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Ergodic Theory Notions from Measure Theory

σ-Algebras

Let X be a set.

Let A be a family of subsets of X .

Definition

A is said to be a σ-algebra in X if:

1. ∅,X ∈ A;

2. X\B ∈ A when B ∈ A;

3.
⋃

∞

n=1 Bn ∈ A when Bn ∈ A, for all n ∈ N.

The σ-algebra generated by a family A of subsets of X is the smallest
σ-algebra in X containing all elements of A.
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Ergodic Theory Notions from Measure Theory

Measure Spaces

Definition

Let A be a σ-algebra in X . A function µ : A → [0,+∞] is called a
measure on X (with respect to A) if:

1. µ(∅) = 0;

2. Given pairwise disjoint sets Bn ∈ A, for n ∈ N, we have

µ

(

∞
⋃

n=1

Bn

)

=
∞
∑

n=1

µ(Bn).

We then say that (X ,A, µ) is a measure space.

When the σ-algebra is understood from the context, we still refer to
the pair (X , µ) as a “measure space”.
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Ergodic Theory Notions from Measure Theory

Examples

Let A be the σ-algebra in X containing all subsets of X .

We define a measure µ : A → N0 ∪ {∞} on X by

µ(B) = cardB .

We call µ the counting measure on X .

Let B be the Borel σ-algebra in R.

This is the σ-algebra generated by the open intervals.

Then there exists a unique measure λ : B → [0,+∞] on R, such that

λ((a, b)) = b − a, for a < b.

We call λ the Lebesgue measure on R.
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Ergodic Theory Notions from Measure Theory

Example

Let B be the Borel σ-algebra in Rn.

This is the σ-algebra generated by the open rectangles

n
∏

i=1

(ai , bi ), with ai < bi , for i = 1, . . . , n.

Then there exists a unique measure λ : B → [0,+∞] on Rn, such that

λ

(

n
∏

i=1

(ai , bi )

)

=

n
∏

i=1

(bi − ai),

for any ai < bi and i = 1, . . . , n.

We call λ the Lebesgue measure on Rn.
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Ergodic Theory Notions from Measure Theory

Measurable Functions

Let X be a set.

Let A be a σ-algebra in the set X .

Definition

A function ϕ : X → R is said to be A-measurable or simply measurable

if
ϕ−1B ∈ A, for all B ∈ B,

where B is the Borel σ-algebra in R.
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Ergodic Theory Notions from Measure Theory

Characteristic and Simple Functions

The characteristic function of a set B ⊆ X , χB : X → {0, 1} is
defined by

χB(x) =

{

1, if x ∈ B ,

0, if x 6∈ B .

Definition

Given sets B1, . . . ,Bn ∈ A and numbers a1, . . . , an ∈ R, the function

s =

n
∑

k=1

akχBk

is called a simple function.

Clearly, all simple functions are measurable.
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Ergodic Theory Notions from Measure Theory

The Lebesgue Integral of a Positive Measurable Function

Definition

Let (X , µ) be a measure space. The (Lebesgue) integral of a measurable
function ϕ : X → R+

0 is defined by

∫

X

ϕdµ = sup

{

n
∑

k=1

akµ(Bk) :

n
∑

k=1

akχBk
≤ ϕ

}

.
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Ergodic Theory Notions from Measure Theory

The Lebesgue Integral of an Integrable Function

Definition

Let (X , µ) be a measure space. Let ϕ : X → R be a measurable function.
ϕ is µ-integrable if

∫

X

ϕ+dµ <∞ and

∫

X

ϕ−dµ <∞,

where ϕ+ = max {ϕ, 0} and ϕ− = max {−ϕ, 0}.

Definition

The (Lebesgue) integral of a µ-integrable function ϕ : X → R is defined
by

∫

X

ϕdµ =

∫

X

ϕ+dµ−

∫

X

ϕ−dµ.
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Ergodic Theory Invariant Measures

Subsection 2

Invariant Measures
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Ergodic Theory Invariant Measures

Measurable Functions and Invariant Measures

Let (X ,A, µ) be a measure space.

