Introduction to Dynamical Systems

George Voutsadakis ${ }^{1}$
${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

- Basic Notions
- Examples of Codings
- Topological Markov Chains
- Horseshoes and Topological Markov Chains
- Zeta Functions

Subsection 1

Basic Notions

The Shift Map

- Let $k>1$ be an integer.
- Consider the set

$$
\Sigma_{k}^{+}=\{1, \ldots, k\}^{\mathbb{N}}
$$

of sequences

$$
\omega=\left(i_{1}(\omega) i_{2}(\omega) \cdots\right)
$$

where $i_{n}(\omega) \in\{1, \ldots, k\}$, for all $n \in \mathbb{N}$.

Definition

The shift map $\sigma: \Sigma_{k}^{+} \rightarrow \Sigma_{k}^{+}$is defined by

$$
\sigma(\omega)=\left(i_{2}(\omega) i_{3}(\omega) \cdots\right)
$$

- Clearly, the map σ is not invertible.
- Given $m \in \mathbb{N}$, we compute the number of m-periodic points of σ.
- These are the sequences $\omega \in \Sigma_{k}^{+}$, such that $\sigma^{m}(\omega)=\omega$.
- By definition of σ, ω is m-periodic if and only if

$$
i_{n+m}(\omega)=i_{n}(\omega), \quad \text { for } n \in \mathbb{N}
$$

- Equivalently, the first m elements of σ are repeated indefinitely.
- Thus, in order to specify an m-periodic point it is sufficient to specify its first m elements.
- Conversely, consider integers $j_{1}, \ldots, j_{m} \in\{1, \ldots, k\}$.
- Let $\omega \in \Sigma_{k}^{+}$be such that:
- $i_{n}(\omega)=j_{n}$, for $n=1, \ldots, m$;
- $i_{n+m}(\omega)=i_{n}(\omega)$, for $n \in \mathbb{N}$.
- ω is an m-periodic point.
- So the number of m-periodic points is $\operatorname{card}\left(\{1, \ldots, k\}^{m}\right)=k^{m}$.

Distance and Topology on Σ_{k}

- Fix $\beta>1$.
- Consider $\omega, \omega^{\prime} \in \Sigma_{k}^{+}$.
- Denote by

$$
n=n\left(\omega, \omega^{\prime}\right) \in \mathbb{N}
$$

the smallest positive integer such that $i_{n}(\omega) \neq i_{n}\left(\omega^{\prime}\right)$.

- Define, for all $\omega, \omega^{\prime} \in \Sigma_{k}^{+}$,

$$
d\left(\omega, \omega^{\prime}\right)= \begin{cases}\beta^{-n}, & \text { if } \omega \neq \omega^{\prime} \\ 0, & \text { if } \omega=\omega^{\prime}\end{cases}
$$

Distance, Topology and Shift

Proposition

For each $\beta>1$, the following properties hold:
d is a distance on Σ_{k}^{+};
(Σ_{k}^{+}, d) is a compact metric space; The shift map $\sigma: \Sigma_{k}^{+} \rightarrow \Sigma_{k}^{+}$is continuous.

- By the definition of d,

$$
d\left(\omega^{\prime}, \omega\right)=d\left(\omega, \omega^{\prime}\right)
$$

Moreover, $d\left(\omega, \omega^{\prime}\right)=0$ if and only if $\omega=\omega^{\prime}$.

- Let $\omega, \omega^{\prime}, \omega^{\prime \prime} \in \Sigma_{k}^{+}$.

We have

$$
d\left(\omega, \omega^{\prime \prime}\right)=\beta^{-n_{1}}, \quad d\left(\omega, \omega^{\prime}\right)=\beta^{-n_{2}}, \quad d\left(\omega^{\prime}, \omega^{\prime \prime}\right)=\beta^{-n_{3}}
$$

where n_{1}, n_{2} and n_{3} are, respectively, the smallest positive integers such that

$$
i_{n_{1}}(\omega) \neq i_{n_{1}}\left(\omega^{\prime \prime}\right), \quad i_{n_{2}}(\omega) \neq i_{n_{2}}\left(\omega^{\prime}\right), \quad i_{n_{3}}\left(\omega^{\prime}\right) \neq i_{n_{3}}\left(\omega^{\prime \prime}\right)
$$

If $n_{2}>n_{1}$ and $n_{3}>n_{1}$, then $i_{n_{1}}(\omega)=i_{n_{1}}\left(\omega^{\prime}\right)=i_{n_{1}}\left(\omega^{\prime \prime}\right)$.
This contradicts the preceding inequations.
Hence, $n_{2} \leq n_{1}$ or $n_{3} \leq n_{1}$.
Thus, $\beta^{-n_{1}} \leq \beta^{-n_{2}}$ or $\beta^{-n_{1}} \leq \beta^{-n_{3}}$.
This establishes the triangle inequality.

- We now show that Σ_{k}^{+}is compact.

Consider, for $j_{1}, \ldots, j_{m} \in\{1, \ldots, k\}$, the sets

$$
C_{j_{1} \cdots j_{m}}=\left\{\omega \in \Sigma_{k}^{+}: i_{n}(\omega)=j_{n}, \text { for } n=1, \ldots, m\right\}
$$

Those are exactly the d-open balls.
Equip $\{1, \ldots, k\}$ with the discrete topology (in which all subsets of $\{1, \ldots, k\}$ are open).
The product topology on $\Sigma_{k}^{+}=\{1, \ldots, k\}^{\mathbb{N}}$ coincides with the topology generated by the open balls $C_{j_{1} \cdots j_{m}}$.
In other words, it coincides with the topology induced by d.
So $\left(\Sigma_{k}^{+}, d\right)$ is the product of compact topological spaces, with the product topology.
By Tychonoff's Theorem, $\left(\Sigma_{k}^{+}, d\right)$ is a compact topological space.

- Finally, we show that $\sigma: \Sigma_{k}^{+} \rightarrow \Sigma_{k}^{+}$is continuous.

Suppose $d\left(\omega, \omega^{\prime}\right)=\beta^{-n}$.
Then

$$
d\left(\sigma(\omega), \sigma\left(\omega^{\prime}\right)\right) \leq \beta^{-(n-1)}=\beta d\left(\omega, \omega^{\prime}\right)
$$

So the shift map is continuous.

- Note that, from the proof of the proposition, we have

$$
d\left(\omega, \omega^{\prime \prime}\right) \leq \max \left\{d\left(\omega, \omega^{\prime}\right), d\left(\omega^{\prime}, \omega^{\prime \prime}\right)\right\}
$$

- Let $f: X \rightarrow X$ be a continuous map of a compact metric space (X, d).
- For each $n \in N$, we introduced a new distance on X by

$$
d_{n}(x, y)=\max \left\{d\left(f^{k}(x), f^{k}(y)\right): 0 \leq k \leq n-1\right\}
$$

- Denote by $N(n, \varepsilon)$ the largest number of points $p_{1}, \ldots, p_{m} \in X$ such that

$$
d_{n}\left(p_{i}, p_{j}\right) \geq \varepsilon, \quad \text { for } i \neq j
$$

- The topological entropy of f was defined by

$$
h(f)=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log N(n, \varepsilon) .
$$

- By the preceding proposition, $\sigma: \Sigma_{k}^{+} \rightarrow \Sigma_{k}^{+}$is a continuous map of a compact metric space.
- Hence, its topological entropy is well defined.

Proposition

We have $h\left(\left.\sigma\right|_{\Sigma_{k}^{+}}\right)=\log k$.

- Let $m, p \in \mathbb{N}$ and $\omega, \omega^{\prime} \in \Sigma_{k}^{+}$.

