Introduction to Dynamical Systems

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Ergodic Theory

- Notions from Measure Theory
- Invariant Measures
- Nontrivial Recurrence
- The Ergodic Theorem
- Metric Entropy
- Proof of the Ergodic Theorem

Subsection 1

Notions from Measure Theory

σ -Algebras

- Let X be a set.
- Let \mathcal{A} be a family of subsets of X.

Definition

 \mathcal{A} is said to be a σ -algebra in X if:

- 1. $\emptyset, X \in \mathcal{A};$
- 2. $X \setminus B \in \mathcal{A}$ when $B \in \mathcal{A}$;
- 3. $\bigcup_{n=1}^{\infty} B_n \in \mathcal{A}$ when $B_n \in \mathcal{A}$, for all $n \in \mathbb{N}$.

The σ -algebra generated by a family \mathcal{A} of subsets of X is the smallest σ -algebra in X containing all elements of \mathcal{A} .

Measure Spaces

Definition

Let \mathcal{A} be a σ -algebra in X. A function $\mu : \mathcal{A} \to [0, +\infty]$ is called a measure on X (with respect to \mathcal{A}) if:

$$\mu(\emptyset)=0;$$

2. Given pairwise disjoint sets $B_n \in \mathcal{A}$, for $n \in \mathbb{N}$, we have

$$\mu\left(\bigcup_{n=1}^{\infty}B_n\right)=\sum_{n=1}^{\infty}\mu(B_n).$$

We then say that (X, \mathcal{A}, μ) is a **measure space**.

• When the σ -algebra is understood from the context, we still refer to the pair (X, μ) as a "measure space".

Examples

Let A be the σ-algebra in X containing all subsets of X.
 We define a measure μ : A → N₀ ∪ {∞} on X by

$$\mu(B) = \mathsf{card}B.$$

We call μ the **counting measure** on *X*.

Let B be the Borel σ-algebra in ℝ.
 This is the σ-algebra generated by the open intervals.
 Then there exists a unique measure λ : B → [0, +∞] on ℝ, such that

$$\lambda((a, b)) = b - a$$
, for $a < b$.

We call λ the **Lebesgue measure** on \mathbb{R} .

Example

Let B be the Borel σ-algebra in Rⁿ.
 This is the σ-algebra generated by the open rectangles

$$\prod_{i=1}^n (a_i, b_i), \quad ext{with } a_i < b_i, ext{ for } i=1,\ldots,n$$

Then there exists a unique measure $\lambda : \mathcal{B} \to [0, +\infty]$ on \mathbb{R}^n , such that

$$\lambda\left(\prod_{i=1}^n(a_i,b_i)\right)=\prod_{i=1}^n(b_i-a_i),$$

for any $a_i < b_i$ and i = 1, ..., n. We call λ the **Lebesgue measure** on \mathbb{R}^n .

Measurable Functions

- Let X be a set.
- Let \mathcal{A} be a σ -algebra in the set X.

Definition

A function $\varphi: X \to \mathbb{R}$ is said to be \mathcal{A} -measurable or simply measurable if

$$arphi^{-1}B\in \mathcal{A}, \quad ext{for all } B\in \mathcal{B},$$

where \mathcal{B} is the Borel σ -algebra in \mathbb{R} .

Characteristic and Simple Functions

The characteristic function of a set B ⊆ X, χ_B : X → {0,1} is defined by

$$\chi_B(x) = \begin{cases} 1, & \text{if } x \in B, \\ 0, & \text{if } x \notin B. \end{cases}$$

Definition

Given sets $B_1, \ldots, B_n \in \mathcal{A}$ and numbers $a_1, \ldots, a_n \in \mathbb{R}$, the function

$$s = \sum_{k=1}^{n} a_k \chi_{B_k}$$

is called a simple function.

• Clearly, all simple functions are measurable.