Definition

A map f : X → X is said to be A-measurable or simply measurable if

f −1B ∈ A, for every B ∈ A,

where f −1B = {x ∈ X : f (x) ∈ B}.

Definition

Given a measurable map f : X → X , we say that µ is f -invariant and that
f preserves µ if

µ(f −1B) = µ(B), for B ∈ A.

We note that when f is an invertible map with measurable inverse,
f -invariance is equivalent to µ(f (B)) = µ(B), for B ∈ A.
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Ergodic Theory Invariant Measures

Example: Translations and Lebesgue Measure

Given v ∈ Rn, let f : Rn → Rn be the translation

f (x) = x + v .

Clearly, f is invertible.

We consider the Lebesgue measure λ on Rn.
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Ergodic Theory Invariant Measures

Example (Cont’d)

For all B ∈ B, we have

λ(f (B)) =
∫

f (B) 1dλ

=
∫

B
|detdx f |dλ(x)

=
∫

B
1dλ

= λ(B).

So the measure λ is f -invariant.

So the translations of Rn preserve Lebesgue measure.
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Ergodic Theory Invariant Measures

Example: Rotations and Lebesgue Measure

Let f : Rn → Rn be a rotation.

Then there exists an n × n orthogonal matrix A (i.e., such that
A⊤A = Id, where A⊤ is the transpose of A), such that

f (x) = Ax .
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Ergodic Theory Invariant Measures

Example (Cont’d)

Orthogonal matrices have determinant ±1.

Let λ be the Lebesgue measure on Rn.

Then, for each B ∈ B, we have

λ(f (B)) =
∫

f (B) 1dλ

=
∫

B
|detdx f |dλ(x)

=
∫

B
|detA|dλ

=
∫

B
1dλ

= λ(B).

Rotations are invertible maps.

This shows that λ is f -invariant.

Thus, the rotations of Rn preserve Lebesgue measure.
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Ergodic Theory Invariant Measures

Example: Rotations of the Circle

Consider a rotation of the circle Rα : S1 → S1.

Without loss of generality, we assume that α ∈ [0, 1].

We first introduce a measure µ on S1.

For each set B ⊆ [0, 1] in the Borel σ-algebra in R, we define

µ(B) = λ(B).

Then µ is a measure on S1 with µ(S1) = 1.

We also have R−1
α B = B − α, where

B − α = {x − α : x ∈ B} ⊆ R.

By the invariance of Lebesgue measure under translations,

µ(R−1
α B) = λ(B − α) = λ(B) = µ(B).

This shows that the rotations of the circle preserve the measure µ.
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Ergodic Theory Invariant Measures

Example: Expanding Maps

Consider the expanding map Em : S1 → S1.

We show that the measure µ of the previous slide is Em-invariant.

Let B ⊆ [0, 1] be a set in the Borel σ-algebra in R.

Then E−1
m B =

⋃m
i=1 Bi , where

Bi =

{

x + i

m
: x ∈ B

}

mod 1.
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Ergodic Theory Invariant Measures

Example (Cont’d)

Note that the sets Bi are pairwise disjoint.

So we have
µ(E−1

m B) =
∑m

i=1 λ(Bi)

=
∑m

i=1
λ(B+i)

m

=
∑m

i=1
λ(B)
m

= λ(B)

= µ(B).

Thus, the µ measure is Em-invariant.
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Ergodic Theory Invariant Measures

Example: The Gauss Map

The Gauss map f : [0, 1] → [0, 1] is de-
fined by

f (x) =

{

1
x

mod 1, if x 6= 0,
0, if x = 0.

The map f is related to the theory of continued fractions.

Let x ∈ (0, 1) be an irrational number with continued fraction

x =
1

n1 +
1

n2+···

.

Then nj =
⌊

1
f j−1(x)

⌋

, for j ∈ N.
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Ergodic Theory Invariant Measures

Example (Cont’d)

We show the Gauss map preserves the measure µ in [0, 1] given by

µ(A) =

∫

A

1

1 + x
dx .

We note that it is sufficient to consider the intervals of the form
(0, b), with b ∈ (0, 1) (they generate the Borel σ-algebra).