We have

$$
d_{m}\left(\omega, \omega^{\prime}\right)=\max \left\{d\left(\sigma^{j}(\omega), \sigma^{j}\left(\omega^{\prime}\right)\right): j=0, \ldots, m-1\right\}
$$

Clearly,

$$
d\left(\sigma^{j}(\omega), \sigma^{j}\left(\omega^{\prime}\right)\right) \geq \beta^{-p} \quad \text { iff } \quad n=n\left(\omega, \omega^{\prime}\right) \in\{1+j, \ldots, p+j\} .
$$

Thus, $d_{m}\left(\omega, \omega^{\prime}\right) \geq \beta^{-p}$ if and only if $n \leq p+m-1$.
The largest number of distinct sequences in Σ_{k}^{+}that differ in some of their first $p+m-1$ elements is k^{p+m-1}.
Therefore, $N\left(m, \beta^{-p}\right) \leq k^{p+m-1}$.

- The number of $(p+m-1)$-periodic points of σ is k^{p+m-1}. Let ω and ω^{\prime} be two of these points.
Then $n\left(\omega, \omega^{\prime}\right) \in\{1, \ldots, p+m-1\}$.
Therefore,

$$
d_{m}\left(\omega, \omega^{\prime}\right)=\max \left\{d\left(\sigma^{j}(\omega), \sigma^{j}\left(\omega^{\prime}\right)\right): j=0, \ldots, m-1\right\} \geq \beta^{-p}
$$

Hence, $N\left(m, \beta^{-p}\right) \geq k^{p+m-1}$.
We conclude $N\left(m, \beta^{-p}\right)=k^{p+m-1}$.
Finally,

$$
\begin{aligned}
h\left(\left.\sigma\right|_{\Sigma_{k}^{+}}\right) & =\lim _{p \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{1}{m} \log N\left(m, \beta^{-p}\right) \\
& =\lim _{p \rightarrow \infty} \lim _{m \rightarrow \infty} \frac{p+m-1}{m} \log k \\
& =\log k
\end{aligned}
$$

- We consider in an analogous manner the case of two-sided sequences.
- Given an integer $k>1$, consider the set $\Sigma_{k}=\{1, \ldots, k\}^{\mathbb{Z}}$ of sequences

$$
\omega=\left(\cdots i_{-1}(\omega) i_{0}(\omega) i_{1}(\omega) \cdots\right)
$$

Definition

The shift map $\sigma: \Sigma_{k} \rightarrow \Sigma_{k}$ is defined by $\sigma(\omega)=\omega^{\prime}$, where

$$
i_{n}\left(\omega^{\prime}\right)=i_{n+1}(\omega), \quad \text { for } n \in \mathbb{Z}
$$

- Note that the shift map on Σ_{k} is invertible.
- Given $m \in \mathbb{N}$, a point $\omega \in \Sigma_{k}$ is m-periodic if and only if

$$
i_{n+m}(\omega)=i_{n}(\omega), \quad \text { for } n \in \mathbb{Z}
$$

- Hence, in order to specify an m-periodic point $\omega \in \Sigma_{k}$ it is sufficient to specify the elements $i_{1}(\omega), \ldots, i_{m}(\omega)$.
- On the other hand, let $j_{1}, \ldots, j_{m} \in\{1, \ldots, k\}$.
- Consider the sequence $\omega \in \Sigma_{k}$, with:
- $i_{n}(\omega)=j_{n}$, for $n=1, \ldots, m$;
- $i_{n+m}(\omega)=i_{n}(\omega)$, for $n \in \mathbb{Z}$.
- It is an m-periodic point.
- So the number of m-periodic points of $\left.\sigma\right|_{\Sigma_{k}}$ is k^{m}.
- We introduce a distance and, thus, also a topology on Σ_{k}.
- Let $\beta>1$ and $\omega, \omega^{\prime} \in \Sigma_{k}$.
- Denote by $n=n\left(\omega, \omega^{\prime}\right) \in \mathbb{N}$ the smallest integer such that

$$
i_{n}(\omega) \neq i_{n}\left(\omega^{\prime}\right) \quad \text { or } \quad i_{-n}(\omega) \neq i_{-n}\left(\omega^{\prime}\right)
$$

- Define

$$
d\left(\omega, \omega^{\prime}\right)= \begin{cases}\beta^{-n}, & \text { if } \omega \neq \omega^{\prime} \\ 0, & \text { if } \omega=\omega^{\prime}\end{cases}
$$

- One can verify that d is a distance on Σ_{k}.

Subsection 2

- A coding is a symbolic dynamics, i.e., a shift map on some space Σ_{k}^{+} or Σ_{k}.
- We illustrate how one can naturally associate a coding to several dynamical systems introduced in the former chapters.
- Consider the expanding map $E_{2}: S^{1} \rightarrow S^{1}$. Write

$$
x=0 . x_{1} x_{2} \ldots \in S^{1}
$$

in base 2 (with $x_{n} \in\{0,1\}$ for each n).
Then we have

$$
E_{2}\left(0 . x_{1} x_{2} \ldots\right)=0 . x_{2} x_{3} \ldots
$$

This is the behavior observed in $\left.\sigma\right|_{\Sigma_{k}^{+}}$.
So one may expect some relation between E_{2} and $\left.\sigma\right|_{\Sigma_{2}^{+}}$.
We define a function $H: \Sigma_{2}^{+} \rightarrow S^{1}$ by

$$
H\left(i_{1} i_{2} \ldots\right)=\sum_{n=1}^{\infty}\left(i_{n}-1\right) 2^{-n}=0 .\left(i_{1}-1\right)\left(i_{2}-1\right) \cdots
$$

- Then

$$
\begin{aligned}
(H \circ \sigma)\left(i_{1} i_{2} \cdots\right) & =H\left(i_{2} i_{3} \cdots\right) \\
& =\sum_{n=1}^{\infty}\left(i_{n+1}-1\right) 2^{-n} \\
& =0 .\left(i_{2}-1\right)\left(i_{3}-1\right) \cdots \\
& =E_{2}\left(0 .\left(i_{1}-1\right)\left(i_{2}-1\right) \cdots\right) \\
& =\left(E_{2} \circ H\right)\left(i_{1} i_{2} \cdots\right) .
\end{aligned}
$$

We discovered that

$$
H \circ \sigma=E_{2} \circ H \text { in } \Sigma_{2}^{+} .
$$

- The map H is not one-to-one, since, for any $i_{1}, \ldots, i_{n} \in\{1,2\}$,

$$
H\left(i_{1} \cdots i_{n} 211 \cdots\right)=H\left(i_{1} \cdots i_{n} 122 \cdots\right)
$$

On the other hand, let $B \subseteq \Sigma_{2}^{+}$be the subset of all sequences with infinitely many consecutive 2 's.
Then the map

$$
\left.H\right|_{\Sigma_{2}^{+} \backslash B}: \Sigma_{2}^{+} \backslash B \rightarrow S^{1}
$$

is bijective.

- We use the preceding example to find the number of m-periodic points of the expanding map E_{2}.
By a previous example, the number of m-periodic points of the shift $\operatorname{map} \sigma_{\Sigma_{2}^{+}}$is 2^{m}.
Only one of them belongs to B, namely the constant sequence

$$
(22 \ldots) .
$$

Thus, the number of m-periodic points of $\left.\sigma\right|_{\Sigma_{2}^{+} \backslash B}$ is $2^{m}-1$. Note that the set $\Sigma_{2}^{+} \backslash B$ is forward σ-invariant. Hence, the orbits of these points are in fact in $\Sigma_{2}^{+} \backslash B$.

- We know $H \circ \sigma=E_{2} \circ H$.

