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Ergodic Theory

o Let X be a set.
o Let A be a family of subsets of X.

A is said to be a o-algebra in X if:
0,X € A,
X\B € A when B € A;
Ur2; Br € A when B, € A, for all n € IN.

The o-algebra generated by a family A of subsets of X is the smallest
o-algebra in X containing all elements of A.
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Ergodic Theory

Let A be a o-algebra in X. A function p: A — [0, 4+00] is called a
measure on X (with respect to A) if:

u(0) = 0;

Given pairwise disjoint sets B, € A, for n € IN, we have
2 (U Bn) = ZM(BH)'
n=1 n=1

We then say that (X, .A, 1) is a measure space.

o When the o-algebra is understood from the context, we still refer to
the pair (X, p) as a “measure space”.
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Ergodic Theory

o Let A be the g-algebra in X containing all subsets of X.
We define a measure 1 : A — INg U {oo} on X by

wu(B) = cardB.

We call p the counting measure on X.
o Let B be the Borel s-algebra in R.
This is the o-algebra generated by the open intervals.
Then there exists a unique measure A : B — [0, +o0] on R, such that

A(a,b)) =b—a, fora<hb.

We call A the Lebesgue measure on R.
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Ergodic Theory

o Let B be the Borel o-algebra in R".
This is the o-algebra generated by the open rectangles

H(a,-, bi), with a; < b;, fori=1,...,n
Then there exists a unique measure A : B — [0, +o00] on R”, such that
n
A (H a,,b)) H(b
i=1

forany a; < bjandi=1,...,n
We call X the Lebesgue measure on R".
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Ergodic Theory

o Let X be a set.
o Let A be a o-algebra in the set X.

Definition
A function ¢ : X — R is said to be .A-measurable or simply measurable
if

¢ IBe A, forall BehB,

where B is the Borel o-algebra in R.
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Ergodic Theory

o The characteristic function of a set B C X, xg: X — {0,1} is
defined by
1, ifxeB,
x(x) = { 0, ifx¢B.

Given sets By,...,B, € A and numbers ay,...,a, € R, the function

n
s= E kX By
k=1

is called a simple function.

o Clearly, all simple functions are measurable.
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Ergodic Theory

Let (X, u) be a measure space. The (Lebesgue) integral of a measurable
function ¢ : X — R{ is defined by

/deu = sup {Z ak(Bi) 1 Y akxs, < w}-
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Ergodic Theory

Let (X, ) be a measure space. Let ¢ : X — R be a measurable function.
@ is p-integrable if

/ otdp < oo and / p du < o0,
X X
where ¢t = max {¢,0} and ¢~ = max {—¢, 0}.

The (Lebesgue) integral of a p-integrable function ¢ : X — R is defined

by
/soduz/w*du—/w‘du-
X X X
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Ergodic Theory

o Let (X, A, ) be a measure space.

A map f : X — X is said to be .A-measurable or simply measurable if
f1Be A, forevery Be A,

where f 1B = {x € X : f(x) € B}.

Given a measurable map f : X — X, we say that y is f-invariant and that
f preserves p if
w(f~1B) = u(B), for B € A.

o We note that when f is an invertible map with measurable inverse,
f-invariance is equivalent to u(f(B)) = u(B), for B € A.
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Ergodic Theory

o Given v € R", let f : R” — R" be the translation

f(x)=x+v.

Clearly, f is invertible.

We consider the Lebesgue measure A on R".
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Ergodic Theory

o For all B € B, we have
A(f(B)) = ff(B) 1dA
= fB |detd, f|d\(x)
fB 1d\
= X(B).

So the measure X is f-invariant.
So the translations of IR preserve Lebesgue measure.
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Ergodic Theory

o Let f: R"™ — R" be a rotation.

Then there exists an n x n orthogonal matrix A (i.e., such that
ATA = Id, where AT is the transpose of A), such that

f(x) = Ax.
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Ergodic Theory

o Orthogonal matrices have determinant +1.

Let A be the Lebesgue measure on R".

Then, for each B € B, we have

Af(B) =

Rotations are invertible maps.