Since f −1(0, b) =
⋃

∞

n=1(
1

n+b
, 1
n
) is a disjoint union, we obtain

µ(f −1(0, b)) =
∑

∞

n=1 µ((
1

n+b
, 1
n
))

=
∑

∞

n=1

∫ 1/n
1/(n+b)

1
1+x

dx

=
∑

∞

n=1 log
1+ 1

n

1+ 1
n+b

=
∑

∞

n=1(log
n+1

n+1+b
− log n

n+b
)

= − log 1
1+b

.

Thus, the measure µ is f -invariant.
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Subsection 3

Nontrivial Recurrence
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Ergodic Theory Nontrivial Recurrence

Poincaré’s Recurrence Theorem

We show that for a finite invariant measure, almost every point of a
given set returns infinitely often to this set.

Theorem (Poincaré’s Recurrence Theorem)

Let f : X → X be a measurable map. Let µ be a finite f -invariant
measure on X . For each set A ∈ A, we have

µ({x ∈ A : f n(x) ∈ A for infinitely many values of n}) = µ(A).

Set

An =
∞
⋃

k=n

f −kA.

Define

B = {x ∈ A : f n(x) ∈ A for infinitely many values of n}.
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Ergodic Theory Nontrivial Recurrence

Poincaré’s Recurrence Theorem (Cont’d)

We have

B = A ∩
∞
⋂

n=1

An = A\
∞
⋃

n=1

(A\An).

We note that
A\An ⊆ A0\An = A0\f

−nA0.

Now A0 ⊇ An = f −nA0 and the measure µ is finite.

It follows, using that µ is f -invariant, that

0 ≤ µ(A\An) ≤ µ(A0\f
−nA0) = µ(A0)− µ(f −nA0) = 0.

Thus, µ(B) = µ(A).
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Ergodic Theory Nontrivial Recurrence

Example: Rotations of the Circle

Consider a rotation of the circle

Rα : S1 → S1, α ∈ [0, 1].

Consider the Borel σ-algebra B in R.

Let µ be the measure S1 defined by

µ(B) = λ(B), for every B ⊆ [0, 1] in B.

By a previous example, µ is Rα-invariant.

By the theorem, given c ∈ [0, 1], the set

{x ∈ [−c , c] : |Rn
α(x)| ≤ c for infinitely many values of n}

has measure µ([−c , c]) = 2c .

So almost all points in [−c , c] return infinitely often to [−c , c].

The property established in this example is trivial for α ∈ Q.

When α ∈ R\Q, it also follows from the density of the orbits of Rα.
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Ergodic Theory Nontrivial Recurrence

Example: Expanding Maps

Consider the expanding map

Em : S1 → S1.

By a previous example, the measure µ on S1 defined as in the
preceding example is Em-invariant.

By the theorem, for each interval [a, b] ⊆ [0, 1], the set

{x ∈ [a, b] : En
m(x) ∈ [a, b] for infinitely many values of n}

has measure µ([a, b]) = b − a.
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Ergodic Theory The Ergodic Theorem

Subsection 4

The Ergodic Theorem
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Ergodic Theory The Ergodic Theorem

Birkhoff’s Ergodic Theorem

Poincaré’s Recurrence Theorem says that for a finite invariant measure
almost all points of a given set return infinitely often to this set.

Birkhoff’s Ergodic Theorem establishes a frequency of return.

Theorem (Birkhoff’s Ergodic Theorem)

Let f : X → X be a measurable map. Let µ be a finite f -invariant
measure on X . Given a µ-integrable function ϕ : X → R, the limit

ϕf (x) = lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x))

exists for almost every point x ∈ X , the function ϕf is µ-integrable, and

∫

X

ϕf dµ =

∫

X

ϕdµ.

The proof is given in the last section of this set.
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Ergodic Theory The Ergodic Theorem

Example

Let f : X → X be a measurable map.

Let µ be a finite f -invariant measure on X .

Given a set B ∈ A, consider the µ-integrable function ϕ = χB .

We have
∫

X
ϕdµ =

∫

X
χBdµ = µ(B);

ϕf (x) = lim
n→∞

1
n

∑n−1
k=0 χB(f

k(x))

= lim
n→∞

1
n
card{k ∈ {0, . . . , n − 1} : f k(x) ∈ B}.