It follows that, in Σ_{2}^{+}, for each $m \in \mathbb{N}$,

$$
H \circ \sigma^{m}=E_{2}^{m} \circ H
$$

Now take $\omega \in \Sigma_{2}^{+} \backslash B$ and $m \in \mathbb{N}$.
The set $\Sigma_{2}^{+} \backslash B$ is forward σ-invariant.
So we have $\sigma^{m}(\omega) \in \Sigma_{2}^{+} \backslash B$.
Moreover, the function $\left.H\right|_{\Sigma_{2}^{+} \backslash B}$ is bijective.
It follows that

$$
\sigma^{m}(\omega)=\omega \quad \text { iff } \quad H(\omega)=H\left(\sigma^{m}(\omega)\right)=E_{2}^{m}(H(\omega)) .
$$

Thus, $\omega \in \Sigma_{2}^{+} \backslash B$ is an m-periodic point of σ if and only if $H(\omega)$ is an m-periodic point of E_{2}.
So the number of m-periodic points of E_{2} is $2^{m}-1$.

- The $2^{m}-1$ m-periodic points of the expanding map E_{2} are

$$
x_{i_{1} \ldots i_{m}}=H\left(i_{1} \ldots i_{m} i_{1} \ldots i_{m} \ldots\right) \in S^{1}
$$

for $\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, k\}^{m} \backslash\{(2, \ldots, 2)\}$.
It follows from the definition of H that

$$
\begin{aligned}
x_{i_{1} \ldots i_{m}} & =\sum_{n=1}^{m}\left(i_{n}-1\right) 2^{-n}\left(1+2^{-m}+2^{-2 m}+\cdots\right) \\
& =\frac{1}{1-2^{-m}} \sum_{n=1}^{m}\left(i_{n}-1\right) 2^{-n} \\
& =\frac{1}{2^{m}-1} \sum_{n=1}^{m}\left(i_{n}-1\right) 2^{m-n}
\end{aligned}
$$

The sum

$$
\sum_{n=1}^{m}\left(i_{n}-1\right) 2^{m-n}
$$

takes the values $0,1, \ldots, 2^{m}-1$ since $\left(i_{1}, \ldots, i_{m}\right) \neq(2, \ldots, 2)$. Hence, we recover the periodic points already obtained previously.

- Let A be the compact forward E_{4}-invariant set

$$
A=\bigcap_{n \geq 0} E_{4}^{-n}\left(\left[0, \frac{1}{4}\right] \cup\left[\frac{2}{4}, \frac{3}{4}\right]\right) .
$$

Consider the restriction of the map E_{4},

$$
\left.E_{4}\right|_{A}: A \rightarrow A
$$

Write

$$
x=0 . x_{1} x_{2} \ldots \in S^{1}
$$

in base 4 , with $x_{n} \in\{0,1,2,3\}$, for each $n \in \mathbb{N}$.
We have

$$
E_{4}\left(0 . x_{1} x_{2} \ldots\right)=0 . x_{2} x_{3} \ldots
$$

- Define a function $H: \Sigma_{2}^{+} \rightarrow S^{1}$ by

$$
H\left(i_{1} i_{2} \ldots\right)=\sum_{n=1}^{\infty} 2\left(i_{1}-1\right) 4^{-n}=0 . j_{1} j_{2} \ldots,
$$

also in base 4 , where $j_{n}=2\left(i_{n}-1\right) \in\{0,2\}$, for $n \in \mathbb{N}$.
We have

$$
(H \circ \sigma)\left(i_{1} i_{2} \ldots\right)=H\left(i_{2} i_{3} \ldots\right)=\sum_{n=1}^{\infty} 2\left(i_{n+1}-1\right) 4^{-n} .
$$

Also

$$
\left(E_{4} \circ H\right)\left(i_{1} i_{2} \ldots\right)=E_{4}\left(0 . j_{1} j_{2} \ldots\right)=0 . j_{2} j_{3} \ldots
$$

It follows that, in Σ_{2}^{+},

$$
H \circ \sigma=E_{4} \circ H
$$

- We note that the map H is one-to-one.

It is also a homeomorphism onto its image $H\left(\Sigma_{2}^{+}\right)=A$. Indeed, let $\omega, \omega^{\prime} \in \Sigma_{2}^{+}$with $\omega \neq \omega^{\prime}$.
Let $n=n\left(\omega, \omega^{\prime}\right) \in \mathbb{N}$ be the smallest integer such that $i_{n}(\omega) \neq i_{n}\left(\omega^{\prime}\right)$. Let, also, $d_{S^{1}}$ be the distance on S^{1}.
Then we have

$$
\begin{aligned}
d_{S^{1}}\left(H(\omega), H\left(\omega^{\prime}\right)\right) & \leq \sum_{m=n}^{\infty} 2 \cdot 4^{-m} \\
& =2 \frac{1}{4^{n}} \frac{1}{1-\frac{1}{4}} \\
& =\frac{8 \cdot 4^{-n}}{3} \\
& =\frac{8}{3}\left(\beta^{-n}\right)^{\log 4 / \log \beta} \\
& =\frac{8}{3} d\left(\omega, \omega^{\prime}\right)^{\log 4 / \log \beta}
\end{aligned}
$$

- On the other hand, let

$$
x=0 . j_{1} j_{2} \ldots \quad \text { and } \quad x^{\prime}=0 . j_{1}^{\prime} j_{2}^{\prime} \ldots \in A
$$

Equivalently, $\left(j_{1} j_{2} \ldots\right),\left(j_{1}^{\prime} j_{2}^{\prime} \ldots\right) \in\{0,2\}^{\mathbb{N}}$.
Then we have

$$
d\left(H^{-1}(x), H^{-1}\left(x^{\prime}\right)\right)=d\left(\sum_{n=1}^{\infty} 2\left(i_{n}-1\right) 4^{-n}, \sum_{n=1}^{\infty} 2\left(i_{n}^{\prime}-1\right) 4^{-n}\right)
$$

with $j_{n}=2\left(i_{n}-1\right)$ and $j_{n}^{\prime}=2\left(i_{n}^{\prime}-1\right)$ for $n \in \mathbb{N}$.
Now consider $x \neq x^{\prime}$, such that

$$
d_{s^{1}}\left(x, x^{\prime}\right)=\left|x-x^{\prime}\right| .
$$

Suppose $n \in \mathbb{N}$ is the smallest integer such that $j_{n} \neq j_{n}^{\prime}$ or, equivalently, $i_{n} \neq i_{n}^{\prime}$.

- Then

$$
d_{S^{1}}\left(x, x^{\prime}\right) \geq 2 \cdot 4^{-n}-\sum_{m=n+1}^{\infty} 2 \cdot 4^{-m}=\frac{1}{3} 4^{-n+1}
$$

Also,

$$
\begin{aligned}
d\left(H^{-1}(x), H^{-1}\left(x^{\prime}\right)\right) & =\beta^{-n} \\
& =4^{-n \log \beta / \log 4} \\
& =\left(\frac{3}{4} \cdot \frac{1}{3} 4^{-n+1}\right)^{\log \beta / \log 4} \\
& \leq\left(\frac{3}{4} d_{S^{1}}\left(x, x^{\prime}\right)\right)^{\log \beta / \log 4} .
\end{aligned}
$$

This shows that $H: \Sigma_{2}^{+} \rightarrow A$ is a homeomorphism.
Finally, it follows from a previous theorem together with the preceding proposition that $h\left(\left.E_{4}\right|_{A}\right)=h\left(\left.\sigma\right|_{\Sigma_{2}^{+}}\right)=\log 2$.

- Let $a>4$.

