction of the map E4,

E4 |A: A → A.

Write
x = 0.x1x2 . . . ∈ S1

in base 4, with xn ∈ {0, 1, 2, 3}, for each n ∈ N.

We have
E4(0.x1x2 . . .) = 0.x2x3 . . . .
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Symbolic Dynamics Examples of Codings

Example (Cont’d)

Define a function H : Σ+
2 → S1 by

H(i1i2 . . .) =

∞
∑

n=1

2(i1 − 1)4−n = 0.j1j2 . . . ,

also in base 4, where jn = 2(in − 1) ∈ {0, 2}, for n ∈ N.

We have

(H ◦ σ)(i1i2 . . .) = H(i2i3 . . .) =

∞
∑

n=1

2(in+1 − 1)4−n.

Also
(E4 ◦ H)(i1i2 . . .) = E4(0.j1j2 . . .) = 0.j2j3 . . . .

It follows that, in Σ+
2 ,

H ◦ σ = E4 ◦ H.
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Symbolic Dynamics Examples of Codings

Example (Cont’d)

We note that the map H is one-to-one.

It is also a homeomorphism onto its image H(Σ+
2 ) = A.

Indeed, let ω, ω′ ∈ Σ+
2 with ω 6= ω′.

Let n = n(ω, ω′) ∈ N be the smallest integer such that in(ω) 6= in(ω
′).

Let, also, dS1 be the distance on S1.

Then we have

dS1(H(ω),H(ω′)) ≤ ∑∞
m=n 2 · 4−m

= 2 1
4n

1
1− 1

4

= 8·4−n

3

= 8
3 (β

−n)log 4/ log β

= 8
3d(ω, ω

′)log 4/ log β.
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Symbolic Dynamics Examples of Codings

Example (Cont’d)

On the other hand, let

x = 0.j1j2 . . . and x ′ = 0.j ′1j
′
2 . . . ∈ A.

Equivalently, (j1j2 . . .), (j
′
1j

′
2 . . .) ∈ {0, 2}N.

Then we have

d(H−1(x),H−1(x ′)) = d

( ∞
∑

n=1

2(in − 1)4−n,

∞
∑

n=1

2(i ′n − 1)4−n

)

,

with jn = 2(in − 1) and j ′n = 2(i ′n − 1) for n ∈ N.

Now consider x 6= x ′, such that

dS1(x , x ′) = |x − x ′|.

Suppose n ∈ N is the smallest integer such that jn 6= j ′n or,
equivalently, in 6= i ′n.
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Symbolic Dynamics Examples of Codings

Example (Conclusion)

Then

dS1(x , x ′) ≥ 2 · 4−n −
∞
∑

m=n+1

2 · 4−m =
1

3
4−n+1.

Also,

d(H−1(x),H−1(x ′)) = β−n

= 4−n log β/ log 4

= (34 · 1
34

−n+1)log β/ log 4

≤ (34dS1(x , x ′))log β/ log 4.

This shows that H : Σ+
2 → A is a homeomorphism.

Finally, it follows from a previous theorem together with the preceding
proposition that h(E4 |A) = h(σ |Σ+

2
) = log 2.
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Symbolic Dynamics Examples of Codings

Example: A Quadratic Map

Let a > 4.

Consider the quadratic map f : [0, 1] → R, defined by

f (x) = ax(1− x).

Let X ⊆ [0, 1] be the forward f -invariant set

X =
∞
⋂

n=0

f −n[0, 1].

We also consider the restriction f |X : X → X .

We define a function H : Σ+
2 → X by

H(i1i2 . . .) =
∞
⋂

n=1

f −n+1Iin ,

where I1 =

[

0,
1−
√

1−4/a

2

]

and I2 =

[

1+
√

1−4/a

2 , 1

]

.
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Symbolic Dynamics Examples of Codings

Example: A Quadratic Map (Cont’d)

Claim: For any sufficiently large a, the map H is well defined.