By Birkhoff’s Theorem,
∫

X

lim
n→∞

1

n
card{k ∈ {0, . . . , n − 1} : f k(x) ∈ B}dµ(x) = µ(B).

The number ϕf (x) can be described as the frequency with which the
orbit of x visits the set B . So, Birkhoff’s Ergodic Theorem describes
in quantitative terms how often each orbit returns to the set B .
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Ergodic Theory The Ergodic Theorem

Lyapunov Exponent

Let f : M → M be a differentiable map.

Definition

Given x ∈ M and v ∈ TxM, the Lyapunov exponent of the pair (x , v) is
defined by

λ(x , v) = lim sup
n→∞

1

n
log ‖dx f

nv‖.
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Ergodic Theory The Ergodic Theorem

Lyapunov Exponent and Birkhoff’s Theorem

Now we consider the particular case of the maps of the circle.

Theorem

Let f : S1 → S1 be a C 1 map. Let µ be a finite f -invariant measure on
S1. Then λ(x , v) is a limit for almost every x , that is,

λ(x , v) = lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)),

for almost every x ∈ S1 and any v 6= 0, where ϕ(x) = log ‖dx f ‖.

Since the circle S1 has dimension 1, we have

‖dx f
nv‖ = ‖dx f

n‖ · ‖v‖.
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Ergodic Theory The Ergodic Theorem

Prof of the Theorem

Thus, for each v 6= 0,

λ(x , v) = lim sup
n→∞

1

n
log ‖dx f

n‖.

Recall the identity

dx f
n = df n−1(x)f ◦ · · · df (x)f ◦ dx f .

It follows that

‖dx f
n‖ =

n−1
∏

k=0

‖df k(x)f ‖.

Thus, if ϕ(x) = log ‖dx f ‖,

1

n
log ‖dx f

n‖ =
1

n

n−1
∑

k=0

log ‖df k (x)f ‖ =
1

n

n−1
∑

k=0

ϕ(f k(x)).
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Ergodic Theory The Ergodic Theorem

Prof of the Theorem (Cont’d)

We saw that
1

n
log ‖dx f

n‖ =
1

n

n−1
∑

k=0

ϕ(f k(x)).

Thus, we get, for each v 6= 0,

λ(x , v) = lim sup
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)).

Now the function ϕ is continuous.

So the result follows from Birkhoff’s Ergodic Theorem.

George Voutsadakis (LSSU) Dynamical Systems May 2024 34 / 58



Ergodic Theory Metric Entropy

Subsection 5

Metric Entropy
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Ergodic Theory Metric Entropy

Partitions of a Measure Space

Let (X ,A, µ) be a measure space, with µ(X ) = 1.

Definition

A finite set ξ ⊆ A is called a partition of X (with respect to µ) if:

1. µ(
⋃

C∈ξ C ) = 1;

2. For all C ,D ∈ ξ, with C 6= D,

µ(C ∩ D) = 0.
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Ergodic Theory Metric Entropy

Derived Partitions

Let f : X → X be a measurable map preserving the measure µ.

Let ξ be a partition of X and n ∈ N.

We construct a new partition ξn formed by the sets

C1 ∩ f −1C2 ∩ · · · ∩ f −(n−1)Cn,

with C1, . . . ,Cn ∈ ξ.

Definition

We define

hµ(f , ξ) = inf
n∈N

−
1

n

∑

C∈ξn

µ(C ) log µ(C ),

with the convention that 0 log 0 = 0.
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Ergodic Theory Metric Entropy

Example

Let f = Id.

Let ξ be a partition of X and n ∈ N.

Then we have
ξn = ξ.

Thus,

hµ(f , ξ) = inf
n∈N

−
1

n

∑

C∈ξ

µ(C ) log µ(C ) = 0.
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Ergodic Theory Metric Entropy

Example

Consider the expanding map E2 : S
1 → S1.

Let µ be the E2-invariant measure defined previously.

Consider the partition ξ = {[0, 12 ], [
1
2 , 1]} and let n ∈ N.

