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Symbolic Dynamics

o Let k > 1 be an integer.

o Consider the set
Yr={1,... kN

of sequences
w = (h(w)i(w)---),
where ip(w) € {1,...,k}, for all n € IN.

The shift map o : £ — X is defined by

o(w) = (R(w)is(w)---).

o Clearly, the map o is not invertible.
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Symbolic Dynamics

Qo

Qo

Given m € IN, we compute the number of m-periodic points of o.
These are the sequences w € ¥}, such that 0™(w) = w.

By definition of o, w is m-periodic if and only if
intm(w) = in(w), for ne IN.

Equivalently, the first m elements of o are repeated indefinitely.

Thus, in order to specify an m-periodic point it is sufficient to specify
its first m elements.

Conversely, consider integers ji,...,jm € {1,..., k}.
Let w € Z: be such that:
o ip(w) =jn, forn=1,...,m;

0 intm(w) = ip(w), for n € IN.
w is an m-periodic point.

So the number of m-periodic points is card({1, ..., k}™) = k™.
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Symbolic Dynamics

o Fix 5> 1.
o Consider w,w’ € T .
o Denote by
n=n(w,w)eN
the smallest positive integer such that i,(w) # in(w’).
o Define, for all w,w’ € ¥,

d(w,w’) = { g—n’ b

, if w=uw'.
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Symbolic Dynamics

For each 8 > 1, the following properties hold:

d is a distance on ¥ ;
(£),d) is a compact metric space;
The shift map o : Z;f — Z;f is continuous.

o By the definition of d,
d(w',w) = d(w,w).

Moreover, d(w,w’) = 0 if and only if w = W'
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Symbolic Dynamics

o Let w,w',w” € T}
We have

dw,w") = B, d(w,w) =, d(ww") =B,

where n1, ny and n3 are, respectively, the smallest positive integers
such that

in (W) # in1(wll)7 iny (w) # inz(wl)a ina(wl) a ina(wll)-

If no > n1 and n3 > nyq, then iy (w) = i (W) = in, (W").
This contradicts the preceding inequations.

Hence, np < nj or n3 < ny.

Thus, M <G Mor 7™M < g7,

This establishes the triangle inequality.
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Symbolic Dynamics

o We now show that Z;f is compact.
Consider, for j1,...,jm € {1,..., k}, the sets

Ciyojmy = {w € T 1 in(w) = jin, for n=1,...,m}.

Those are exactly the d-open balls.

Equip {1,..., k} with the discrete topology (in which all subsets of
{1,...,k} are open).

The product topology on £ = {1,..., k}N coincides with the
topology generated by the open balls Cj,...;. .

In other words, it coincides with the topology induced by d.

So (Z;L, d) is the product of compact topological spaces, with the
product topology.

By Tychonoff's Theorem, (¥, d) is a compact topological space.
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Symbolic Dynamics

o Finally, we show that o : Zt — Zt is continuous.
Suppose d(w,w’) = 7"

Then
d(o(w),o(w')) < BN = Bd(w,w’).

So the shift map is continuous.
o Note that, from the proof of the proposition, we have

d(w,w”) < max {d(w,w’), d(w,w")}.
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Symbolic Dynamics

o Let f: X — X be a continuous map of a compact metric space
(X, d).
o For each n € N, we introduced a new distance on X by

dn(x,y) = max {d(f¥(x), f¥(y)) : 0 < k < n—1}.

o Denote by N(n,¢) the largest number of points pi, ..., pm € X such
that

dn(pis pj) > €, fori#j.
o The topological entropy of f was defined by

S 1
h(f) = lim limsup = log N(n, ).
e—0 n—oo N
o By the preceding proposition, o : Z;L — Z;L is a continuous map of a
compact metric space.
o Hence, its topological entropy is well defined.
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Symbolic Dynamics

We have h(c |Z:r) = log k.
oLlet mpeNandw,w €%}
We have
din(w,w’) = max {d(c?(w),o?(w)) : j=0,...,m—1}.
Clearly,
d(o’(w), (W) > 7P iff n=n(ww)e{l+j,...,p+j}

Thus, dp(w,w’) > B Pifandonly if n < p+m—1.