I.e., the intersection in its definition contains exactly one point for
each sequence (i1i2 . . .) ∈ Σ+

2 .

Let a > 2 +
√
5.

Set λ = a
√

1− 4/a.

We have, for all x ∈ I1 ∪ I2,

|f ′(x)| = a|1− 2x | ≥ λ > 1.

Hence, each interval

Ii1···im =

m
⋂

n=1

f −n+1Iin

has length at most λ−(m−1).

So each intersection in the definition of H has exactly one point.
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Symbolic Dynamics Examples of Codings

Example: A Quadratic Map (Cont’d)

We know that f −1[0, 1] = I1 ∪ I2.

By definition X =
⋂∞

n=0 f
−n[0, 1].

It follows that

X =
∞
⋂

n=0

f −n(I1 ∪ I2) =
⋃

(i1i2...)∈Σ+
2

H(i1i2 . . .).

So the map H is onto.

It is also invertible.

Given x ∈ X , let in = j when f n−1(x) ∈ Ij , for each n ∈ N.

Then its inverse given by

H−1(x) = (i1i2 . . .).
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Symbolic Dynamics Examples of Codings

Example: A Quadratic Map (Cont’d)

We show that H is a homeomorphism.

Let ω, ω′ ∈ Σ+
2 be distinct points, with n = n(ω, ω′) > 1.

We have
|H(ω) − H(ω′)| = ai1...in−1,

where ai1...in−1 is the length of the interval Ii1...in−1 .

But |f ′(x)| > 1.

So
|H(ω) − H(ω′)| ≤ λ−(n−2) → 0, when n → ∞.

This shows that the map H is continuous.
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Symbolic Dynamics Examples of Codings

Example: A Quadratic Map (Cont’d)

Let x , x ′ ∈ X be distinct points.
There exists an n ∈ N, such that

Ii1...in−1 = Ii ′1 ...i ′n−1
;

Ii1...in ∩ Ii ′1 ...i ′n = ∅,
where

H−1(x) = (i1i2 . . .) and H−1(x ′) = (i ′1i
′
2 . . .).

Then
d(H−1(x),H−1(x ′)) = β−n → 0 when n → ∞.

It follows that |x − x ′| ≥ λ−(n−1).
Thus, if x ′ → x , then n → ∞.
This shows that the map H−1 is continuous.
Since H : Σ+

2 → X is a homeomorphism, it follows by a previous
theorem together with the preceding proposition that

h(f |X ) = h(σ |Σ+
2
) = log 2.
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Symbolic Dynamics Examples of Codings

Example: The Smale Horseshoe

Let Λ ⊆ [0, 1]2 be the Smale horseshoe constructed from a
diffeomorphism f defined in an open neighborhood of [0, 1]2.

We consider again the vertical strips

V1 = [0, a]× [0, 1] and V2 = [1− a, 1]× [0, 1].

We define a function H : Σ2 → Λ by

H(. . . i−1i0i1 . . .) =
⋂

n∈Z
f −nVin .

We verify that H is well defined.
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Symbolic Dynamics Examples of Codings

Example: The Smale Horseshoe (Cont’d)

For every ω = (. . . i−1i0i1 . . .), consider the sets

Rn(ω) =
n
⋂

k=−n

f −kVik .

Each Rn(ω) is contained in a square of size an.

Thus, diamRn(ω) → 0 when n → ∞.

This implies that each intersection
⋂

n∈Z
f −nVin =

⋂

n∈Z
Rn(ω)

has at most one point.

But Rn(ω) is a decreasing sequence of nonempty closed sets.

So the intersection
⋂

n∈N Rn(ω) has at least one point.

This shows that cardH(ω) = 1, for each ω ∈ Σ2.

Hence, the function H is well defined.
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Symbolic Dynamics Examples of Codings

Example: The Smale Horseshoe (Cont’d)

By the construction of the Smale horseshoe, we have

Λ =
⋂

n∈Z
f −n(V1 ∪ V2) =

⋃

ω∈Σ2

⋂

n∈Z
f −nVin =

⋃

ω∈Σ2

H(ω).