The Lebesgue Integral of a Positive Measurable Function

Definition

Let (X, μ) be a measure space. The (**Lebesgue**) integral of a measurable function $\varphi : X \to \mathbb{R}_0^+$ is defined by

$$\int_X \varphi d\mu = \sup \left\{ \sum_{k=1}^n a_k \mu(B_k) : \sum_{k=1}^n a_k \chi_{B_k} \leq \varphi \right\}.$$

The Lebesgue Integral of an Integrable Function

Definition

Let (X, μ) be a measure space. Let $\varphi : X \to \mathbb{R}$ be a measurable function. φ is μ -integrable if

$$\int_X \varphi^+ d\mu < \infty \quad \text{and} \quad \int_X \varphi^- d\mu < \infty,$$

where $\varphi^+ = \max{\{\varphi, 0\}}$ and $\varphi^- = \max{\{-\varphi, 0\}}$.

Definition

The (**Lebesgue**) integral of a μ -integrable function $\varphi: X \to \mathbb{R}$ is defined by

$$\int_X \varphi d\mu = \int_X \varphi^+ d\mu - \int_X \varphi^- d\mu.$$

Subsection 2

Invariant Measures

Measurable Functions and Invariant Measures

• Let (X, \mathcal{A}, μ) be a measure space.

Definition

A map $f: X \to X$ is said to be A-measurable or simply measurable if

$$f^{-1}B \in \mathcal{A}$$
, for every $B \in \mathcal{A}$,

where
$$f^{-1}B = \{x \in X : f(x) \in B\}.$$

Definition

Given a measurable map $f: X \to X$, we say that μ is f-invariant and that f preserves μ if

$$\mu(f^{-1}B) = \mu(B), \text{ for } B \in \mathcal{A}.$$

• We note that when f is an invertible map with measurable inverse, f-invariance is equivalent to $\mu(f(B)) = \mu(B)$, for $B \in A$.

Example: Translations and Lebesgue Measure

• Given $v \in \mathbb{R}^n$, let $f : \mathbb{R}^n \to \mathbb{R}^n$ be the translation

$$f(x)=x+v.$$

Clearly, f is invertible.

We consider the Lebesgue measure λ on \mathbb{R}^n .

Example (Cont'd)

• For all $B \in \mathcal{B}$, we have

$$\begin{split} \lambda(f(B)) &= \int_{f(B)} 1 d\lambda \\ &= \int_{B} |\det d_{x} f| d\lambda(x) \\ &= \int_{B} 1 d\lambda \\ &= \lambda(B). \end{split}$$

So the measure λ is *f*-invariant.

So the translations of \mathbb{R}^n preserve Lebesgue measure.

xample: Rotations and Lebesgue Measure

• Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a rotation.

Then there exists an $n \times n$ orthogonal matrix A (i.e., such that $A^{\top}A = Id$, where A^{\top} is the transpose of A), such that

$$f(x) = Ax.$$

Example (Cont'd)

 Orthogonal matrices have determinant ±1. Let λ be the Lebesgue measure on ℝⁿ. Then, for each B ∈ B, we have

$$\begin{split} \lambda(f(B)) &= \int_{f(B)} 1d\lambda \\ &= \int_{B} |\det d_{x}f| d\lambda(x) \\ &= \int_{B} |\det A| d\lambda \\ &= \int_{B} 1d\lambda \\ &= \lambda(B). \end{split}$$

Rotations are invertible maps.

This shows that λ is *f*-invariant.

Thus, the rotations of \mathbb{R}^n preserve Lebesgue measure.

Example: Rotations of the Circle

Consider a rotation of the circle R_α : S¹ → S¹.
Without loss of generality, we assume that α ∈ [0, 1].
We first introduce a measure μ on S¹.
For each set B ⊆ [0, 1] in the Borel σ-algebra in ℝ, we define

 $\mu(B) = \lambda(B).$

Then μ is a measure on S^1 with $\mu(S^1) = 1$. We also have $R_{\alpha}^{-1}B = B - \alpha$, where

$$B - \alpha = \{x - \alpha : x \in B\} \subseteq \mathbb{R}.$$

By the invariance of Lebesgue measure under translations,

$$\mu(R_{\alpha}^{-1}B) = \lambda(B - \alpha) = \lambda(B) = \mu(B).$$

This shows that the rotations of the circle preserve the measure μ .

Example: Expanding Maps

Consider the expanding map E_m: S¹ → S¹.
 We show that the measure µ of the previous slide is E_m-invariant.
 Let B ⊆ [0, 1] be a set in the Borel σ-algebra in ℝ.