The largest number of distinct sequences in ZZ‘ that differ in some of
their first p+ m — 1 elements is kPTmM—1,

Therefore, N(m, 37P) < kPtm=1,
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o The number of (p + m — 1)-periodic points of o is kPTm~1,
Let w and w’ be two of these points.
Then n(w,w’) € {1,...,p+m—1}.
Therefore,

dm(w,w') = max {d(c’(w), o’ (W) : j=0,...,m—1} > BP.

Hence, N(m,37P) > kPtm=1,
We conclude N(m, 3=P) = kp+tm—1,

Finally,
h(o’ |22—) = ||m ||m %|Og N(mvﬁ_P)

p—room—00
p+m—1

= [im lim
p—00mM—00

log k
= logk.
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Symbolic Dynamics

o We consider in an analogous manner the case of two-sided sequences.
o Given an integer k > 1, consider the set ¥4 = {1,...,k}% of

sequences
w=(-i1(w)io(w)ar(w)---).

The shift map o : X — Xy is defined by o(w) = w’, where

in(W') = ipy1(w), for n € Z.

o Note that the shift map on X is invertible.
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Symbolic Dynamics

o Given m € IN, a point w € ¥ is m-periodic if and only if
intm(w) = in(w), for neZ.

o Hence, in order to specify an m-periodic point w € ¥ it is sufficient
to specify the elements i1 (w), ..., im(w).
o On the other hand, let ji,...,jm € {1,..., k}.
o Consider the sequence w € X, with:
o ip(w) =jn, forn=1,... ,m;
0 intm(w) = in(w), for n € Z.

o It is an m-periodic point.

o So the number of m-periodic points of o |5, is k™.
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Symbolic Dynamics

o We introduce a distance and, thus, also a topology on .
o Let 3>1and w,w € X.
o Denote by n = n(w,w’) € IN the smallest integer such that

in(w) # in(W') or i_p(w) # i_p(w).

d(UJ,UJ/) :{ /8—n7 ifw#wl7

0, if w=u,

o Define

o One can verify that d is a distance on .
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Symbolic Dynamics

o A coding is a symbolic dynamics, i.e., a shift map on some space ZZ’
or Zk.

o We illustrate how one can naturally associate a coding to several
dynamical systems introduced in the former chapters.
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Symbolic Dynamics

o Consider the expanding map E, : S' — St

Write
x=0x1x2... €St

in base 2 (with x, € {0,1} for each n).

Then we have
E>(0.x1x2...) = 0.x0x3 . . ...

This is the behavior observed in o [5+.
So one may expect some relation between E; and o |z;-

We define a function H : £3 — S* by

o0

H(iiz...) = (in—1)27"=0.( = 1)(ip — 1)+~ ,

n=1
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Symbolic Dynamics

o Then

(Hoo)(ihip--+) = H(iaiz--+)
= 2nlqlingr —1)277
= 0(h—=1)(z—1)---
= BE(0.(h —1)(i— 1))
= (ExoH)(ith--).
We discovered that

Hoo=EyoH in Z;
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Symbolic Dynamics

o The map H is not one-to-one, since, for any i, ..., i, € {1,2},
H(iy - i1 ) = H(iy - -+ ip122--2).

On the other hand, let B C Z;r be the subset of all sequences with
infinitely many consecutive 2's.

Then the map
Hlsp\p: Z3\B = S

is bijective.
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Symbolic Dynamics

o We use the preceding example to find the number of m-periodic
points of the expanding map E,.

By a previous example, the number of m-periodic points of the shift
map oy ¢ is 2M.

Only one of them belongs to B, namely the constant sequence
(22...).

Thus, the number of m-periodic points of o |):;“\B is 2M — 1.

Note that the set ¥\ B is forward o-invariant.
Hence, the orbits of these points are in fact in ¥; \B.
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Symbolic Dynamics

o We know Hoo = E; o H.
It follows that, in Z;r, for each m € NN,

Hoo™ = E)" o H.