Thus, the map H is onto.

We show that it is also one-to-one.

Consider sequences ω, ω′ ∈ Σ2, with ω 6= ω′.

Then, there exists an m ∈ Z, such that im(ω) 6= im(ω
′).

Thus, we also have Vim(ω) ∩ Vim(ω′) = ∅.
Hence,

H(ω) ∩ H(ω′) =

(

⋂

n∈Z
f −nVin(ω)

)

∩
(

⋂

n∈Z
f −nVin(ω′)

)

= ∅.

This shows that H(ω) 6= H(ω′) and the map H is one-to-one.
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Symbolic Dynamics Examples of Codings

Example: The Smale Horseshoe (Conclusion)

We also have

H(σ(ω)) =
⋂

n∈Z
f −nVin+1(ω) =

⋂

n∈Z
f 1−nVin(ω) = f (H(ω)).

I.e., H ◦ σ = f ◦ H in Σ2.

Given m ∈ N and ω ∈ Σ2, we obtain

H(σm(ω)) = f m(H(ω)).

This implies that ω is an m-periodic point of σ if and only if H(ω) is
an m-periodic point of f |Λ.
Moreover, ω is a periodic point of σ with period m if and only if
H(ω) is a periodic point of f |Λ with period m.

In particular, it follows from a previous example that the number of
m-periodic points of f |Λ is 2m.
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Symbolic Dynamics Topological Markov Chains

Subsection 3

Topological Markov Chains
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Symbolic Dynamics Topological Markov Chains

Topological Markov Chains

Let k > 1 be an integer.

Let A = (aij) be a k × k matrix with entries aij ∈ {0, 1}.
We consider the subset of Σ+

k defined by

Σ+
A = {ω ∈ Σ+

k : ain(ω)in+1(ω) = 1, for n ∈ N}.

Clearly, σ(Σ+
A ) ⊆ Σ+

A .

Definition

The restriction σ |Σ+
A
: Σ+

A → Σ+
A is called the topological Markov chain

with transition matrix A.

A topological Markov chain is also called (sub)shift of finite type.
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Example

Consider the matrix

A =

(

0 1
1 1

)

.

We have

Σ+
A = {ω ∈ Σ+

2 : ain(ω)in+1(ω) = 1, for n ∈ N}
= {ω ∈ Σ+

2 : (in(ω), in+1(ω)) 6= (1, 1) for n ∈ N}.

In other words, Σ+
A is the subset of all sequences in Σ+

2 in which the
symbol 1, whenever it occurs, is always isolated.
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Two-Sided Topological Markov Chains

One can consider also the case of two-sided sequences.

Let k > 1 be an integer.

Let A = (aij) be a k × k matrix with entries aij ∈ {0, 1}.
We consider the subset of Σk defined by

ΣA = {ω ∈ Σk : ain(ω)in+1(ω) = 1, for n ∈ Z}.

We have σ(ΣA) = ΣA.

Definition

The restriction σ |ΣA
: ΣA → ΣA is called the (two-sided) topological

Markov chain with transition matrix A.
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Example

Consider the matrix

A =

(

0 1
1 0

)

.

We have

ΣA = {ω ∈ Σ2 : ain(ω)in+1(ω) = 1, for n ∈ Z}
= {ω ∈ Σ2 : in(ω) 6= in+1(ω), for n ∈ Z}.

Hence, the set ΣA has exactly two sequences:

The first is ω1 = (. . . i0 . . .), where

in =

{

1, if n is even,
2, if n is odd;

George Voutsadakis (LSSU) Dynamical Systems May 2024 43 / 79
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Example (Cont’d)

The second is ω2 = (. . . j0 . . .), where

jn =

{

2, if n is even,
1, if n is odd.