This shows that \ is f-invariant.

Jr(g) 1A

[ |detdy FldA(x)
[ |detAldA

[ 1dX

A(B).

Thus, the rotations of R" preserve Lebesgue measure.
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Ergodic Theory

o Consider a rotation of the circle R, : St — S1.
Without loss of generality, we assume that « € [0, 1].
We first introduce a measure i on S*.
For each set B C [0,1] in the Borel o-algebra in R, we define

#(B) = A(B).

Then p is a measure on St with p(St) = 1.
We also have R, 1B = B — a, where

B-—a={x—a:xeB}CR.
By the invariance of Lebesgue measure under translations,
n(Ry*B) = A(B — a) = A(B) = u(B).

This shows that the rotations of the circle preserve the measure pu.
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Ergodic Theory

o Consider the expanding map E,, : S* — S*.
We show that the measure i of the previous slide is E,-invariant.
Let B C [0, 1] be a set in the Borel o-algebra in R.
Ex(x)

1

Then E,'B =JT, B;, where

B;={X+I:XGB} mod 1.
m
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Ergodic Theory

o Note that the sets B; are pairwise disjoint.

So we have
u(En"'B)

Thus, the @ measure is Ep-invariant.
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Ergodic Theory

o The Gauss map f : [0,1] — [0,1] is de-
fined by

ed) = if x=0.

{% mod 1, if x # 0,
0,

The map f is related to the theory of continued fractions.
Let x € (0,1) be an irrational number with continued fraction
1

X == 71.
n + Mo+

Then n; = {ﬂ—#l(x)J for j € IN.
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Ergodic Theory

o We show the Gauss map preserves the measure p in [0,1] given by
1
A) = dx.

ua) = [ e
We note that it is sufficient to consider the intervals of the form
(0, b), with b € (0,1) (they generate the Borel o-algebra).
Since f~1(0, b) = Uiil(ﬁlba %) is a disjoint union, we obtain

wf0,0) = il )

_ SR
= Do 1/(,r71+b) 1J1rxdx

i
= Xn =1 108

1
= Zn:l(bg ﬁ — log n-irlb)

1

Thus, the measure p is f-invariant.
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Ergodic Theory

o We show that for a finite invariant measure, almost every point of a
given set returns infinitely often to this set.

Let f: X — X be a measurable map. Let i be a finite f-invariant
measure on X. For each set A € A, we have

u({x € A: f"(x) € A for infinitely many values of n}) = u(A).

Set -
A= F*A
k=n

Define
B = {x € A:f"(x) € A for infinitely many values of n}.
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Ergodic Theory

o We have - -
B=An[]A=A\|J(A\A,).
n=1 n=1

We note that
A\An c AO\An = AO\f—nAO-

Now Ag D A, = f~"Ap and the measure p is finite.

It follows, using that y is f-invariant, that
0 < pu(A\An) < p(Ao\f"Ao) = p(Ao) — p(f~"Ag) = 0.

Thus, u(B) = u(A).
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Ergodic Theory

o Consider a rotation of the circle
R,:S' =S, aclo1]

Consider the Borel o-algebra B in R.
Let 4 be the measure S* defined by

w(B) = \(B), forevery BC0,1]in B.

By a previous example, @ is R,-invariant.
By the theorem, given c € [0, 1], the set

{x € [-c,c] : |[R}(x)| < c for infinitely many values of n}

has measure p([—c, c]) = 2c.
So almost all points in [—c, c| return infinitely often to [—c, c].
o The property established in this example is trivial for o € Q.
o When a € R\Q, it also follows from the density of the orbits of R,.
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Ergodic Theory

o Consider the expanding map
E, :S'— St

By a previous example, the measure 1 on S! defined as in the
preceding example is E,,-invariant.

By the theorem, for each interval [a, b] C [0, 1], the set
{x € [a, b] : E;;(x) € [a, b] for infinitely many values of n}

has measure p([a, b]) = b — a.
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Ergodic Theory

o Poincaré’s Recurrence Theorem says that for a finite invariant measure
almost all points of a given set return infinitely often to this set.
o Birkhoff's Ergodic Theorem establishes a frequency of return.