Now take w € £3\B and m € IN.

The set Z;\B is forward o-invariant.

So we have 0™(w) € £ \B.

Moreover, the function H |51\ is bijective.
It follows that

0"w)=w iff Hw)=H(e"(w)) = E"(H(w)).
Thus, w € ¥ \B is an m-periodic point of ¢ if and only if H(w) is an
m-periodic point of Ep.

So the number of m-periodic points of Ep is 2™ — 1.
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Symbolic Dynamics

o The 2™ — 1 m-periodic points of the expanding map E; are
Xiy iy = H(il codmi e . ) € 51,

for (i, ...,im) €{1,.... k}"\{(2,...,2)}.
It follows from the definition of H that
Xipim = o (in—1)27"(L427m 4 272M ..
o= Doy lin — 1)27"
= ol =

The sum
m

> (in—1)2m"

n=1
takes the values 0,1,...,2™ — 1 since (i1,...,Iim) # (2,...,2).
Hence, we recover the periodic points already obtained previously.
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Symbolic Dynamics

o Let A be the compact forward Es-invariant set

A= (o [53]),

Consider the restriction of the map Eq,
E4 ’AZ A — A

Write
x=0x1x2... €St

in base 4, with x, € {0,1,2,3}, for each n € IN.

We have
E4(0.x1x2...) = 0.x0x3 . . ...
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Symbolic Dynamics

o Define a function H: £ — S! by
H(iviz...)=> 2(ih —1)4 " =0jifa.. .,

also in base 4, where j, = 2(i, — 1) € {0,2}, for n € IN.
We have

(Hoo)(iri-..) = H(iaiz...) = Y 2(ins1 — 1)47".
n=1

Also
(E4 o H)(i1i2 .. ) = E4(0.j1j2 .. ) = 0]2j3 e

It follows that, in X3,
Hoo = EjoH.
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Symbolic Dynamics

o We note that the map H is one-to-one.
It is also a homeomorphism onto its image H(X;) = A.
Indeed, let w,w’ € T with w # w'.
Let n = n(w,w’) € IN be the smallest integer such that i,(w) # in(w').
Let, also, ds1 be the distance on S*.
Then we have
dsi(Hw), H(w') < 35,2477
= zrlné
8-4—"

3
I@—n)log 4/log B

w|oo wloo

(
d(w, w/)log4/ log 3
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Symbolic Dynamics

o On the other hand, let
x=0j1jp... and X/=O.j{j§...€A.
Equivalently, (jijz--.), (ijs---) € {0,2}™.

Then we have

d(H™(x), H (X)) = d (Z 2(in — 1)47", > 2(in - 1)4_"> :
n=1 n=1
with j, = 2(in — 1) and j. = 2(i" — 1) for n € IN.
Now consider x # x, such that
dsi(x,x") = |x — x|.

Suppose n € IN is the smallest integer such that j, # j/, or,
equivalently, i, # i/,
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Symbolic Dynamics

o Then
dsi(x,x')>2-47" — Z 2.4™m 4—"+1
m=n+1
Also,
d(H'(x),H (X)) = p="

_ 4—n|ogﬁ/ log 4
— (% . %4—n+1)log5/ log 4

< (%dsl(X,X/))IOgB/IOg4.

This shows that H : Z;r — A is a homeomorphism.

Finally, it follows from a previous theorem together with the preceding
proposition that h(Es |a) = h(o ]Z;) = log2.

George Voutsadakis (LSSU)



Symbolic Dynamics

o Let a> 4.
Consider the quadratic map f : [0,1] — R, defined by

f(x) = ax(1 — x).
Let X C [0,1] be the forward f-invariant set

X = ﬁ 7700, 1].
n=0

We also consider the restriction f |x: X — X.
We define a function H : Z;r — X by

H(ilig .. ) = ﬂ f_n+ll,'n,
n=1

where [} = [0, 1_2;4/3] and h = [Hfl_“/a, 1]-
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Symbolic Dynamics

Claim: For any sufficiently large a, the map H is well defined.

l.e., the intersection in its definition contains exactly one point for
each sequence (i1ip...) € X5

Let a > 2 + /5.