We note that σ(ω1) = ω2 and σ(ω2) = ω1.

Thus, ΣA = {ω1, ω2} is a periodic orbit with period 2.
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Example

Let Σ ⊆ Σ2 be the subset of all sequences in Σ2 in which the symbol
1 occurs finitely many times and always in pairs (when it occurs).

Clearly, σ(Σ) = Σ.

So one can consider the restriction σ |Σ: Σ → Σ.

Claim: σ |Σ is not a topological Markov chain.

Consider the sequence
ω = (. . . i0 . . .),

with i0 = i1 = 1 and ij = 2, for j 6∈ {0, 1}.
We note that ω ∈ Σ.

If σ |Σ was a topological Markov chain, then we would have Σ = Σ2.

Indeed, the sequence ω contains the transitions

1 7→ 1, 1 7→ 2, 2 7→ 1, 2 7→ 2.

However, Σ 6= Σ2. So σ |Σ is not a topological Markov chain.
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Example: Periodic Points

Let σ |Σ+
A
be the topological Markov chain with the transition matrix

A =

(

0 1
1 1

)

.

We compute the number of m-periodic points for m = 1, 2.

Consider, first, the case m = 1.

We have a11 = 0.

So the sequence (22 . . .) is the only fixed point of σ |Σ+
A
.
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Example: Periodic Points (Cont’d)

Now consider the case m = 2.

We note that a point ω ∈ Σ+
A is m-periodic if and only if

in+m(ω) = in(ω), for n ∈ N.

We have to find the number of sequences in Σ+
A , with this property.

This coincides with the number of vectors (i , j) ∈ {1, 2}2, such that

the transitions i → j → i are allowed.

This condition is equivalent to aij = aji = 1.

Thus, the number of 2-periodic points of σ |Σ+
A
is equal to

2
∑

i=1

2
∑

j=1

aijaji =
2
∑

i=1

(A2)ii = tr(A2),

where (A2)ii is the entry (i , i) of the matrix A2.
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m-Periodic Points of Markov Chains

Proposition

For each m ∈ N, the number of m-periodic points of the topological
Markov chain σ |Σ+

A
is equal to tr(Am).

ω ∈ Σ+
A is m-periodic iff in+m(ω) = in(ω), for n ∈ N.

We have to find the number of sequences in Σ+
A with this property.

This is the number of vectors (i1, . . . , im) ∈ {1, . . . , k}m, such that

the transitions i1 → i2 → · · · → im → i1 are allowed.

This condition is equivalent to ai1i2 = ai2i3 = · · · = aim−1im = aimi1 = 1.

Thus, the number of m-periodic points of σ |Σ+
A
is equal to

∑

(i1,...,im)∈{1,...,k}m
ai1i2ai2i3 · · · aimi1 =

∑

i1∈{1,...,k}
(Am)i1i1 = tr(Am).
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Example

Let

A =

(

0 1
1 1

)

.

By the proposition, for each m ∈ N, the number of m-periodic points
of σ |Σ+

A
is equal to tr(Am).

Using diagonalization, we have

A = S

(

1+
√
5

2 0

0 1−
√
5

2

)

S−1, S =

(

−1+
√
5

2
−1−

√
5

2
1 1

)

.
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Example (Cont’d)

We found

A = S

(

1+
√
5

2 0

0 1−
√
5

2

)

S−1, S =

(

−1+
√
5

2
−1−

√
5

2
1 1

)

.

It follows that

Am = S

(

1+
√
5

2 0

0 1−
√
5

2

)m

S−1.

Hence,

tr(Am) =

(

1 +
√
5

2

)m

+

(

1−
√
5

2

)m

.

This is the number of m-periodic points of σ |Σ+
A
.

Incidentally, this shows that this number is an integer.
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Topological Entropy of a Topological Markov Chain

Theorem

We have h(σ |Σ+
A
) = log ρ(A), where ρ(A) is the spectral radius of A.