Then $E_m^{-1}B = \bigcup_{i=1}^m B_i$, where

$$B_i = \left\{ rac{x+i}{m} : x \in B
ight\} \mod 1.$$

Example (Cont'd)

Note that the sets B_i are pairwise disjoint.
 So we have

$$\mu(E_m^{-1}B) = \sum_{i=1}^m \lambda(B_i)$$

= $\sum_{i=1}^m \frac{\lambda(B_i)}{m}$
= $\sum_{i=1}^m \frac{\lambda(B)}{m}$
= $\lambda(B)$
= $\mu(B).$

Thus, the μ measure is E_m -invariant.

Example: The Gauss Map

• The Gauss map $f : [0,1] \rightarrow [0,1]$ is defined by

$$f(x) = \begin{cases} \frac{1}{x} \mod 1, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

The map f is related to the theory of continued fractions.

Let $x \in (0,1)$ be an irrational number with continued fraction

$$x=\frac{1}{n_1+\frac{1}{n_2+\cdots}}.$$

Then $n_j = \left\lfloor \frac{1}{f^{j-1}(x)} \right\rfloor$, for $j \in \mathbb{N}$.

Example (Cont'd)

• We show the Gauss map preserves the measure μ in [0,1] given by

$$\mu(A)=\int_A\frac{1}{1+x}dx.$$

We note that it is sufficient to consider the intervals of the form (0, b), with $b \in (0, 1)$ (they generate the Borel σ -algebra). Since $f^{-1}(0, b) = \bigcup_{n=1}^{\infty} (\frac{1}{n+b}, \frac{1}{n})$ is a disjoint union, we obtain

$$\mu(f^{-1}(0,b)) = \sum_{n=1}^{\infty} \mu((\frac{1}{n+b}, \frac{1}{n}))$$

= $\sum_{n=1}^{\infty} \int_{1/(n+b)}^{1/n} \frac{1}{1+x} dx$
= $\sum_{n=1}^{\infty} \log \frac{1+\frac{1}{n}}{1+\frac{1}{n+b}}$
= $\sum_{n=1}^{\infty} (\log \frac{n+1}{n+1+b} - \log \frac{n}{n+b})$
= $-\log \frac{1}{1+b}.$

Thus, the measure μ is *f*-invariant.

Subsection 3

Nontrivial Recurrence

Poincaré's Recurrence Theorem

• We show that for a finite invariant measure, almost every point of a given set returns infinitely often to this set.

Theorem (Poincaré's Recurrence Theorem)

Let $f : X \to X$ be a measurable map. Let μ be a finite *f*-invariant measure on *X*. For each set $A \in A$, we have

 $\mu(\{x \in A : f^n(x) \in A \text{ for infinitely many values of } n\}) = \mu(A).$

Set

$$A_n = \bigcup_{k=n}^{\infty} f^{-k} A.$$

Define

 $B = \{x \in A : f^n(x) \in A \text{ for infinitely many values of } n\}.$

Poincaré's Recurrence Theorem (Cont'd)

We have

$$B = A \cap \bigcap_{n=1}^{\infty} A_n = A \setminus \bigcup_{n=1}^{\infty} (A \setminus A_n).$$

We note that

$$A \backslash A_n \subseteq A_0 \backslash A_n = A_0 \backslash f^{-n} A_0.$$

Now $A_0 \supseteq A_n = f^{-n}A_0$ and the measure μ is finite. It follows, using that μ is *f*-invariant, that

$$0 \leq \mu(A \setminus A_n) \leq \mu(A_0 \setminus f^{-n}A_0) = \mu(A_0) - \mu(f^{-n}A_0) = 0.$$

Thus, $\mu(B) = \mu(A)$.

Example: Rotations of the Circle

• Consider a rotation of the circle

$$R_{\alpha}: S^1 \to S^1, \quad \alpha \in [0, 1].$$

Consider the Borel σ -algebra \mathcal{B} in \mathbb{R} . Let μ be the measure S^1 defined by

 $\mu(B) = \lambda(B)$, for every $B \subseteq [0,1]$ in \mathcal{B} .

By a previous example, μ is R_{α} -invariant. By the theorem, given $c \in [0, 1]$, the set

 $\{x \in [-c, c] : |R_{\alpha}^{n}(x)| \leq c \text{ for infinitely many values of } n\}$ has measure $\mu([-c, c]) = 2c$. So almost all points in [-c, c] return infinitely often to [-c, c]. • The property established in this example is trivial for $\alpha \in \mathbb{Q}$.