Set A = ay/1—4/a.

We have, for all x € ; U b,
IF'(x)] = a]l — 2x| > A > 1.

Hence, each interval
m
_ —n+1
lil"'im - m f lin
n=1

has length at most A~(m~1).

So each intersection in the definition of H has exactly one point.
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Symbolic Dynamics

o We know that f=1[0,1] = h U b.
By definition X = (2, f~"[0,1].
It follows that

X=(f"(huk)= |J H(ai...).
n=0 (iLhp...)ETS

So the map H is onto.
It is also invertible.
Given x € X, let i, = j when f"~1(x) € I;, for each n € IN.

Then its inverse given by

H7Y(x) = (iia...).
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Symbolic Dynamics

o We show that H is a homeomorphism.
Let w,w’ € 5 be distinct points, with n = n(w,w’) > 1.
We have
|H(w) — H(w/)‘ = Qiy..in—1>
where a;, ; , is the length of the interval [; ; .
But |f'(x)| > 1.
So
|H(w) — HW")| < A~ (=2) 0 when n — cc.

This shows that the map H is continuous.
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Symbolic Dynamics

o Let x,x" € X be distinct points.
There exists an n € IN, such that

o lll I,, 1_l/.1’: 1'
o I11 l,,mll’ Ilzmy
where
H7Y(x) = (ihir...) and H7Y(X) = (i{i}...).
Then

d(H™(x),H*(x'))=B8"" =0 when n — cc.
It follows that |x — x/| > A=(n=1)
Thus, if X’ — x, then n — co.
This shows that the map H~! is continuous.
Since H : Z; — X is a homeomorphism, it follows by a previous
theorem together with the preceding proposition that

h(f |x) = h(o |g;) = log2.
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Symbolic Dynamics

o Let A C [0,1]? be the Smale horseshoe constructed from a
diffeomorphism f defined in an open neighborhood of [0, 1]?.

We consider again the vertical strips
Vi =[0,a] x [0,1] and V,=][1-— a,1] x[0,1].
We define a function H : X — A by

H( .. i_1igi .. ) = m f_n\/,'n.

neZ

We verify that H is well defined.
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Symbolic Dynamics

o For every w = (...i_1igf ...), consider the sets

n
Ro(w) = () F*Vi.
k=—n
Each R,(w) is contained in a square of size a".
Thus, diamR,(w) — 0 when n — oo.
This implies that each intersection
() F7"Vi, = (] Ra(w)
n€Z n€Z
has at most one point.
But R,(w) is a decreasing sequence of nonempty closed sets.
So the intersection [, cv Rn(w) has at least one point.
This shows that cardH(w) = 1, for each w € ¥».
Hence, the function H is well defined.
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Symbolic Dynamics

o By the construction of the Smale horseshoe, we have
A= (F"vmuve)= |J N F"Vi= | Hw).
neZ WEX ), NEZ WEXH
Thus, the map H is onto.
We show that it is also one-to-one.
Consider sequences w,w’ € ¥, with w # W'.
Then, there exists an m € Z, such that ip(w) # im(w).
Thus, we also have Vj, () NV, () = 0.
Hence,

H(w) N H(W') = (ﬂ fr in(w)> n (ﬂ f_"‘/in(w')) = 0.
neZ neZ

This shows that H(w) # H(w') and the map H is one-to-one.
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Symbolic Dynamics

o We also have

Ho() = () F Vi@ = [) 7 "Viw) = F(HW)).

neZ neZ
l.e., Hoo=foH in X,.
Given m € IN and w € ¥,, we obtain

H(o™(w)) = f7(H(w))-

This implies that w is an m-periodic point of o if and only if H(w) is
an m-periodic point of f |.

Moreover, w is a periodic point of o with period m if and only if
H(w) is a periodic point of f |5 with period m.