The map σ |Σ+
k
is expansive.

So the same happens to the topological Markov chain σ |Σ+
A
.

Thus, we can apply, for any sufficiently small α > 0,

h(f ) = lim
n→∞

1

n
logN(n, α).

Let m, p ∈ N and ω, ω′ ∈ Σ+
k .

We know that

dm(ω, ω
′) ≥ β−p iff n ≤ p +m − 1.

So we have

dm(ω, ω
′) ≥ β−p iff n = n(ω, ω′) ≤ p +m − 1.
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Topological Entropy (Cont’d)

Hence, for q = p +m − 1,

N(m, β−p) ≤
∑

(i1,...,iq)∈{1,...,k}q
ai1i2 · · · aiq−1iq =

k
∑

i1=1

k
∑

iq=1

(Aq−1)i1iq .

Using the Jordan form of A, we conclude that there exists a
polynomial c(q), such that

k
∑

i1=1

k
∑

iq=1

(Aq−1)i1iq ≤ c(q)ρ(A)q−1.

Now we have

h(σ |Σ+
A
) = limm→∞

1
m
logN(m, β−p)

≤ limm→∞
1
m
log [c(q)ρ(A)p+m−2]

= log ρ(A).
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Topological Entropy (Cont’d)

On the other hand, by the preceding proposition, the number of
q-periodic points of σ |Σ+

A
is equal to tr(Aq).

But we know that, if ω and ω′ are two of these points, then

dm(ω, ω
′) = max {d(σj(ω), σj (ω′)) : j = 0, . . . ,m − 1} ≥ β−p.

Hence,
N(m, β−p) ≥ tr(Aq).

It follows by a previous theorem that

h(σ |Σ+
A
) = limm→∞

1
m
logN(m, β−p)

≥ limm→∞ 1
m
log tr(Ap+m−1)

= limm→∞
1
m
log tr(Am).
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Topological Entropy (Conclusion)

Now let λ1, . . . , λk be the eigenvalues of A, counted with their
multiplicities.

We have

tr(Am) =

k
∑

i=1

λm
i .

So we obtain

h(σ |Σ+
A
) ≥ limm→∞

1
m
log
∑k

i=1 λ
m
i

= log limm→∞ (|∑k
i=1 λ

m
i |1/m)

= logmax {|λi | : i = 1, . . . , k}
= log ρ(A).
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Irreducible and Transitive Matrices

Definition

A k × k matrix A is called:

1. Irreducible if, for each i , j ∈ {1, . . . , k}, there exists an
m = m(i , j) ∈ N, such that the (i , j)-th entry of Am is positive;

2. Transitive if, there exists an m ∈ N, such that all entries of the
matrix Am are positive.

Clearly, any transitive matrix is irreducible.

However, an irreducible matrix may not be transitive.
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Example

Let

A =

(

0 1
1 0

)

.

No power of A has all entries positive.

So A is not transitive.

However, A2 = Id.

Thus, for each pair (i , j), either A or A2 has positive (i , j)-th entry.

Hence, the matrix A is irreducible.
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Irreducibility and Topological Transitivity

Proposition

If the matrix A is irreducible, then the topological Markov chain σ |Σ+
A
is

topologically transitive.

Consider the sets

Dj1...jn = Cj1...jn ∩Σ+
A

= {ω ∈ Σ+
A : im(ω) = jm, for m = 1, . . . , n}.

They generate the (induced) topology of Σ+
A .

Hence, it is sufficient to consider only these sets in the definition of
topological transitivity.

Take two nonempty sets Dj1...jn , Dk1...kn ⊆ Σ+
A .

We must find m ∈ N, such that σ−mDj1...jn ∩ Dk1...kn 6= ∅.
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Irreducibility and Topological Transitivity (Cont’d)

We first verify that there exists an m ≥ n, such that the (kn, j1)-th
entry of the matrix Am−n+1 is positive.