Consider the quadratic map $f:[0,1] \rightarrow \mathbb{R}$, defined by

$$
f(x)=a x(1-x)
$$

Let $X \subseteq[0,1]$ be the forward f-invariant set

$$
X=\bigcap_{n=0}^{\infty} f^{-n}[0,1]
$$

We also consider the restriction $\left.f\right|_{X}: X \rightarrow X$.
We define a function $H: \Sigma_{2}^{+} \rightarrow X$ by

$$
H\left(i_{1} i_{2} \ldots\right)=\bigcap_{n=1}^{\infty} f^{-n+1} I_{i_{n}}
$$

where $I_{1}=\left[0, \frac{1-\sqrt{1-4 / a}}{2}\right]$ and $I_{2}=\left[\frac{1+\sqrt{1-4 / a}}{2}, 1\right]$.

Claim: For any sufficiently large a, the map H is well defined. l.e., the intersection in its definition contains exactly one point for each sequence $\left(i_{1} i_{2} \ldots\right) \in \Sigma_{2}^{+}$.
Let $a>2+\sqrt{5}$.
Set $\lambda=a \sqrt{1-4 / a}$.
We have, for all $x \in I_{1} \cup I_{2}$,

$$
\left|f^{\prime}(x)\right|=a|1-2 x| \geq \lambda>1
$$

Hence, each interval

$$
I_{i_{1} \ldots i_{m}}=\bigcap_{n=1}^{m} f^{-n+1} l_{i_{n}}
$$

has length at most $\lambda^{-(m-1)}$.
So each intersection in the definition of H has exactly one point.

- We know that $f^{-1}[0,1]=I_{1} \cup I_{2}$.

By definition $X=\bigcap_{n=0}^{\infty} f^{-n}[0,1]$.
It follows that

$$
X=\bigcap_{n=0}^{\infty} f^{-n}\left(I_{1} \cup I_{2}\right)=\bigcup_{\left(i_{1} i_{2} \ldots\right) \in \Sigma_{2}^{+}} H\left(i_{1} i_{2} \ldots\right)
$$

So the map H is onto.
It is also invertible.
Given $x \in X$, let $i_{n}=j$ when $f^{n-1}(x) \in l_{j}$, for each $n \in \mathbb{N}$.
Then its inverse given by

$$
H^{-1}(x)=\left(i_{1} i_{2} \ldots\right) .
$$

- We show that H is a homeomorphism.

Let $\omega, \omega^{\prime} \in \Sigma_{2}^{+}$be distinct points, with $n=n\left(\omega, \omega^{\prime}\right)>1$.
We have

$$
\left|H(\omega)-H\left(\omega^{\prime}\right)\right|=a_{i_{1} \ldots i_{n-1}},
$$

where $a_{i_{1} \ldots i_{n-1}}$ is the length of the interval $I_{i_{1} \ldots i_{n-1}}$.
But $\left|f^{\prime}(x)\right|>1$.
So

$$
\left|H(\omega)-H\left(\omega^{\prime}\right)\right| \leq \lambda^{-(n-2)} \rightarrow 0, \quad \text { when } n \rightarrow \infty
$$

This shows that the map H is continuous.

- Let $x, x^{\prime} \in X$ be distinct points. There exists an $n \in \mathbb{N}$, such that
- $I_{i_{1} \ldots i_{n-1}}=I_{i_{1}^{\prime} \ldots i_{n-1}^{\prime}}$;
- $I_{i_{1} \ldots i_{n}} \cap I_{i_{1}^{\prime} \ldots i_{n}^{\prime}}=\emptyset$,
where

$$
H^{-1}(x)=\left(i_{1} i_{2} \ldots\right) \quad \text { and } \quad H^{-1}\left(x^{\prime}\right)=\left(i_{1}^{\prime} i_{2}^{\prime} \ldots\right)
$$

Then

$$
d\left(H^{-1}(x), H^{-1}\left(x^{\prime}\right)\right)=\beta^{-n} \rightarrow 0 \quad \text { when } n \rightarrow \infty .
$$

It follows that $\left|x-x^{\prime}\right| \geq \lambda^{-(n-1)}$.
Thus, if $x^{\prime} \rightarrow x$, then $n \rightarrow \infty$.
This shows that the map H^{-1} is continuous.
Since $H: \Sigma_{2}^{+} \rightarrow X$ is a homeomorphism, it follows by a previous theorem together with the preceding proposition that

$$
h(f \mid x)=h\left(\left.\sigma\right|_{\Sigma_{2}^{+}}\right)=\log 2 .
$$

- Let $\Lambda \subseteq[0,1]^{2}$ be the Smale horseshoe constructed from a diffeomorphism f defined in an open neighborhood of $[0,1]^{2}$. We consider again the vertical strips

$$
V_{1}=[0, a] \times[0,1] \quad \text { and } \quad V_{2}=[1-a, 1] \times[0,1] .
$$

We define a function $H: \Sigma_{2} \rightarrow \Lambda$ by

$$
H\left(\ldots i_{-1} i_{0} i_{1} \ldots\right)=\bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n}} .
$$

We verify that H is well defined.

- For every $\omega=\left(\ldots i_{-1} i_{0} i_{1} \ldots\right)$, consider the sets

$$
R_{n}(\omega)=\bigcap_{k=-n}^{n} f^{-k} V_{i_{k}} .
$$

Each $R_{n}(\omega)$ is contained in a square of size a^{n}.
Thus, $\operatorname{diam} R_{n}(\omega) \rightarrow 0$ when $n \rightarrow \infty$.
This implies that each intersection

$$
\bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n}}=\bigcap_{n \in \mathbb{Z}} R_{n}(\omega)
$$

has at most one point.
But $R_{n}(\omega)$ is a decreasing sequence of nonempty closed sets.
So the intersection $\bigcap_{n \in \mathbb{N}} R_{n}(\omega)$ has at least one point.
This shows that $\operatorname{card} H(\omega)=1$, for each $\omega \in \Sigma_{2}$.
Hence, the function H is well defined.

- By the construction of the Smale horseshoe, we have

$$
\Lambda=\bigcap_{n \in \mathbb{Z}} f^{-n}\left(V_{1} \cup V_{2}\right)=\bigcup_{\omega \in \Sigma_{2}} \bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n}}=\bigcup_{\omega \in \Sigma_{2}} H(\omega)
$$

Thus, the map H is onto.
We show that it is also one-to-one.
Consider sequences $\omega, \omega^{\prime} \in \Sigma_{2}$, with $\omega \neq \omega^{\prime}$.
Then, there exists an $m \in \mathbb{Z}$, such that $i_{m}(\omega) \neq i_{m}\left(\omega^{\prime}\right)$.
Thus, we also have $V_{i_{m}(\omega)} \cap V_{i_{m}\left(\omega^{\prime}\right)}=\emptyset$. Hence,

$$
H(\omega) \cap H\left(\omega^{\prime}\right)=\left(\bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n}(\omega)}\right) \cap\left(\bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n}\left(\omega^{\prime}\right)}\right)=\emptyset
$$

This shows that $H(\omega) \neq H\left(\omega^{\prime}\right)$ and the map H is one-to-one.

- We also have

$$
H(\sigma(\omega))=\bigcap_{n \in \mathbb{Z}} f^{-n} V_{i_{n+1}(\omega)}=\bigcap_{n \in \mathbb{Z}} f^{1-n} V_{i_{n}(\omega)}=f(H(\omega)) .
$$

I.e., $H \circ \sigma=f \circ H$ in Σ_{2}.

Given $m \in \mathbb{N}$ and $\omega \in \Sigma_{2}$, we obtain

$$
H\left(\sigma^{m}(\omega)\right)=f^{m}(H(\omega)) .
$$

This implies that ω is an m-periodic point of σ if and only if $H(\omega)$ is an m-periodic point of $\left.f\right|_{\Lambda}$.
Moreover, ω is a periodic point of σ with period m if and only if $H(\omega)$ is a periodic point of $\left.f\right|_{\Lambda}$ with period m.
In particular, it follows from a previous example that the number of m-periodic points of $\left.f\right|_{\Lambda}$ is 2^{m}.