In particular, it follows from a previous example that the number of
m-periodic points of f |5 is 2.
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©

Let kK > 1 be an integer.
Let A= (ajj) be a k x k matrix with entries a;; € {0,1}.
We consider the subset of ZZ’ defined by

©

©

Th={wex; y =1, for n € IN}.

C i (w)ing1(w

©

Clearly, o(X}) C =5.

The restriction o |+ ¥, — X is called the topological Markov chain
with transition matrix A.

o A topological Markov chain is also called (sub)shift of finite type.
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Symbolic Dynamics

o Consider the matrix

= O

=
~__

We have

i = {weXy:aiuw =1 forne N}
= {we ZEL s (in(w), in+1(w)) # (1,1) for n € N}.

In other words, ¥} is the subset of all sequences in X3 in which the
symbol 1, whenever it occurs, is always isolated.
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Symbolic Dynamics

o One can consider also the case of two-sided sequences.

©

Let kK > 1 be an integer.
Let A= (ajj) be a k x k matrix with entries a;; € {0,1}.
We consider the subset of X defined by

©

©

Ya={weX,:a )=1,forn€Z}.

in(W)ing1(w

©

We have o(X4) = Za.

The restriction o |5,: ¥4 — X4 is called the (two-sided) topological
Markov chain with transition matrix A.
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Symbolic Dynamics

o Consider the matrix

= O

>
Il
A/~
o
~

We have
Yo = {wex;: i (w)ipp1 (w) = 1, for n € Z}
= {weXy:ip(w)# int1(w), for n € Z}.

Hence, the set > 4 has exactly two sequences:
o The firstiswy = (...0...), where

. [ 1, if nis even,
In = 2, if nis odd;
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o The second is wy = (...Jo...), where

.| 2, ifnis even,
"= 1, if nis odd.

We note that o(w1) = wy and o(w2) = wy.

Thus, ¥4 = {w1,w2} is a periodic orbit with period 2.
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Symbolic Dynamics

o Let ¥ C ¥, be the subset of all sequences in ¥, in which the symbol
1 occurs finitely many times and always in pairs (when it occurs).

Clearly, o(X) = X.
So one can consider the restriction o |z: ¥ — X.
Claim: o |z is not a topological Markov chain.
Consider the sequence
w:(...io...),
with ip = i1 =1 and ij = 2, for j & {0, 1}.
We note that w € X.
If o |x was a topological Markov chain, then we would have ¥ = Y.
Indeed, the sequence w contains the transitions

1—1 1—2 21 22

However, ¥ # ¥,. So o |5 is not a topological Markov chain.
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Symbolic Dynamics

o lLeto ‘ZX be the topological Markov chain with the transition matrix

=(31)

We compute the number of m-periodic points for m = 1, 2.
Consider, first, the case m = 1.

We have a;; = 0.

So the sequence (22...) is the only fixed point of o ’ZX'
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o Now consider the case m = 2.
We note that a point w € Zj is m-periodic if and only if

Intm(w) = in(w), for n € IN.

We have to find the number of sequences in ¥, with this property.
This coincides with the number of vectors (i,j) € {1,2}?, such that

the transitions i — j — i are allowed.

This condition is equivalent to a;; = a;; = 1.
Thus, the number of 2-periodic points of & |ZX is equal to

ZZaUaj, = Z(A2 i= tr(A2)
i=1 j=1

where (A?);; is the entry (i, i) of the matrix A2
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Symbolic Dynamics

For each m € IN, the number of m-periodic points of the topological
Markov chain o |ZX is equal to tr(A™).

o w € T} is m-periodic iff ipim(w) = in(w), for n € IN.
We have to find the number of sequences in ZX with this property.
This is the number of vectors (i1, ...,im) € {1,...,k}™, such that

the transitions i; — ip — - -+ — i, — i1 are allowed.
This condition is equivalent to a;j, = aj,i; = -+ = aj,,_in = ini, = 1.
Thus, the number of m-periodic points of o |¢+ is equal to
A
m m
> Biipdiis Ay = > (AT = tr(AT).
(ity.sim)€{L,....k}™ in€{L,....k}

George Voutsadakis (LSSU)



Symbolic Dynamics

o Let
01
-(21)
By the proposition, for each m € IN, the number of m-periodic points
of o ’ZX is equal to tr(A™).