Let f : X — X be a measurable map. Let i be a finite f-invariant
measure on X. Given a p-integrable function ¢ : X — R, the limit

. 1 n—1 .
pr(x) = lim — 3" p(F4(x)
k=0
exists for almost every point x € X, the function ¢r is u-integrable, and

/wdu=/ edp.
X X

o The proof is given in the last section of this set.
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Ergodic Theory

o Let f: X — X be a measurable map.
Let i be a finite f-invariant measure on X.
Given a set B € A, consider the u-integrable function ¢ = xp.

We have
Ixedu =[x xsdu = p(B);
or(x) = Jim 255525 xa(4(x))

= lim fcard{k € {0,...,n— 1} : f¥(x) € B}.
n—oo
By Birkhoff's Theorem,

1
/ lim —card{k € {0,...,n—1} : f¥(x) € B}du(x) = u(B).

x n—oon
The number ¢f(x) can be described as the frequency with which the
orbit of x visits the set B. So, Birkhoff's Ergodic Theorem describes
in quantitative terms how often each orbit returns to the set B.
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Ergodic Theory

o Let f: M — M be a differentiable map.

Given x € M and v € T,M, the Lyapunov exponent of the pair (x,v) is
defined by

1
A(x, v) = limsup = log ||dyxf"v||.
n—oo N
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Ergodic Theory

o Now we consider the particular case of the maps of the circle.

Let f: S* — S' be a C! map. Let p be a finite f-invariant measure on
S, Then A\(x, v) is a limit for almost every x, that is,

A(x,v) = lim —Zcp(fk(x

n—oco n

for almost every x € S and any v # 0, where ¢(x) = log ||dxf|.

o Since the circle ST has dimension 1, we have

[ 2] = Nl f7] - flv]-
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Ergodic Theory

o Thus, for each v # 0,

Moty v) = lmisup—log |7 -

n—oo N

Recall the identity
dxfn = dfn—l(x)f O~ df(x)f o dxf.

It follows that )
e

sl = T efeeq fIl-
k=0

Thus, if o(x) = log ||dyf],

n—1 n—1

1 o 1

—log | cif"]| = — 3" log | drury | = — S @(F*(x))
k=0 k=0
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Ergodic Theory

o We saw that
n—1

1 a1
—log [|d || = =3 (F“(x)).
k=0

Thus, we get, for each v # 0,
1 n—1
A =i =) o(f(x)).
6 vl = limetp— 2 p(f(x))

Now the function ¢ is continuous.

So the result follows from Birkhoff's Ergodic Theorem.
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Ergodic Theory

o Let (X, A, u) be a measure space, with p(X) = 1.

A finite set £ C A is called a partition of X (with respect to ) if:

#Ucee €) = 1
For all C,D € &, with C # D,

w(CND)=0.
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Ergodic Theory

o Let f: X — X be a measurable map preserving the measure p.
o Let £ be a partition of X and n € IN.

o We construct a new partition &, formed by the sets
anflen.-nf e,

with C,...,C, € €.

We define

1
hu(f,€) = inf —= C;& p(C)log u(C),

with the convention that Olog 0 = 0.
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Ergodic Theory

o Let f =1Id.
Let £ be a partition of X and n € IN.
Then we have
& =¢.
Thus,

. 1
hu(f,€) = inf —= CXE:&M(C) log 14(C) = 0.
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Ergodic Theory

o Consider the expanding map E, : S' — St
Let i be the Ep-invariant measure defined previously.
Consider the partition £ = {[0, 3], [3,1]} and let n € IN.
Then we have

i i+1] "
fn—{[5,7:| I—O,,Z —1}

hu(E2,€) = infren —% > cce, 1(C)log pu(C)

: 1 1 1
= |nfn€]N—F -2 F|og7

Thus,

= log2.
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Ergodic Theory

The metric entropy of f with respect to u is defined by

hll(f) = sup h,u(fvé'(n))v
nelN

where f(") is any sequence of partitions, such that:
Given n € IN and C € £, there exist Cy, ..., Gy € £ such that

(o) {ges)-

The union of all partitions £(") generates the o-algebra A.

o One can show that the definition of h,(f) indeed does not depend on
the particular sequence f(”).
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Ergodic Theory

o Let R, : St — S! be a rotation of the circle.
Let i be the R,-invariant measure defined previously.
Let £ be a partition of X by intervals and n € IN.