• When $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, it also follows from the density of the orbits of R_{α} .

Example: Expanding Maps

Consider the expanding map

$$E_m: S^1 \to S^1.$$

By a previous example, the measure μ on S^1 defined as in the preceding example is E_m -invariant.

By the theorem, for each interval $[a, b] \subseteq [0, 1]$, the set

 $\{x \in [a, b] : E_m^n(x) \in [a, b] \text{ for infinitely many values of } n\}$

has measure $\mu([a, b]) = b - a$.

Subsection 4

The Ergodic Theorem

Birkhoff's Ergodic Theorem

- Poincaré's Recurrence Theorem says that for a finite invariant measure almost all points of a given set return infinitely often to this set.
- Birkhoff's Ergodic Theorem establishes a frequency of return.

Theorem (Birkhoff's Ergodic Theorem)

Let $f : X \to X$ be a measurable map. Let μ be a finite f-invariant measure on X. Given a μ -integrable function $\varphi : X \to \mathbb{R}$, the limit

$$\varphi_f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x))$$

exists for almost every point $x \in X$, the function φ_f is μ -integrable, and

$$\int_X \varphi_f d\mu = \int_X \varphi d\mu.$$

• The proof is given in the last section of this set.

Dynamical Systems

Example

Let f : X → X be a measurable map.
 Let μ be a finite f-invariant measure on X.
 Given a set B ∈ A, consider the μ-integrable function φ = χ_B.
 We have

$$\begin{aligned} \int_X \varphi d\mu &= \int_X \chi_B d\mu = \mu(B); \\ \varphi_f(x) &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_B(f^k(x)) \\ &= \lim_{n \to \infty} \frac{1}{n} \operatorname{card} \{k \in \{0, \dots, n-1\} : f^k(x) \in B\}. \end{aligned}$$

By Birkhoff's Theorem,

$$\int_X \lim_{n \to \infty} \frac{1}{n} \operatorname{card} \{k \in \{0, \dots, n-1\} : f^k(x) \in B\} d\mu(x) = \mu(B).$$

The number $\varphi_f(x)$ can be described as the frequency with which the orbit of x visits the set B. So, Birkhoff's Ergodic Theorem describes in quantitative terms how often each orbit returns to the set B.

George Voutsadakis (LSSU)

Dynamical Systems

Lyapunov Exponent

• Let $f: M \to M$ be a differentiable map.

Definition

Given $x \in M$ and $v \in T_x M$, the **Lyapunov exponent** of the pair (x, v) is defined by

$$\lambda(x,v) = \limsup_{n \to \infty} \frac{1}{n} \log \|d_x f^n v\|.$$

Lyapunov Exponent and Birkhoff's Theorem

Now we consider the particular case of the maps of the circle.

Theorem

Let $f: S^1 \to S^1$ be a C^1 map. Let μ be a finite *f*-invariant measure on S^1 . Then $\lambda(x, v)$ is a limit for almost every x, that is,

$$\lambda(x,v) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)),$$

for almost every $x \in S^1$ and any $v \neq 0$, where $\varphi(x) = \log \|d_x f\|$.

• Since the circle S^1 has dimension 1, we have

$$\|d_{\mathsf{X}}f^{\mathsf{n}}v\|=\|d_{\mathsf{X}}f^{\mathsf{n}}\|\cdot\|v\|.$$

Prof of the Theorem

• Thus, for each $v \neq 0$,

$$\lambda(x,v) = \limsup_{n \to \infty} \frac{1}{n} \log \|d_x f^n\|.$$

Recall the identity

$$d_x f^n = d_{f^{n-1}(x)} f \circ \cdots d_{f(x)} f \circ d_x f.$$

It follows that

$$||d_x f^n|| = \prod_{k=0}^{n-1} ||d_{f^k(x)}f||.$$

Thus, if $\varphi(x) = \log \|d_x f\|$,

$$\frac{1}{n}\log \|d_x f^n\| = \frac{1}{n}\sum_{k=0}^{n-1}\log \|d_{f^k(x)}f\| = \frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x)).$$

Prof of the Theorem (Cont'd)

We saw that

$$\frac{1}{n}\log \|d_x f^n\| = \frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x)).$$

Thus, we get, for each $v \neq 0$,

$$\lambda(x, v) = \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)).$$

Now the function φ is continuous.