Subsection 3

Topological Markov Chains

- Let $k>1$ be an integer.
- Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with entries $a_{i j} \in\{0,1\}$.
- We consider the subset of Σ_{k}^{+}defined by

$$
\Sigma_{A}^{+}=\left\{\omega \in \Sigma_{k}^{+}: a_{i_{n}(\omega) i_{n+1}(\omega)}=1, \text { for } n \in \mathbb{N}\right\}
$$

- Clearly, $\sigma\left(\Sigma_{A}^{+}\right) \subseteq \Sigma_{A}^{+}$.

Definition

The restriction $\left.\sigma\right|_{\Sigma_{A}^{+}}: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$is called the topological Markov chain with transition matrix A.

- A topological Markov chain is also called (sub)shift of finite type.
- Consider the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

We have

$$
\begin{aligned}
\Sigma_{A}^{+} & =\left\{\omega \in \Sigma_{2}^{+}: a_{i_{n}(\omega) i_{n+1}(\omega)}=1, \text { for } n \in \mathbb{N}\right\} \\
& =\left\{\omega \in \Sigma_{2}^{+}:\left(i_{n}(\omega), i_{n+1}(\omega)\right) \neq(1,1) \text { for } n \in \mathbb{N}\right\}
\end{aligned}
$$

In other words, Σ_{A}^{+}is the subset of all sequences in Σ_{2}^{+}in which the symbol 1 , whenever it occurs, is always isolated.

- One can consider also the case of two-sided sequences.
- Let $k>1$ be an integer.
- Let $A=\left(a_{i j}\right)$ be a $k \times k$ matrix with entries $a_{i j} \in\{0,1\}$.
- We consider the subset of Σ_{k} defined by

$$
\Sigma_{A}=\left\{\omega \in \Sigma_{k}: a_{i_{n}(\omega) i_{n+1}(\omega)}=1, \text { for } n \in \mathbb{Z}\right\}
$$

- We have $\sigma\left(\Sigma_{A}\right)=\Sigma_{A}$.

Definition

The restriction $\left.\sigma\right|_{\Sigma_{A}}: \Sigma_{A} \rightarrow \Sigma_{A}$ is called the (two-sided) topological Markov chain with transition matrix A.

- Consider the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have

$$
\begin{aligned}
\Sigma_{A} & =\left\{\omega \in \Sigma_{2}: a_{i_{n}(\omega) i_{n+1}(\omega)}=1, \text { for } n \in \mathbb{Z}\right\} \\
& =\left\{\omega \in \Sigma_{2}: i_{n}(\omega) \neq i_{n+1}(\omega), \text { for } n \in \mathbb{Z}\right\}
\end{aligned}
$$

Hence, the set Σ_{A} has exactly two sequences:

- The first is $\omega_{1}=\left(\ldots i_{0} \ldots\right)$, where

$$
i_{n}= \begin{cases}1, & \text { if } n \text { is even, } \\ 2, & \text { if } n \text { is odd; }\end{cases}
$$

- The second is $\omega_{2}=\left(\ldots j_{0} \ldots\right)$, where

$$
j_{n}= \begin{cases}2, & \text { if } n \text { is even, } \\ 1, & \text { if } n \text { is odd. }\end{cases}
$$

We note that $\sigma\left(\omega_{1}\right)=\omega_{2}$ and $\sigma\left(\omega_{2}\right)=\omega_{1}$.
Thus, $\Sigma_{A}=\left\{\omega_{1}, \omega_{2}\right\}$ is a periodic orbit with period 2 .

- Let $\Sigma \subseteq \Sigma_{2}$ be the subset of all sequences in Σ_{2} in which the symbol 1 occurs finitely many times and always in pairs (when it occurs).
Clearly, $\sigma(\Sigma)=\Sigma$.
So one can consider the restriction $\left.\sigma\right|_{\Sigma}: \Sigma \rightarrow \Sigma$.
Claim: $\left.\sigma\right|_{\Sigma}$ is not a topological Markov chain.
Consider the sequence

$$
\omega=\left(\ldots i_{0} \ldots\right)
$$

with $i_{0}=i_{1}=1$ and $i_{j}=2$, for $j \notin\{0,1\}$.
We note that $\omega \in \Sigma$.
If $\left.\sigma\right|_{\Sigma}$ was a topological Markov chain, then we would have $\Sigma=\Sigma_{2}$. Indeed, the sequence ω contains the transitions

$$
1 \mapsto 1, \quad 1 \mapsto 2, \quad 2 \mapsto 1, \quad 2 \mapsto 2
$$

However, $\Sigma \neq \Sigma_{2}$. So $\left.\sigma\right|_{\Sigma}$ is not a topological Markov chain.

- Let $\left.\sigma\right|_{\Sigma_{A}^{+}}$be the topological Markov chain with the transition matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

We compute the number of m-periodic points for $m=1,2$.
Consider, first, the case $m=1$.
We have $a_{11}=0$.
So the sequence $(22 \ldots)$ is the only fixed point of $\left.\sigma\right|_{\Sigma_{A}^{+}}$.

- Now consider the case $m=2$.

We note that a point $\omega \in \Sigma_{A}^{+}$is m-periodic if and only if

$$
i_{n+m}(\omega)=i_{n}(\omega), \quad \text { for } n \in \mathbb{N} .
$$

We have to find the number of sequences in Σ_{A}^{+}, with this property. This coincides with the number of vectors $(i, j) \in\{1,2\}^{2}$, such that

$$
\text { the transitions } i \rightarrow j \rightarrow i \text { are allowed. }
$$

This condition is equivalent to $a_{i j}=a_{j i}=1$.
Thus, the number of 2-periodic points of $\left.\sigma\right|_{\Sigma_{A}^{+}}$is equal to

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} a_{i j} a_{j i}=\sum_{i=1}^{2}\left(A^{2}\right)_{i i}=\operatorname{tr}\left(A^{2}\right)
$$

where $\left(A^{2}\right)_{i i}$ is the entry (i, i) of the matrix A^{2}.

Proposition

For each $m \in \mathbb{N}$, the number of m-periodic points of the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$is equal to $\operatorname{tr}\left(A^{m}\right)$.

- $\omega \in \Sigma_{A}^{+}$is m-periodic iff $i_{n+m}(\omega)=i_{n}(\omega)$, for $n \in \mathbb{N}$. We have to find the number of sequences in Σ_{A}^{+}with this property. This is the number of vectors $\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, k\}^{m}$, such that the transitions $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{m} \rightarrow i_{1}$ are allowed.

This condition is equivalent to $a_{i_{1} i_{2}}=a_{i_{2} i_{3}}=\cdots=a_{i_{m-1} i_{m}}=a_{i_{m} i_{1}}=1$. Thus, the number of m-periodic points of $\left.\sigma\right|_{\Sigma_{A}^{+}}$is equal to

$$
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, k\}^{m}} a_{i_{1} i_{2}} a_{i_{2} i_{3}} \cdots a_{i_{m} i_{1}}=\sum_{i_{1} \in\{1, \ldots, k\}}\left(A^{m}\right)_{i_{1} i_{1}}=\operatorname{tr}\left(A^{m}\right) .
$$

- Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

By the proposition, for each $m \in \mathbb{N}$, the number of m-periodic points of $\left.\sigma\right|_{\Sigma_{A}^{+}}$is equal to $\operatorname{tr}\left(A^{m}\right)$.
Using diagonalization, we have

$$
A=S\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) S^{-1}, S=\left(\begin{array}{cc}
\frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right)
$$

- We found

$$
A=S\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) S^{-1}, S=\left(\begin{array}{cc}
\frac{-1+\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\
1 & 1
\end{array}\right)
$$

It follows that

$$
A^{m}=S\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right)^{m} S^{-1}
$$

Hence,

$$
\operatorname{tr}\left(A^{m}\right)=\left(\frac{1+\sqrt{5}}{2}\right)^{m}+\left(\frac{1-\sqrt{5}}{2}\right)^{m}
$$

This is the number of m-periodic points of $\left.\sigma\right|_{\Sigma_{A}^{+}}$.