The endpoints of the intervals in the preimages f~¢, for
i=0,...,n—1, determine at most ncard¢ points in S

It follows that
cardé, < ncard€.

Note that

— > () logu(C) =Y o(u(C)).

Ce&n CEgn

where

[ —xlogx, if x € (0,1],
SD(X)_{o, if x = 0.
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Ergodic Theory

o We have ¢"(x) = —1 <0, for x € (0,1).
So the function ¢ is strictly concave.
Thus, we get

— e, M(CO)log (€)= Ycee, mrae #(1(C))cardé,
¥ (ZCE& —cl;Ec(l:g),,> cardé,
¥ (card§ ) Cardg"

o |og cardf,,
= logcard¢,.

IN

Hence, it follows that
1 1
h,(f, &) < inf =1 dé, < inf =1 d¢) = 0.
u(f,€) < inf —logcardé, < inf —log (ncard()

Thus, h,(f) = 0.
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Ergodic Theory

o Consider the expanding map E, : S' — St
Let i be the Ep-invariant measure defined previously.
Consider the partition

g(m):{[#,’;ﬂl] :i:0,...,2'"—1}.

For each m, n € IN, we obtain

& = {[ztmr k] ci=0,.. 2mnml 1}
E(m—l—n—l)‘
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Ergodic Theory

o Now we get

hu(E2, €M) = infae —7 32 om 1(C)log u(C)
= infne]N —% Zceﬁ(ernfl) M(C) IOg /,L(C)
= infnGIN _% . 2m+n_1 . 2m-¢:—ln—1 Iog 2m-%:—ln—1

= infpen %”_1 log 2

= log2.

The partitions £(™) satisfy the hypotheses of the definition.
We conclude that

hu(Es) = sup h,(E2, &™) = log2.
melN
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Ergodic Theory

Lemma

Given a p-integrable function ¢ : X — R, the function ¢ o f is also
p-integrable and
| wendu= [ van
X X

o Given a set B € A, f-invariance means

/Xf—le,U:/XBd,U-
X X

Equivalently, since xg o f = x¢-1p,

/(XBOf)dMZ/XBdu-
X X
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Ergodic Theory

o We obtained

/(XBOf)d,U:/XBdM-
X X

For a simple function

n
s=)_ axs,
k=1

/X(SO f)duzfxsd,u,.

Yp=9¢" —9~ and Yt ¢~ >0,

it follows that

In general, we have

By the definition of Lebesgue integrals, it is sufficient to establish the
result for nonnegative functions.

George Voutsadakis (LSSU)



Ergodic Theory

o Let ¢ : X — R{ be a p-integrable function.

By the definition of the integral, there exists a sequence of simple
functions (sp)nen, such that:
0 < s, < spy1 < for n € N, with lim,_00 Sp(x) = ¥(x), for x € X;
limp—oo [y Sndp = [y wdp.

By Fatou's Lemma,

Sxlimpoo (Snof)dp < liminf, [y (sp0 f)dp
= liminfoLo0 [y Sndp
= limpsoo [y Sndp
= Jxdu
< o0

Hence, the function lim,_,o (s, o f) =1 o f is p-integrable.
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Ergodic Theory

o By construction, s,of 1 of when n — co.

By the Monotone Convergence Theorem, the limit exists,

tim [ (svofdu= [ lim (sn0 = [ (o

Finally, we obtain

Jx@Wof)dy = limaso [y (snof)du
= limposoeo [y Sndp

= Jxvdu.