By hypothesis, the matrix A is irreducible. So, there exist positive
integers m1 and m2, such that (Am1)kn j1 > 0 and (Am2)j1kn > 0.

Then, for ℓ ∈ N,

(A(m1+m2)ℓ+m1)kn j1 =
∑k

p=1(A
(m1+m2)ℓ)knp(A

m1)pj1

≥ (A(m1+m2)ℓ)knkn(A
m1)kn j1

≥ (Am1+m2)ℓknkn(A
m1)kn j1

≥ (Am1)ℓkn j1(A
m2)ℓj1kn(A

m1)kn j1 > 0.

This shows that there exists a transition from kn to j1 in
q = (m1 +m2)ℓ+m1 steps.

Taking m = q + n− 1, we obtain the desired result.
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Irreducibility and Topological Transitivity (Conclusion)

Hence, given a sequence (i1i2 . . .) ∈ Dj1...jn , there exist
ℓ1, . . . , ℓm−n ∈ {1, . . . , k}, such that

ω = (k1 . . . knℓ1 . . . ℓm−ni1i2 . . .) ∈ Σ+
A .

We note that ω ∈ Dk1...kn and that

σm(ω) = (i1i2 . . .) ∈ Dj1...jn .

Therefore,
ω ∈ σ−mDj1...jn ∩ Dk1...kn 6= ∅.

This shows that the topological Markov chain σ |Σ+
A
is topologically

transitive.
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Transitivity and Powers

Lemma

Suppose that the matrix A is transitive. If all entries of the matrix Am are
positive, then for each p ≥ m, all entries of the matrix Ap are positive.

For each j ∈ {1, . . . , k}, there exists an r = r(j) ∈ {1, . . . , k}, such
that arj = 1.

Otherwise, (Ap)ij = 0, for any p ∈ N and i ∈ {1, . . . , k}.
Thus, the matrix A would not be transitive.

Now we use induction on p.

Suppose, for some p ≥ m, Ap has only positive entries.

Then

(Ap+1)ij =

k
∑

ℓ=1

(Ap)iℓaℓj ≥ (Ap)irarj > 0.

This completes the proof.
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Transitivity and Topological Mixing

Proposition

Assume the matrix A is transitive. Then the topological Markov chain
σ |Σ+

A
is topologically mixing.

Suppose Dj1...jn , Dk1...kn ⊆ Σ+
A are nonempty sets.

We show there exists q ∈ N, such that, for all p ≥ q,

σ−pDj1...jn ∩ Dk1...kn 6= ∅.
By the lemma, for each p ∈ N, with p ≥ m + n − 1, given nonempty
Dj1...jn , Dk1...kn ⊆ Σ+

A , there exist ℓ1, . . . , ℓp−n ∈ {1, . . . , k}, such that,
for any sequence (i1i2 . . .) ∈ Dj1...jn ,

ω = (k1 . . . knℓ1 . . . ℓp−ni1i2 . . .) ∈ Σ+
A .

Therefore, ω ∈ σ−pDj1...jn ∩ Dk1...kn 6= ∅, for p ≥ m + n − 1.

So the topological Markov chain σ |Σ+
A
is topologically mixing.
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A Version of the Perron-Frobenius Theorem

Theorem

Any square matrix, with all entries in N, has a real eigenvalue > 1.

Consider the set

S = {v ∈ (R+
0 )

k : ‖v‖ = 1},

where v = (v1, . . . , vk) and ‖v‖ =
∑k

i=1 |vi |.
Let B be a k × k matrix with all entries bij in N.

We define a function F : S → S by

F (v) =
Bv

‖Bv‖ .

The set S is homeomorphic to the closed unit ball of Rk−1.

Moreover, the function F is continuous.
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Symbolic Dynamics Topological Markov Chains

A Version of the Perron-Frobenius Theorem (Cont’d)

So, by Brouwer’s Fixed Point Theorem, F has a fixed point v ∈ S .