- Incidentally, this shows that this number is an integer.

Theorem

We have $h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right)=\log \rho(A)$, where $\rho(A)$ is the spectral radius of A.

- The map $\left.\sigma\right|_{\Sigma_{k}^{+}}$is expansive. So the same happens to the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$. Thus, we can apply, for any sufficiently small $\alpha>0$,

$$
h(f)=\lim _{n \rightarrow \infty} \frac{1}{n} \log N(n, \alpha)
$$

Let $m, p \in \mathbb{N}$ and $\omega, \omega^{\prime} \in \Sigma_{k}^{+}$.
We know that

$$
d_{m}\left(\omega, \omega^{\prime}\right) \geq \beta^{-p} \quad \text { iff } \quad n \leq p+m-1
$$

So we have

$$
d_{m}\left(\omega, \omega^{\prime}\right) \geq \beta^{-p} \quad \text { iff } \quad n=n\left(\omega, \omega^{\prime}\right) \leq p+m-1
$$

- Hence, for $q=p+m-1$,

$$
N\left(m, \beta^{-p}\right) \leq \sum_{\left(i_{1}, \ldots, i_{q}\right) \in\{1, \ldots, k\}^{q}} a_{i_{1} i_{2}} \cdots a_{i_{q-1} i_{q}}=\sum_{i_{1}=1}^{k} \sum_{i_{q}=1}^{k}\left(A^{q-1}\right)_{i_{1} i_{q}} .
$$

Using the Jordan form of A, we conclude that there exists a polynomial $c(q)$, such that

$$
\sum_{i_{1}=1}^{k} \sum_{i_{q}=1}^{k}\left(A^{q-1}\right)_{i_{1} i_{q}} \leq c(q) \rho(A)^{q-1}
$$

Now we have

$$
\begin{aligned}
h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right) & =\lim _{m \rightarrow \infty} \frac{1}{m} \log N\left(m, \beta^{-p}\right) \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{m} \log \left[c(q) \rho(A)^{p+m-2}\right] \\
& =\log \rho(A)
\end{aligned}
$$

- On the other hand, by the preceding proposition, the number of q-periodic points of $\left.\sigma\right|_{\Sigma_{A}^{+}}$is equal to $\operatorname{tr}\left(A^{q}\right)$.
But we know that, if ω and ω^{\prime} are two of these points, then

$$
d_{m}\left(\omega, \omega^{\prime}\right)=\max \left\{d\left(\sigma^{j}(\omega), \sigma^{j}\left(\omega^{\prime}\right)\right): j=0, \ldots, m-1\right\} \geq \beta^{-p}
$$

Hence,

$$
N\left(m, \beta^{-p}\right) \geq \operatorname{tr}\left(A^{q}\right)
$$

It follows by a previous theorem that

$$
\begin{aligned}
h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right) & =\lim _{m \rightarrow \infty} \frac{1}{m} \log N\left(m, \beta^{-p}\right) \\
& \geq \lim _{m \rightarrow \infty} \frac{1}{m} \log \operatorname{tr}\left(A^{p+m-1}\right) \\
& =\lim _{m \rightarrow \infty} \frac{1}{m} \log \operatorname{tr}\left(A^{m}\right)
\end{aligned}
$$

- Now let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of A, counted with their multiplicities.

We have

$$
\operatorname{tr}\left(A^{m}\right)=\sum_{i=1}^{k} \lambda_{i}^{m} .
$$

So we obtain

$$
\begin{aligned}
h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right) & \geq \lim _{m \rightarrow \infty} \frac{1}{m} \log \sum_{i=1}^{k} \lambda_{i}^{m} \\
& =\log \lim _{m \rightarrow \infty}\left(\left|\sum_{i=1}^{k} \lambda_{i}^{m}\right|^{1 / m}\right) \\
& =\log \max \left\{\left|\lambda_{i}\right|: i=1, \ldots, k\right\} \\
& =\log \rho(A) .
\end{aligned}
$$

Irreducible and Transitive Matrices

Definition

A $k \times k$ matrix A is called:
Irreducible if, for each $i, j \in\{1, \ldots, k\}$, there exists an $m=m(i, j) \in \mathbb{N}$, such that the (i, j)-th entry of A^{m} is positive;
Transitive if, there exists an $m \in \mathbb{N}$, such that all entries of the matrix A^{m} are positive.

- Clearly, any transitive matrix is irreducible.
- However, an irreducible matrix may not be transitive.
- Let

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

No power of A has all entries positive.
So A is not transitive.
However, $A^{2}=\mathrm{Id}$.
Thus, for each pair (i, j), either A or A^{2} has positive (i, j)-th entry. Hence, the matrix A is irreducible.

Proposition

If the matrix A is irreducible, then the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$is topologically transitive.

- Consider the sets

$$
\begin{aligned}
D_{j_{1} \ldots j_{n}} & =C_{j_{1} \ldots j_{n} \cap \Sigma_{A}^{+}} \\
& =\left\{\omega \in \Sigma_{A}^{+}: i_{m}(\omega)=j_{m}, \text { for } m=1, \ldots, n\right\} .
\end{aligned}
$$

They generate the (induced) topology of Σ_{A}^{+}. Hence, it is sufficient to consider only these sets in the definition of topological transitivity.
Take two nonempty sets $D_{j_{1} \ldots j_{n}}, D_{k_{1} \ldots k_{n}} \subseteq \Sigma_{A}^{+}$.
We must find $m \in \mathbb{N}$, such that $\sigma^{-m} D_{j_{1} \ldots j_{n}} \cap D_{k_{1} \ldots k_{n}} \neq \emptyset$.

- We first verify that there exists an $m \geq n$, such that the $\left(k_{n}, j_{1}\right)$-th entry of the matrix A^{m-n+1} is positive.
By hypothesis, the matrix A is irreducible. So, there exist positive integers m_{1} and m_{2}, such that $\left(A^{m_{1}}\right)_{k_{n} j_{1}}>0$ and $\left(A^{m_{2}}\right)_{j_{1} k_{n}}>0$.
Then, for $\ell \in \mathbb{N}$,

$$
\begin{aligned}
\left(A^{\left(m_{1}+m_{2}\right) \ell+m_{1}}\right)_{k_{n} j_{1}} & =\sum_{p=1}^{k}\left(A^{\left(m_{1}+m_{2}\right) \ell}\right)_{k_{n} p}\left(A^{m_{1}}\right)_{p_{1}} \\
& \geq\left(A^{\left(m_{1}+m_{2}\right) \ell}\right)_{k_{n} k_{n}}\left(A^{m_{1}}\right)_{k_{n} j_{1}} \\
& \geq\left(A^{m_{1}+m_{2}}\right)_{k_{n} k_{n}}^{\ell}\left(A^{m_{1}}\right)_{k_{n} j_{1}} \\
& \geq\left(A^{m_{1}}\right)_{k_{n} j_{1}}^{\ell}\left(A^{m_{2}}\right)_{j_{1} k_{n}}^{\ell}\left(A^{m_{1}}\right)_{k_{n} j_{1}}>0
\end{aligned}
$$

This shows that there exists a transition from k_{n} to j_{1} in $q=\left(m_{1}+m_{2}\right) \ell+m_{1}$ steps.
Taking $m=q+n-1$, we obtain the desired result.