This completes the proof of the lemma.
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Ergodic Theory

o Now we consider the set

n—1
A:{XGX sungp (F<(x )>0}

ne]Nk 0

Lemma

We have
/ @dp > 0.
A

o The functions so(x) = 0 and s,(x) = ZZ;(IJ o(f*(x)), for n € IN,
satisfy the identity

sn(f(x)) = Zw(fk (f(x))) = Zw(f"“ )) = Snt1(x) = #(x)-
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Ergodic Theory

o Write t,(x) = max {si(x),...,sn(x)} and r,(x) = max {0, t,(x)}.

Then we obtain
ra(f(x)) = tos1(x) — p(x).
On the set A, = {x € X : t,(x) > 0}, we have t,(x) = rp(x). Thus,

/ tn+1dﬂ2/ tnd/v’/:/ rnd/v’/:/rnd.u'
n An n X

We now have, taking into account Lemma 1,
fAn pdp = fAn thy1dp — fAn (rnof)du
> [xrmdp— [y (rmof)du=0.
Now we note that A, C Api1, for all n € IN, and | J;2; A, = A.

Hence, letting n — oo, we obtain [, ¢du > 0.
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Ergodic Theory

o Given a, b € Q with a < b, consider the set

n—oo N
— n— oo k=0

n—1 n—1
_ _ el k . 1 K
B=B,,= {X € X : liminf kE_O o(f*(x)) < a< b<limsup " E o(f (x))}

Consider also the function

| o(x)—b, ifxeB,
MX)_{ 0, if x & B.

Define

Ay = {x€X:suppen L3725 w(FK(x)) > 0}
= {x€X:suppew + Xizo(F¥(x)) > b}.

By Lemma 2, wa pdp > 0.
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Ergodic Theory

o We note that Ay, O B.
Since f~1B = B, we also have, for x ¢ B,

n—1

> W(f () =o.

k=0

That is
X\B C X\Ay.

This shows that Ay, = B.
So the inequality fA¢ du > 0 is equivalent to

/ pdp > bu(B).
B
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Ergodic Theory

o Similarly, we may consider

— [ a—e(x), ifxeB,
v = { 0, if x ¢ B.

By similar reasoning, we can show that
/B pdp < ap(B).

Since a < b, it follows that p(B, ) = pu(B) = 0.

But the union of the sets B, , for a, b € Q, with a < b, coincides
with the set of points x € X, such that

n—1 n—1
1 1
liminf = " o(f(x)) < limsup = >~ o(F*(x)).
k=0 nee M50

n—oco n

So f(x) = limp_oo 2 Ez;(l) ©(fK(x)) exists for almost every x € X.
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Ergodic Theory

o It remains to establish the integrability of the function r and the

identity
/ prdp = / pdp.
X X

The functions ¢ and ¢~ are p-integrable.

Write ¢ = ot — ™.

By the previous argument, the limits

PF(x) = limnseo 1 Yhcg T (F4(X)),

pr(x) = llmHoonZ 09 (F4(x))

exist for almost every x € X.
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Ergodic Theory

o By Fatou's Lemma, together with Lemma 1,
fxgo;rd,u < I|m|nf,,_>oonz Lot o FAYdp
= liminfy_oo % = > ko Lotdu

= fxw
< 00.

/w?dMS/so‘dM<OO-
X X

Thus, the functions go;r and o are p-integrable.

Analogously,

It follows that ¢f is also u-integrable.
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Ergodic Theory

o Consider, for each a, b € @, with a < b, the set
D,p={x€ X:a<gr(x) < b}

One can repeat the former argument to show that

awmws/ pdp < bu(D, p).

Da,b

We also have

wwms/ prdp < bu(Ds ).

Da,b

/ prdp — / pdp
Da,b Da,b
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Ergodic Theory

o We obtained

< (b - a)ﬂ(Da,b)-

/ prdp — / pdp
Da,b Da,b

Hence, given r > 0, and setting E, = D, (p41),, We obtain

| fx ordu — fx pdul < Yzl fE,, prdp — fE,, pdpl
ZnGZ r:UJ(En)

= r.

IN

Letting r — 0, we conclude that

/wdu:/ pdp.
X X
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