So the result follows from Birkhoff's Ergodic Theorem.

Subsection 5

Metric Entropy

Partitions of a Measure Space

• Let
$$(X, \mathcal{A}, \mu)$$
 be a measure space, with $\mu(X) = 1$.

Definition

A finite set $\xi \subseteq A$ is called a **partition** of X (with respect to μ) if:

- 1. $\mu(\bigcup_{C \in \xi} C) = 1;$
- 2. For all $C, D \in \xi$, with $C \neq D$,

$$\mu(C \cap D) = 0.$$

Derived Partitions

- Let $f: X \to X$ be a measurable map preserving the measure μ .
- Let ξ be a partition of X and $n \in \mathbb{N}$.
- We construct a new partition ξ_n formed by the sets

$$C_1 \cap f^{-1}C_2 \cap \cdots \cap f^{-(n-1)}C_n$$

with
$$C_1, \ldots, C_n \in \xi$$
.

Definition

We define

$$h_{\mu}(f,\xi) = \inf_{n \in \mathbb{N}} -\frac{1}{n} \sum_{C \in \xi_n} \mu(C) \log \mu(C),$$

with the convention that $0 \log 0 = 0$.

Example

• Let f = Id.

Let ξ be a partition of X and $n \in \mathbb{N}$.

Then we have

$$\xi_n = \xi.$$

Thus,

$$h_{\mu}(f,\xi) = \inf_{n\in\mathbb{N}} -\frac{1}{n}\sum_{C\in\xi}\mu(C)\log\mu(C) = 0.$$

Example

• Consider the expanding map $E_2 : S^1 \to S^1$. Let μ be the E_2 -invariant measure defined previously. Consider the partition $\xi = \{[0, \frac{1}{2}], [\frac{1}{2}, 1]\}$ and let $n \in \mathbb{N}$. Then we have

$$\xi_n = \left\{ \left[\frac{i}{2^n}, \frac{i+1}{2^n} \right] : i = 0, \dots, 2^n - 1 \right\}.$$

Thus,

$$h_{\mu}(E_{2},\xi) = \inf_{n \in \mathbb{N}} -\frac{1}{n} \sum_{C \in \xi_{n}} \mu(C) \log \mu(C)$$

$$= \inf_{n \in \mathbb{N}} -\frac{1}{n} \cdot 2^{n} \cdot \frac{1}{2^{n}} \log \frac{1}{2^{n}}$$

$$= \log 2.$$

Metric Entropy

Definition

The **metric entropy** of f with respect to μ is defined by

$$h_\mu(f) = \sup_{n\in\mathbb{N}} h_\mu(f,\xi^{(n)}),$$

where $\xi^{(n)}$ is any sequence of partitions, such that:

1. Given $n \in \mathbb{N}$ and $C \in \xi^{(n)}$, there exist $C_1, \ldots, C_m \in \xi^{(n+1)}$, such that

$$\mu\left(C\setminus\bigcup_{i=1}^m C_i\right)=\mu\left(\bigcup_{i=1}^m C_i\setminus C\right)=0;$$

2. The union of all partitions $\xi^{(n)}$ generates the σ -algebra \mathcal{A} .

• One can show that the definition of $h_{\mu}(f)$ indeed does not depend on the particular sequence $\xi^{(n)}$.

Example: Rotations of the Circle

Let R_α: S¹ → S¹ be a rotation of the circle.
Let μ be the R_α-invariant measure defined previously.
Let ξ be a partition of X by intervals and n ∈ N.
The endpoints of the intervals in the preimages f⁻ⁱξ, for i = 0,..., n − 1, determine at most ncardξ points in S¹.
It follows that

$$\operatorname{card} \xi_n \leq n \operatorname{card} \xi$$
.