Hence, Bv = ‖Bv‖v .
So v is an eigenvector of B associated to the real eigenvalue

λ = ‖Bv‖
=

∑k
i=1(Bv)i

=
∑k

i=1

∑k
j=1 bijvj

≥ ∑k
i=1

∑k
j=1 vj

= k
∑k

j=1 vj

= k

> 1.
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Transitivity and Topological Entropy

Proposition

If the matrix A is transitive, then h(σ |Σ+
A
) > 0.

Take m ∈ N, such that Am has only positive entries.

By the preceding theorem, Am has a real eigenvalue λ > 1.

Hence, by a previous theorem,

h(σ |Σ+
A
) = log ρ(A)

= 1
m
log ρ(Am)

≥ 1
m
log λ

> 0.

This completes the proof of the proposition.
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Subsection 4

Horseshoes and Topological Markov Chains
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Example

Let f be a diffeomorphism in an open neighborhood of the square
[0, 1]2 with the behavior shown in the figure.

We can choose the sizes of Hi and of Vi = f (Hi ), for i = 1, 2, 3, as
well as the diffeomorphism, so that

Λ =
⋂

n∈Z
f n(H1 ∪ H2 ∪ H3)

is a hyperbolic set for f .
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Example (Cont’d)

Now we consider the 3× 3 matrix A = (aij) with entries

aij =

{

1, if f (Hi ) ∩ Hj 6= ∅,
0, if f (Hi ) ∩ Hj = ∅.

This is the matrix

A =





1 0 1
1 1 1
1 1 0



 .

We also consider the set ΣA ⊆ Σ3 induced by this matrix.

We define
H(ω) =

⋂

n∈Z
f −nHin(ω).
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Example (Cont’d)

Proposition

The function H : ΣA → Λ is well defined and

f ◦ H = H ◦ σ in ΣA.

As in a previous example, cardH(ω) ≤ 1 for ω ∈ ΣA.

Now we show that cardH(ω) ≥ 1 for ω ∈ ΣA.

We first note that the following Markov property holds:

1. If f (Hi ) ∩ Hj 6= ∅, then the image f (Hi ) intersects Hj along the whole
unstable direction;

2. If f −1(Hi ) ∩ Hj 6= ∅, then the preimage f −1(Hi ) intersects Hj along the
whole stable direction.
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Symbolic Dynamics Horseshoes and Topological Markov Chains

Example (Cont’d)

Let Hi ,Hj and Hk be rectangles such that

f (Hi ) ∩ Hj 6= ∅ and f (Hj ) ∩ Hk 6= ∅.
By the Markov property, we conclude that f (Hi ) intersects Hj along
the whole unstable direction.

Thus, f 2(Hi ) also intersects f (Hj ) along the whole unstable direction.

But f (Hj ) intersects Hk along the whole unstable direction.

This implies that f 2(Hi ) ∩ f (Hj ) ∩ Hk 6= ∅.
Now take ω ∈ ΣA. By the definition of A, for each n ∈ Z,

f (Hin(ω)) ∩ Hin+1(ω) 6= ∅.
By induction, it follows that

n
⋂

k=−n

f n−k(Hik (ω)) 6= ∅ and Kn :=
n
⋂

k=−n

f −k(Hik (ω)) 6= ∅.
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Example (Cont’d)

The sets Kn are closed and nonempty.

So the intersection H(ω) =
⋂

n∈N Kn is also nonempty and

cardH(ω) = card
⋂

n∈N
Kn ≥ 1.

We conclude that the function H is well defined.