- Hence, given a sequence $\left(i_{1} i_{2} \ldots\right) \in D_{j_{1} \ldots j_{n}}$, there exist $\ell_{1}, \ldots, \ell_{m-n} \in\{1, \ldots, k\}$, such that

$$
\omega=\left(k_{1} \ldots k_{n} \ell_{1} \ldots \ell_{m-n} i_{1} i_{2} \ldots\right) \in \Sigma_{A}^{+} .
$$

We note that $\omega \in D_{k_{1} \ldots k_{n}}$ and that

$$
\sigma^{m}(\omega)=\left(i_{1} i_{2} \ldots\right) \in D_{j_{1} \ldots j_{n}} .
$$

Therefore,

$$
\omega \in \sigma^{-m} D_{j_{1} \ldots j_{n}} \cap D_{k_{1} \ldots k_{n}} \neq \emptyset .
$$

This shows that the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$is topologically transitive.

Lemma

Suppose that the matrix A is transitive. If all entries of the matrix A^{m} are positive, then for each $p \geq m$, all entries of the matrix A^{p} are positive.

- For each $j \in\{1, \ldots, k\}$, there exists an $r=r(j) \in\{1, \ldots, k\}$, such that $a_{r j}=1$.
Otherwise, $\left(A^{p}\right)_{i j}=0$, for any $p \in \mathbb{N}$ and $i \in\{1, \ldots, k\}$.
Thus, the matrix A would not be transitive.
Now we use induction on p.
Suppose, for some $p \geq m, A^{p}$ has only positive entries.
Then

$$
\left(A^{p+1}\right)_{i j}=\sum_{\ell=1}^{k}\left(A^{p}\right)_{i \ell} a_{\ell j} \geq\left(A^{p}\right)_{i r} a_{r j}>0
$$

This completes the proof.

Proposition

Assume the matrix A is transitive. Then the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$is topologically mixing.

- Suppose $D_{j_{1} \ldots j_{n}}, D_{k_{1} \ldots k_{n}} \subseteq \Sigma_{A}^{+}$are nonempty sets.

We show there exists $q \in \mathbb{N}$, such that, for all $p \geq q$,

$$
\sigma^{-p} D_{j_{1} \ldots j_{n}} \cap D_{k_{1} \ldots k_{n}} \neq \emptyset
$$

By the lemma, for each $p \in \mathbb{N}$, with $p \geq m+n-1$, given nonempty $D_{j_{1} \ldots j_{n}}, D_{k_{1} \ldots k_{n}} \subseteq \Sigma_{A}^{+}$, there exist $\ell_{1}, \ldots, \ell_{p-n} \in\{1, \ldots, k\}$, such that, for any sequence $\left(i_{1} i_{2} \ldots\right) \in D_{j_{1} \ldots j_{n}}$,

$$
\omega=\left(k_{1} \ldots k_{n} \ell_{1} \ldots \ell_{p-n} i_{1} i_{2} \ldots\right) \in \Sigma_{A}^{+} .
$$

Therefore, $\omega \in \sigma^{-p} D_{j_{1} \ldots j_{n}} \cap D_{k_{1} \ldots k_{n}} \neq \emptyset$, for $p \geq m+n-1$.
So the topological Markov chain $\left.\sigma\right|_{\Sigma_{A}^{+}}$is topologically mixing.

Theorem

Any square matrix, with all entries in \mathbb{N}, has a real eigenvalue >1.

- Consider the set

$$
S=\left\{v \in\left(\mathbb{R}_{0}^{+}\right)^{k}:\|v\|=1\right\}
$$

where $v=\left(v_{1}, \ldots, v_{k}\right)$ and $\|v\|=\sum_{i=1}^{k}\left|v_{i}\right|$.
Let B be a $k \times k$ matrix with all entries $b_{i j}$ in \mathbb{N}.
We define a function $F: S \rightarrow S$ by

$$
F(v)=\frac{B v}{\|B v\|}
$$

The set S is homeomorphic to the closed unit ball of \mathbb{R}^{k-1}.
Moreover, the function F is continuous.

- So, by Brouwer's Fixed Point Theorem, F has a fixed point $v \in S$. Hence, $B v=\|B v\| v$.
So v is an eigenvector of B associated to the real eigenvalue

$$
\begin{aligned}
\lambda & =\|B v\| \\
& =\sum_{i=1}^{k}(B v)_{i} \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} b_{i j} v_{j} \\
& \geq \sum_{i=1}^{k} \sum_{j=1}^{k} v_{j} \\
& =k \sum_{j=1}^{k} v_{j} \\
& =k \\
& >1 .
\end{aligned}
$$

Proposition

If the matrix A is transitive, then $h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right)>0$.

- Take $m \in \mathbb{N}$, such that A^{m} has only positive entries.

By the preceding theorem, A^{m} has a real eigenvalue $\lambda>1$. Hence, by a previous theorem,

$$
\begin{aligned}
h\left(\left.\sigma\right|_{\Sigma_{A}^{+}}\right) & =\log \rho(A) \\
& =\frac{1}{m} \log \rho\left(A^{m}\right) \\
& \geq \frac{1}{m} \log \lambda \\
& >0 .
\end{aligned}
$$

This completes the proof of the proposition.

Subsection 4

Horseshoes and Topological Markov Chains

- Let f be a diffeomorphism in an open neighborhood of the square $[0,1]^{2}$ with the behavior shown in the figure.

We can choose the sizes of H_{i} and of $V_{i}=f\left(H_{i}\right)$, for $i=1,2,3$, as well as the diffeomorphism, so that

$$
\Lambda=\bigcap_{n \in \mathbb{Z}} f^{n}\left(H_{1} \cup H_{2} \cup H_{3}\right)
$$

is a hyperbolic set for f.

- Now we consider the 3×3 matrix $A=\left(a_{i j}\right)$ with entries

$$
a_{i j}= \begin{cases}1, & \text { if } f\left(H_{i}\right) \cap H_{j} \neq \emptyset \\ 0, & \text { if } f\left(H_{i}\right) \cap H_{j}=\emptyset\end{cases}
$$

This is the matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

We also consider the set $\Sigma_{A} \subseteq \Sigma_{3}$ induced by this matrix.
We define

$$
H(\omega)=\bigcap_{n \in \mathbb{Z}} f^{-n} H_{i_{n}}(\omega) .
$$

Proposition

The function $H: \Sigma_{A} \rightarrow \Lambda$ is well defined and

$$
f \circ H=H \circ \sigma \quad \text { in } \Sigma_{A} .
$$

- As in a previous example, $\operatorname{card} H(\omega) \leq 1$ for $\omega \in \Sigma_{A}$.

Now we show that $\operatorname{card} H(\omega) \geq 1$ for $\omega \in \Sigma_{A}$.
We first note that the following Markov property holds:
If $f\left(H_{i}\right) \cap H_{j} \neq \emptyset$, then the image $f\left(H_{i}\right)$ intersects H_{j} along the whole unstable direction;
If $f^{-1}\left(H_{i}\right) \cap H_{j} \neq \emptyset$, then the preimage $f^{-1}\left(H_{i}\right)$ intersects H_{j} along the whole stable direction.