Note that

$$-\sum_{C\in\xi_n}\mu(C)\log\mu(C)=\sum_{C\in\xi_n}\varphi(\mu(C)).$$

where

$$arphi(x) = \left\{ egin{array}{cc} -x\log x, & ext{if } x \in (0,1], \\ 0, & ext{if } x = 0. \end{array}
ight.$$

Example: Rotations of the Circle (Cont'd)

$$\begin{aligned} -\sum_{C \in \xi_n} \mu(C) \log \mu(C) &= \sum_{C \in \xi_n} \frac{1}{\operatorname{card}\xi_n} \varphi(\mu(C)) \operatorname{card}\xi_n \\ &\leq \varphi\left(\sum_{C \in \xi_n} \frac{\mu(C)}{\operatorname{card}\xi_n}\right) \operatorname{card}\xi_n \\ &= \varphi\left(\frac{1}{\operatorname{card}\xi_n}\right) \operatorname{card}\xi_n \\ &= -\log \frac{1}{\operatorname{card}\xi_n} \\ &= \log \operatorname{card}\xi_n. \end{aligned}$$

Hence, it follows that

$$h_{\mu}(f,\xi) \leq \inf_{n \in \mathbb{N}} \frac{1}{n} \log \operatorname{card} \xi_n \leq \inf_{n \in \mathbb{N}} \frac{1}{n} \log (n \operatorname{card} \xi) = 0.$$

hus, $h_{\mu}(f) = 0.$

George Voutsadakis (LSSU)

Т

Example

Consider the expanding map E₂ : S¹ → S¹.
 Let µ be the E₂-invariant measure defined previously.
 Consider the partition

$$\xi^{(m)} = \left\{ \left[\frac{i}{2^m}, \frac{i+1}{2^m} \right] : i = 0, \dots, 2^m - 1 \right\}.$$

For each $m, n \in \mathbb{N}$, we obtain

$$\begin{aligned} \xi_n^{(m)} &= \left\{ \left[\frac{i}{2^{m+n-1}}, \frac{i+1}{2^{m+n-1}} \right] : i = 0, \dots, 2^{m+n-1} - 1 \right\} \\ &= \xi^{(m+n-1)}. \end{aligned}$$

Example (Cont'd)

Now we get

$$h_{\mu}(E_{2},\xi^{(m)}) = \inf_{n \in \mathbb{N}} -\frac{1}{n} \sum_{C \in \xi_{n}^{(m)}} \mu(C) \log \mu(C)$$

= $\inf_{n \in \mathbb{N}} -\frac{1}{n} \sum_{C \in \xi^{(m+n-1)}} \mu(C) \log \mu(C)$
= $\inf_{n \in \mathbb{N}} -\frac{1}{n} \cdot 2^{m+n-1} \cdot \frac{1}{2^{m+n-1}} \log \frac{1}{2^{m+n-1}}$
= $\inf_{n \in \mathbb{N}} \frac{m+n-1}{n} \log 2$
= $\log 2.$

The partitions $\xi^{(m)}$ satisfy the hypotheses of the definition. We conclude that

$$h_{\mu}(E_2) = \sup_{m \in \mathbb{N}} h_{\mu}(E_2, \xi^{(m)}) = \log 2.$$

Subsection 6

Proof of the Ergodic Theorem

Lemma 1

Lemma

Given a $\mu\text{-integrable}$ function $\psi:X\to\mathbb{R},$ the function $\psi\circ f$ is also $\mu\text{-integrable}$ and

$$\int_X (\psi \circ f) d\mu = \int_X \psi d\mu.$$

• Given a set $B \in \mathcal{A}$, *f*-invariance means

$$\int_X \chi_{f^{-1}B} d\mu = \int_X \chi_B d\mu.$$

Equivalently, since $\chi_B \circ f = \chi_{f^{-1}B}$,

$$\int_X (\chi_B \circ f) d\mu = \int_X \chi_B d\mu.$$

Lemma 1 (Cont'd)

We obtained

$$\int_X (\chi_B \circ f) d\mu = \int_X \chi_B d\mu.$$

For a simple function

$$s=\sum_{k=1}^n a_k \chi_{B_k},$$

it follows that

$$\int_X (s \circ f) d\mu = \int_X s d\mu.$$

In general, we have

$$\psi=\psi^+-\psi^-$$
 and $\psi^+,\psi^-\geq 0.$

By the definition of Lebesgue integrals, it is sufficient to establish the result for nonnegative functions.