Using diagonalization, we have

/s g . L4/ —1—v6
A=s| 2 s sl 5= : - ).

George Voutsadakis (LSSU)



Symbolic Dynamics

o We found
L6 g . —1+v5 —1-v5
ASS 1-y5 |57 5= i 1
0 2
It follows that
1+/5 0 m 1
m __ 2 =
A" =S S /D S~
2

Hence,

1+v5)"  (1-vB\"
tr(A™) =
This is the number of m-periodic points of & |z:‘r.

o Incidentally, this shows that this number is an integer.
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We have h(o |z:‘r) = log p(A), where p(A) is the spectral radius of A.

o The map o |Zﬁ is expansive.
So the same happens to the topological Markov chain o ’ZX'
Thus, we can apply, for any sufficiently small @ > 0,

h(f) = lim lIogN(n,oz).

n—oco n

Let m,p € N and w,w’ € T
We know that

dm(w,’)>B7P iff n<p+m-1
So we have

dm(w,w') > B7P iff n=n(w,w)<p+m-—1.
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o Hence, forg=p+m—1,

k  k
N(m,37P) < Z Qiyiy " Big_qig = Z Z(Aq_l)iliq-
(i1,--riq)E{1,...,k}9 i1=1ig=1
Using the Jordan form of A, we conclude that there exists a
polynomial ¢(gq), such that

k k
DD (AT D, < cq)p(A)
i1=1ig=1
Now we have
h(o |ss) = limmpoo o log N(m, 57P)
< limmooo 5 log [c(q)p(A)PT™2]
= logp(A).
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o On the other hand, by the preceding proposition, the number of
g-periodic points of o |ZZ is equal to tr(A9).

But we know that, if w and w’ are two of these points, then
drn(w,w’) = max {d(c?(w),o?(w)) : j=0,...,m—1} > P.
Hence,
N(m, 3~P) > tr(A9).
It follows by a previous theorem that
h(olgs) = limmoo o log N(m, 57P)
1M o0 % log tr(APTM—1)

M m— oo % log tr(A™).

v
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o Now let A1, ..., Ax be the eigenvalues of A, counted with their
multiplicities.

We have .
tr(A™) = A7
i=1
So we obtain

h(olgs) = limmoses 5 log 2/, AT

= loglimm o (| 21y APIH™)
logmax{|\i| :i=1,...,k}

= logp(A).
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A k x k matrix A is called:

Irreducible if, for each i,j € {1,..., k}, there exists an
m = m(i,j) € IN, such that the (i, )-th entry of A™ is positive;

Transitive if, there exists an m € IN, such that all entries of the
matrix A™ are positive.

o Clearly, any transitive matrix is irreducible.

o However, an irreducible matrix may not be transitive.
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o Let

No power of A has all entries positive.

So A is not transitive.

However, A% = Id.

Thus, for each pair (i, ), either A or A has positive (i, j)-th entry.

Hence, the matrix A is irreducible.
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Symbolic Dynamics

If the matrix A is irreducible, then the topological Markov chain o |z:‘r is
topologically transitive.
o Consider the sets

= GupNTs
= {we€X]:in(w)=jm for m=1... n}

D;

-

They generate the (induced) topology of X}.

Hence, it is sufficient to consider only these sets in the definition of
topological transitivity.

1--dn? Dkl...k,, g ZX
We must find m € IN, such that c="Dj, ;i N Dy, x, # 0.

Take two nonempty sets D;
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o We first verify that there exists an m > n, such that the (kg,j1)-th
entry of the matrix A™~"*1 is positive.

By hypothesis, the matrix A is irreducible. So, there exist positive
integers my and my, such that (A™), ;; > 0 and (A™);, > 0.
Then, for £ € IN,

(Almtma)ttmy), . — 211521 (Almtmly, (A™ )i
(AlmEm2)e) e (A™ )y
(amrme . (am),,,

(A™ )1 (AT2)S i (A™ )y > 0.