- Let H_{i}, H_{j} and H_{k} be rectangles such that

$$
f\left(H_{i}\right) \cap H_{j} \neq \emptyset \quad \text { and } \quad f\left(H_{j}\right) \cap H_{k} \neq \emptyset .
$$

By the Markov property, we conclude that $f\left(H_{i}\right)$ intersects H_{j} along the whole unstable direction.
Thus, $f^{2}\left(H_{i}\right)$ also intersects $f\left(H_{j}\right)$ along the whole unstable direction.
But $f\left(H_{j}\right)$ intersects H_{k} along the whole unstable direction.
This implies that $f^{2}\left(H_{i}\right) \cap f\left(H_{j}\right) \cap H_{k} \neq \emptyset$.
Now take $\omega \in \Sigma_{A}$. By the definition of A, for each $n \in \mathbb{Z}$,

$$
f\left(H_{i_{n}(\omega)}\right) \cap H_{i_{n+1}(\omega)} \neq \emptyset .
$$

By induction, it follows that

$$
\bigcap_{k=-n}^{n} f^{n-k}\left(H_{i_{k}(\omega)}\right) \neq \emptyset \quad \text { and } \quad K_{n}:=\bigcap_{k=-n}^{n} f^{-k}\left(H_{i_{k}}(\omega)\right) \neq \emptyset
$$

- The sets K_{n} are closed and nonempty.

So the intersection $H(\omega)=\bigcap_{n \in \mathbb{N}} K_{n}$ is also nonempty and

$$
\operatorname{card} H(\omega)=\operatorname{card} \bigcap_{n \in \mathbb{N}} K_{n} \geq 1
$$

We conclude that the function H is well defined.
To get $f \circ H=H \circ \sigma$ in Σ_{A}, we note that

$$
\begin{aligned}
H(\sigma(\omega)) & =\bigcap_{n \in \mathbb{Z}} f^{-n}\left(H_{i_{n+1}(\omega)}\right) \\
& =\bigcap_{n \in \mathbb{Z}} f^{1-n}\left(H_{i_{n}(\omega)}\right) \\
& =f(H(\omega)) .
\end{aligned}
$$

Subsection 5

Zeta Functions

The Zeta Function of a Map

Definition

Given a map $f: X \rightarrow X$, with

$$
a_{n}:=\operatorname{card}\left\{x \in X: f^{n}(x)=x\right\}<\infty
$$

for each $n \in \mathbb{N}$, its zeta function is defined by

$$
\zeta(z)=\exp \sum_{n=1}^{\infty} \frac{a_{n} z^{n}}{n}
$$

for each $z \in \mathbb{C}$ such that the series converges.

- We recall that the radius of convergence of the power series is given by

$$
R=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{\frac{a_{n}}{n}}\right)^{-1}=\left(\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}\right)^{-1}
$$

- In particular, the series converges for $|z|<R$.
- The function ζ is holomorphic on the ball $B(0, R) \subseteq \mathbb{C}$.
- ζ is uniquely determined by $\left(a_{n}\right)_{n \in \mathbb{N}}$ and vice versa.
- Let $\left.\sigma\right|_{\Sigma_{A}^{+}}: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$be a topological Markov chain defined by a $k \times k$ matrix A with spectral radius $\rho(A)>0$.
By a previous proposition that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is

$$
a_{n}=\operatorname{tr}\left(A^{n}\right)
$$

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of A, with multiplicities.
We have

$$
a_{n}=\operatorname{tr}\left(A^{n}\right)=\sum_{i=1}^{k} \lambda_{i}^{n}
$$

Let log be the principal branch of the logarithm.
Recall that

$$
\log (1+w)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} w^{n}, \quad \text { for }|w|<1
$$

- Now we have

$$
\begin{aligned}
\zeta(z) & =\exp \sum_{i=1}^{k} \sum_{n=1}^{\infty} \frac{\lambda_{i}^{n} z^{n}}{n} \\
& =\exp \sum_{i=1}^{k}-\log \left(1-\lambda_{i} z\right) \\
& =\exp \sum_{i=1}^{k} \log \frac{1}{1-\lambda_{i} z} \\
& =\prod_{i=1}^{k} \frac{1}{1-\lambda_{i} z} .
\end{aligned}
$$

On the other hand, the complex numbers $1-\lambda_{i} z$ are the eigenvalues of the matrix Id $-z A$, counted with their multiplicities.
Thus, for $|z|<\min \left\{\frac{1}{\mid \lambda_{i}}: i=1, \ldots, k\right\}=\frac{1}{\rho(A)}$,

$$
\zeta(z)=\frac{1}{\operatorname{det}(\operatorname{ld}-z A)}
$$

- The shift map

$$
\sigma: \Sigma_{k}^{+} \rightarrow \Sigma_{k}^{+}
$$

coincides with the topological Markov chain defined by the $k \times k$ matrix $A=A_{k}$ with all entries equal to 1 .
It follows from $\zeta(z)=\frac{1}{\operatorname{det}(1 \mathrm{~d}-z A)}$ that, for $|z|<\frac{1}{\rho\left(A_{k}\right)}=\frac{1}{k}$,

$$
\zeta(z)=\frac{1}{\operatorname{det}\left(\operatorname{ld}-z A_{k}\right)}
$$

- Subtracting the first row of Id $-z A_{k}$ from the other rows and then expanding the determinant along the second column, we obtain

$$
\begin{aligned}
& \operatorname{det}\left(\operatorname{ld}-z A_{k}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
1-z & -z & \cdots & -z \\
-1 & & & \\
\vdots & & \text { Id } & \\
-1 & & &
\end{array}\right) \\
& =z \operatorname{det}\left(\begin{array}{cccc}
-1 & 0 & \cdots & 0 \\
-1 & & & \\
\vdots & & \text { Id } & \\
-1 & &
\end{array}\right)+\operatorname{det}\left(\begin{array}{cccc}
1-z & -z & \cdots & -z \\
-1 & & & \\
\vdots & & \text { Id } & \\
-1 & &
\end{array}\right) \\
& =-z+\operatorname{det}\left(\operatorname{ld}-z A_{k-1}\right) \text {. }
\end{aligned}
$$

But $\operatorname{det}\left(\operatorname{ld}-z A_{1}\right)=1-z$. By induction, $\operatorname{det}\left(\operatorname{ld}-z A_{k}\right)=1-k z$.
Thus, $\zeta(z)=\frac{1}{1-k z}$, for $|z|<\frac{1}{k}$.

- Alternatively, the number of n-periodic points of $\left.\sigma\right|_{\Sigma_{k}^{+}}$is k^{n}. Thus,

$$
\zeta(z)=\exp \sum_{n=1}^{\infty} \frac{k^{n} z^{n}}{n}
$$

Now, for $|z|<\frac{1}{k}$,

$$
\left(\sum_{n=1}^{\infty} \frac{k^{n} z^{n}}{n}\right)^{\prime}=\sum_{n=1}^{\infty} k^{n} z^{n-1}=\frac{k}{1-k z}
$$

We conclude that, for $|z|<\frac{1}{k}$,

$$
\zeta(z)=\exp [-\log (1-k z)]=\frac{1}{1-k z}
$$

- Now we consider the expanding map $E_{2}: S^{1} \rightarrow S^{1}$.

We know that the number of n-periodic points of E_{2} is $2^{n}-1$. Hence,

$$
\zeta(z)=\exp \sum_{n=1}^{\infty} \frac{\left(2^{n}-1\right) z^{n}}{n}
$$

We have, for $|z|<\frac{1}{2}$,

$$
\left(\sum_{n=1}^{\infty} \frac{\left(2^{n}-1\right) z^{n}}{n}\right)^{\prime}=\sum_{n=1}^{\infty}\left(2^{n}-1\right) z^{n-1}=\frac{2}{1-2 z}-\frac{1}{1-z}
$$

So we obtain, for $|z|<\frac{1}{2}$,

$$
\zeta(z)=\exp [-\log (1-2 z)+\log (1-z)]=\frac{1-z}{1-2 z}
$$