George Voutsadakis (LSSU)

Dynamical Systems

Lemma 1 (Cont'd)

• Let $\psi: X \to \mathbb{R}^+_0$ be a μ -integrable function.

By the definition of the integral, there exists a sequence of simple functions $(s_n)_{n \in \mathbb{N}}$, such that:

1. $0 \le s_n \le s_{n+1} \le \psi$ for $n \in \mathbb{N}$, with $\lim_{n\to\infty} s_n(x) = \psi(x)$, for $x \in X$; 2. $\lim_{n\to\infty} \int_X s_n d\mu = \int_X \psi d\mu$.

By Fatou's Lemma,

$$\begin{aligned} \int_{X} \lim_{n \to \infty} (s_{n} \circ f) d\mu &\leq & \liminf_{n \to \infty} \int_{X} (s_{n} \circ f) d\mu \\ &= & \liminf_{n \to \infty} \int_{X} s_{n} d\mu \\ &= & \lim_{n \to \infty} \int_{X} s_{n} d\mu \\ &= & \int_{X} \psi d\mu \\ &< & \infty. \end{aligned}$$

Hence, the function $\lim_{n\to\infty} (s_n \circ f) = \psi \circ f$ is μ -integrable.

Lemma 1 (Conclusion)

• By construction, $s_n \circ f \nearrow \psi \circ f$ when $n \to \infty$. By the Monotone Convergence Theorem, the limit exists,

$$\lim_{n\to\infty}\int_X(s_n\circ f)d\mu=\int_X\lim_{n\to\infty}(s_n\circ f)d\mu=\int_X(\psi\circ f)d\mu.$$

Finally, we obtain

$$\begin{aligned} \int_X (\psi \circ f) d\mu &= \lim_{n \to \infty} \int_X (s_n \circ f) d\mu \\ &= \lim_{n \to \infty} \int_X s_n d\mu \\ &= \int_X \psi d\mu. \end{aligned}$$

This completes the proof of the lemma.

Lemma 2

Now we consider the set

$$A = \left\{ x \in X : \sup_{n \in \mathbb{N}} \sum_{k=0}^{n-1} \varphi(f^k(x)) > 0 \right\}.$$

Lemma

We have

$$\int_{\mathcal{A}} \varphi d\mu \geq 0.$$

• The functions $s_0(x) = 0$ and $s_n(x) = \sum_{k=0}^{n-1} \varphi(f^k(x))$, for $n \in \mathbb{N}$, satisfy the identity

$$s_n(f(x)) = \sum_{k=0}^{n-1} \varphi(f^k(f(x))) = \sum_{k=0}^{n-1} \varphi(f^{k+1}(x)) = s_{n+1}(x) - \varphi(x).$$

Lemma 2 (Cont'd)

• Write $t_n(x) = \max \{s_1(x), \dots, s_n(x)\}$ and $r_n(x) = \max \{0, t_n(x)\}$. Then we obtain

$$r_n(f(x)) = t_{n+1}(x) - \varphi(x).$$

On the set $A_n = \{x \in X : t_n(x) > 0\}$, we have $t_n(x) = r_n(x)$. Thus,

$$\int_{A_n} t_{n+1} d\mu \geq \int_{A_n} t_n d\mu = \int_{A_n} r_n d\mu = \int_X r_n d\mu.$$

We now have, taking into account Lemma 1,

$$\int_{A_n} \varphi d\mu = \int_{A_n} t_{n+1} d\mu - \int_{A_n} (r_n \circ f) d\mu$$

$$\geq \int_X r_n d\mu - \int_X (r_n \circ f) d\mu = 0.$$

Now we note that $A_n \subseteq A_{n+1}$, for all $n \in \mathbb{N}$, and $\bigcup_{n=1}^{\infty} A_n = A$. Hence, letting $n \to \infty$, we obtain $\int_A \varphi d\mu \ge 0$.

Proof of the Ergodic Theorem

• Given $a, b \in \mathbb{Q}$ with a < b, consider the set

$$B = B_{a,b} = \left\{ x \in X : \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) < a < b < \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) \right\}.$$

Consider also the function

$$\psi(x) = \begin{cases} \varphi(x) - b, & \text{if } x \in B, \\ 0, & \text{if } x \notin B. \end{cases}$$

Define

$$\begin{aligned} A_{\psi} &= \{ x \in X : \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=0}^{n-1} \psi(f^{k}(x)) > 0 \} \\ &= \{ x \in X : \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^{k}(x)) > b \}. \end{aligned}$$

By Lemma 2, $\int_{A_{\psi}} \psi d\mu \ge 0$.