AV AVARLY,

This shows that there exists a transition from k, to j; in
q = (m1 + my)l + my steps.
Taking m = g+ n — 1, we obtain the desired result.
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o Hence, given a sequence (i1fp...) € Dj_j,, there exist
1y lm_n € {1,... k}, such that

w = (kl coikpl1. b piin .. ) & ZX
We note that w € Dy, x, and that
U'"(w) = (i1i2 .. ) S Djl---jn‘

Therefore,
w € U_ijl...jn N Dkl---kn =4 0.

This shows that the topological Markov chain o ’ZX is topologically
transitive.
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Suppose that the matrix A is transitive. If all entries of the matrix A™ are
positive, then for each p > m, all entries of the matrix AP are positive.

o For each j € {1,...,k}, there exists an r = r(j) € {1,..., k}, such
that a,; = 1.
Otherwise, (AP);; =0, forany pe N and i € {1,...,k}.
Thus, the matrix A would not be transitive.
Now we use induction on p.
Suppose, for some p > m, AP has only positive entries.
Then

1
Ap+ ,gagj Ap),-,a,j > 0.

M»

5:1
This completes the proof.
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Symbolic Dynamics

Assume the matrix A is transitive. Then the topological Markov chain
o ]Z} is topologically mixing.

o Suppose D, ., Dk, € Zj are nonempty sets.

We show there exists g € IN, such that, for all p > g,

0~ PDj . jy N Dy .k, 7# 0.

By the lemma, for each p € IN, with p > m+ n — 1, given nonempty

Dj,..j, Diy..ky © Y, there exist 41, ... Ap—n € {1,..., k}, such that,
for any sequence (i1i>...) € Dj,_j,,

w=(ki...knl1.. . lp_pirir...) € TF.

Therefore, w € 0™PDj,j, N Dy k, # 0, for p>m+n—1.
So the topological Markov chain o ’ZX is topologically mixing.
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Symbolic Dynamics

Any square matrix, with all entries in IN, has a real eigenvalue > 1.
o Consider the set
k .
S={ve®{) :lvll=1},

where v = (v1,...,v) and |[v| = S35, |vil.
Let B be a k x k matrix with all entries bj;; in IN.
We define a function F : S — S by

by
1Bv

F(v)

The set S is homeomorphic to the closed unit ball of R¥~1.
Moreover, the function F is continuous.
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o So, by Brouwer's Fixed Point Theorem, F has a fixed point v € S.
Hence, Bv = ||Bv||v.
So v is an eigenvector of B associated to the real eigenvalue

A

I
™
~ =

k k
>z j=1 bijv;

= j.(:l vj
= k Zj'(:l i

= k

> 1.
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If the matrix A is transitive, then h(o |5+) > 0.

o Take m € IN, such that A™ has only positive entries.
By the preceding theorem, A™ has a real eigenvalue A > 1.
Hence, by a previous theorem,

holgy) = logp(A)
1
= 5 logp(A™)
> %Iog)\
> 0.

This completes the proof of the proposition.
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Subsection 4
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o Let f be a diffeomorphism in an open neighborhood of the square
[0, 1]? with the behavior shown in the figure.

We can choose the sizes of H; and of V; = f(H;), for i =1,2,3, as
well as the diffeomorphism, so that

A= () f"(H1 U Hy U Hs)
n€Z

is a hyperbolic set for f.
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o Now we consider the 3 x 3 matrix A = (aj;) with entries

1, i f(H)NH £,
=0, if f(H;) N H; = 0.

This is the matrix

1 01
A= 1 11
1 10
We also consider the set ¥ 4 C ¥ 3 induced by this matrix.

We define
Hw) = [ f~"Hi,(w).

neZ
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The function H : X4 — A is well defined and

foH=Hoo inX,4.

o As in a previous example, cardH(w) < 1 for w € X 4.