To get f ◦ H = H ◦ σ in ΣA, we note that

H(σ(ω)) =
⋂

n∈Z f −n(Hin+1(ω))

=
⋂

n∈Z f 1−n(Hin(ω))

= f (H(ω)).
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Subsection 5

Zeta Functions
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The Zeta Function of a Map

Definition

Given a map f : X → X , with

an := card{x ∈ X : f n(x) = x} < ∞,

for each n ∈ N, its zeta function is defined by

ζ(z) = exp

∞
∑

n=1

anz
n

n
,

for each z ∈ C such that the series converges.
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Symbolic Dynamics Zeta Functions

Convergence of the Zeta Function

We recall that the radius of convergence of the power series is given
by

R =

(

lim sup
n→∞

n

√

an

n

)−1

=

(

lim sup
n→∞

n
√
an

)−1

.

In particular, the series converges for |z | < R .

The function ζ is holomorphic on the ball B(0,R) ⊆ C.

ζ is uniquely determined by (an)n∈N and vice versa.
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Example

Let σ |Σ+
A
: Σ+

A → Σ+
A be a topological Markov chain defined by a

k × k matrix A with spectral radius ρ(A) > 0.

By a previous proposition that the sequence (an)n∈N is

an = tr(An).

Let λ1, . . . , λk be the eigenvalues of A, with multiplicities.

We have

an = tr(An) =

k
∑

i=1

λn
i .

Let log be the principal branch of the logarithm.

Recall that

log (1 + w) =
∞
∑

n=1

(−1)n

n
wn, for |w | < 1.
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Symbolic Dynamics Zeta Functions

Example (Cont’d)

Now we have

ζ(z) = exp
∑k

i=1

∑∞
n=1

λn
i z

n

n

= exp
∑k

i=1− log (1− λiz)

= exp
∑k

i=1 log
1

1−λi z

=
∏k

i=1
1

1−λi z
.

On the other hand, the complex numbers 1− λiz are the eigenvalues
of the matrix Id− zA, counted with their multiplicities.

Thus, for |z | < min
{

1
|λi | : i = 1, . . . , k

}

= 1
ρ(A) ,

ζ(z) =
1

det(Id− zA)
.
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Symbolic Dynamics Zeta Functions

Example(Cont’d)

The shift map
σ : Σ+

k → Σ+
k

coincides with the topological Markov chain defined by the k × k

matrix A = Ak with all entries equal to 1.

It follows from ζ(z) = 1
det(Id−zA) that, for |z | < 1

ρ(Ak )
= 1

k
,

ζ(z) =
1

det(Id− zAk)
.
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Symbolic Dynamics Zeta Functions

Example(Cont’d)

Subtracting the first row of Id− zAk from the other rows and then
expanding the determinant along the second column, we obtain

det(Id− zAk )

= det











1− z −z · · · −z

−1
... Id

−1











= zdet











−1 0 · · · 0
−1
... Id

−1











+ det











1− z −z · · · −z

−1
... Id

−1











= − z + det(Id− zAk−1).

But det(Id− zA1) = 1− z . By induction, det(Id− zAk) = 1− kz .

Thus, ζ(z) = 1
1−kz

, for |z | < 1
k
.
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Symbolic Dynamics Zeta Functions

Example (Cont’d)

Alternatively, the number of n-periodic points of σ |Σ+
k
is kn.

Thus,

ζ(z) = exp

∞
∑

n=1

knzn

n
.

Now, for |z | < 1
k
,

( ∞
∑

n=1

knzn

n

)′

=
∞
∑

n=1

knzn−1 =
k

1− kz
.

We conclude that, for |z | < 1
k
,

ζ(z) = exp [− log (1− kz)] =
1

1− kz
.
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Example

Now we consider the expanding map E2 : S
1 → S1.

We know that the number of n-periodic points of E2 is 2n − 1.

Hence,

ζ(z) = exp

∞
∑

n=1

(2n − 1)zn

n
.

We have, for |z | < 1
2 ,

( ∞
∑

n=1

(2n − 1)zn

n

)′

=
∞
∑

n=1

(2n − 1)zn−1 =
2

1− 2z
− 1

1− z
.

So we obtain, for |z | < 1
2 ,

ζ(z) = exp [− log (1− 2z) + log (1− z)] =
1− z

1− 2z
.
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