• We note that $A_{\psi} \supseteq B$. Since $f^{-1}B = B$, we also have, for $x \notin B$,

$$\sum_{k=0}^{n-1}\psi(f^k(x))=0.$$

That is

$$X \setminus B \subseteq X \setminus A_{\psi}.$$

This shows that $A_{\psi}=B.$ So the inequality $\int_{A_{\psi}}\psi d\mu\geq 0$ is equivalent to

$$\int_{B} \varphi d\mu \geq b\mu(B).$$

• Similarly, we may consider

$$\overline{\psi}(x) = \begin{cases} a - \varphi(x), & \text{if } x \in B, \\ 0, & \text{if } x \notin B. \end{cases}$$

By similar reasoning, we can show that

$$\int_B arphi d\mu \leq a\mu(B).$$

Since a < b, it follows that $\mu(B_{a,b}) = \mu(B) = 0$. But the union of the sets $B_{a,b}$, for $a, b \in \mathbb{Q}$, with a < b, coincides with the set of points $x \in X$, such that

$$\liminf_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x))<\limsup_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x)).$$

So $\varphi_f(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x))$ exists for almost every $x \in X$.

• It remains to establish the integrability of the function $\varphi_{\rm f}$ and the identity

$$\int_X \varphi_f d\mu = \int_X \varphi d\mu.$$

Write $\varphi = \varphi^+ - \varphi^-$. The functions φ^+ and φ^- are μ -integrable. By the previous argument, the limits

$$\begin{aligned} \varphi_f^+(x) &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi^+(f^k(x)), \\ \varphi_f^-(x) &= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi^-(f^k(x)) \end{aligned}$$

exist for almost every $x \in X$.

• By Fatou's Lemma, together with Lemma 1,

$$\begin{split} \int_X \varphi_f^+ d\mu &\leq \quad \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} (\varphi^+ \circ f^k) d\mu \\ &= \quad \liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi^+ d\mu \\ &= \quad \int_X \varphi^+ d\mu \\ &< \quad \infty. \end{split}$$

Analogously,

$$\int_X \varphi_f^- d\mu \leq \int_X \varphi^- d\mu < \infty.$$

Thus, the functions φ_f^+ and φ_f^- are μ -integrable. It follows that φ_f is also μ -integrable.

• Consider, for each $a, b \in \mathbb{Q}$, with a < b, the set

$$D_{a,b} = \{x \in X : a \le \varphi_f(x) \le b\}.$$

One can repeat the former argument to show that

$$a\mu(D_{\mathsf{a},b}) \leq \int_{D_{\mathsf{a},b}} \varphi d\mu \leq b\mu(D_{\mathsf{a},b}).$$

We also have

$$a\mu(D_{a,b}) \leq \int_{D_{a,b}} \varphi_f d\mu \leq b\mu(D_{a,b}).$$

Thus,

$$\left|\int_{D_{a,b}} \varphi_f d\mu - \int_{D_{a,b}} \varphi d\mu\right| \leq (b-a)\mu(D_{a,b}).$$

Proof of the Ergodic Theorem (Conclusion)

We obtained

$$\left|\int_{D_{a,b}} \varphi_f d\mu - \int_{D_{a,b}} \varphi d\mu \right| \leq (b-a)\mu(D_{a,b}).$$

Hence, given r > 0, and setting $E_n = D_{nr,(n+1)r}$, we obtain

$$\begin{aligned} |\int_X \varphi_f d\mu - \int_X \varphi d\mu| &\leq \sum_{n \in \mathbb{Z}} |\int_{E_n} \varphi_f d\mu - \int_{E_n} \varphi d\mu| \\ &\leq \sum_{n \in \mathbb{Z}} r\mu(E_n) \\ &= r. \end{aligned}$$

Letting $r \rightarrow 0$, we conclude that

$$\int_X \varphi_f d\mu = \int_X \varphi d\mu.$$