Now we show that cardH(w) > 1 for w € X 4.
We first note that the following Markov property holds:

If £(H;) N H; # 0, then the image f(H;) intersects H; along the whole
unstable direction;

If f=1(H;) N H; # 0, then the preimage f~!(H;) intersects H; along the
whole stable direction.
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o Let H;, H; and H) be rectangles such that
f(H)NH; #0 and f(H;)N Hx # 0.

By the Markov property, we conclude that f(H;) intersects H; along
the whole unstable direction.

Thus, f2(H;) also intersects f(H;) along the whole unstable direction.
But f(H;) intersects Hj along the whole unstable direction.

This implies that f2(H;) N f(H;) N Hy # 0.

Now take w € ¥ 4. By the definition of A, for each n € Z,

f(Hipw)) N Hip oy () # 0.
By induction, it follows that

n

() " (Hiw) 0 and K= (] F (Hiw) #0-

k=—n k=—n
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o The sets K, are closed and nonempty.

So the intersection H(w) = (), K is also nonempty and
cardH(w) = card ﬂ K, > 1.
nelN

We conclude that the function H is well defined.
Toget foH = Hoo in £,, we note that

Hlo(w)) = Naezf "(Hi1w))
= (oez 7" (Hiyw))
— H(HW).
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Subsection 5
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Given a map f : X — X, with
ap = card{x € X : f"(x) = x} < o0,
for each n € IN, its zeta function is defined by

anz"

(@) =exp) ——,
n=1

for each z € C such that the series converges.
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o We recall that the radius of convergence of the power series is given

by
fa\ -t
R= (Iimsup ’ —") = (Iimsup {’/a,,) .
n— oo n n—oo

o In particular, the series converges for |z| < R.
o The function ¢ is holomorphic on the ball B(0,R) C C.

o ( is uniquely determined by (a,)nen and vice versa.
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o Let o ‘ZX: Zj — Zj be a topological Markov chain defined by a
k x k matrix A with spectral radius p(A) > 0.
By a previous proposition that the sequence (a,)nen is

a, = tr(A").

Let A1,..., Ak be the eigenvalues of A, with multiplicities.

We have
k

ap, =tr(A") = Z A7

i=1

Let log be the principal branch of the logarithm.
Recall that

e} 1)
Iog(l-l—w)zz( )

n=1

w",  for |w| < 1.
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o Now we have

(2) = epXiy X,
exp Zi:l — log (1 —\iz)
= exp Zf'(:l log 1_—1>\’z
= Hff:1 1——1)\2
On the other hand, the complex numbers 1 — \;z are the eigenvalues
of the matrix Id — zA, counted with their multiplicities.
Thus, for |z| < mm{')\| i= 1,...,k} = ﬁ,

1
) = Jia—zA)
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o The shift map
o Z: — Z:
coincides with the topological Markov chain defined by the k x k
matrix A = Ay with all entries equal to 1.

It follows from ((z) = m that, for |z| < p(/]i\k) =

1

-
1

)= Feida—za0)"
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o Subtracting the first row of |d — zA, from the other rows and then
expanding the determinant along the second column, we obtain

det(ld — zAk)
1-z —=z .-+ -z
-1
= det
: Id
-1
-1 0 --- 0 l1-z —z ... —z
-1 -1
= zdet . + det
: Id : Id
-1 -1

= — z+det(ld — zAk_1).

But det(ld — zA;) = 1 — z. By induction, det(ld — zAx) = 1 — kz.
Thus, {(z) = 2z, for |z] < %.
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o Alternatively, the number of n-periodic points of & |Z;f is k".

Thus,
2 knz"
() =exp) ——.
n=1
Now, for |z| < %
k"z" n_n—1 _ k
e
n=1
We conclude that, for |z] < %
1

((2) = exp|—log (1~ k2)] = T—.
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o Now we consider the expanding map E, : St — S?.
We know that the number of n-periodic points of E, is 2" — 1.
Hence,

We have, for |z| < 3,

/
— (27— 1)z"\  &an 1 2 1
(; n =D V=

n=1

So we obtain, for |z| < %

((z) = exp[—log (1 —2z) +log (1 —z)] = —
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