Then we have

ξn =

{[

i

2n
,
i + 1

2n

]

: i = 0, . . . , 2n − 1

}

.

Thus,

hµ(E2, ξ) = infn∈N− 1
n

∑

C∈ξn
µ(C ) log µ(C )

= infn∈N− 1
n
· 2n · 1

2n log
1
2n

= log 2.
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Ergodic Theory Metric Entropy

Metric Entropy

Definition

The metric entropy of f with respect to µ is defined by

hµ(f ) = sup
n∈N

hµ(f , ξ
(n)),

where ξ(n) is any sequence of partitions, such that:

1. Given n ∈ N and C ∈ ξ(n), there exist C1, . . . ,Cm ∈ ξ(n+1), such that

µ

(

C\
m
⋃

i=1

Ci

)

= µ

(

m
⋃

i=1

Ci\C

)

= 0;

2. The union of all partitions ξ(n) generates the σ-algebra A.

One can show that the definition of hµ(f ) indeed does not depend on
the particular sequence ξ(n).
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Ergodic Theory Metric Entropy

Example: Rotations of the Circle

Let Rα : S1 → S1 be a rotation of the circle.

Let µ be the Rα-invariant measure defined previously.

Let ξ be a partition of X by intervals and n ∈ N.

The endpoints of the intervals in the preimages f −iξ, for
i = 0, . . . , n − 1, determine at most ncardξ points in S1.

It follows that
cardξn ≤ ncardξ.

Note that
−
∑

C∈ξn

µ(C ) log µ(C ) =
∑

C∈ξn

ϕ(µ(C )).

where

ϕ(x) =

{

−x log x , if x ∈ (0, 1],
0, if x = 0.
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Ergodic Theory Metric Entropy

Example: Rotations of the Circle (Cont’d)

We have ϕ′′(x) = − 1
x
< 0, for x ∈ (0, 1).

So the function ϕ is strictly concave.

Thus, we get

−
∑

C∈ξn
µ(C ) log µ(C ) =

∑

C∈ξn
1

cardξn
ϕ(µ(C ))cardξn

≤ ϕ
(

∑

C∈ξn
µ(C)
cardξn

)

cardξn

= ϕ
(

1
cardξn

)

cardξn

= − log 1
cardξn

= log cardξn.

Hence, it follows that

hµ(f , ξ) ≤ inf
n∈N

1

n
log cardξn ≤ inf

n∈N

1

n
log (ncardξ) = 0.

Thus, hµ(f ) = 0.
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Ergodic Theory Metric Entropy

Example

Consider the expanding map E2 : S
1 → S1.

Let µ be the E2-invariant measure defined previously.

Consider the partition

ξ(m) =

{[

i

2m
,
i + 1

2m

]

: i = 0, . . . , 2m − 1

}

.

For each m, n ∈ N, we obtain

ξ
(m)
n =

{[

i
2m+n−1 ,

i+1
2m+n−1

]

: i = 0, . . . , 2m+n−1 − 1
}

= ξ(m+n−1).
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Ergodic Theory Metric Entropy

Example (Cont’d)

Now we get

hµ(E2, ξ
(m)) = infn∈N− 1

n

∑

C∈ξ
(m)
n
µ(C ) log µ(C )

= infn∈N− 1
n

∑

C∈ξ(m+n−1) µ(C ) log µ(C )

= infn∈N− 1
n
· 2m+n−1 · 1

2m+n−1 log
1

2m+n−1

= infn∈N
m+n−1

n
log 2

= log 2.

The partitions ξ(m) satisfy the hypotheses of the definition.

We conclude that

hµ(E2) = sup
m∈N

hµ(E2, ξ
(m)) = log 2.
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Ergodic Theory Proof of the Ergodic Theorem

Subsection 6

Proof of the Ergodic Theorem
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 1

Lemma

Given a µ-integrable function ψ : X → R, the function ψ ◦ f is also
µ-integrable and

∫

X

(ψ ◦ f )dµ =

∫

X

ψdµ.

Given a set B ∈ A, f -invariance means
∫

X

χf −1Bdµ =

∫

X

χBdµ.

Equivalently, since χB ◦ f = χf −1B ,

∫

X

(χB ◦ f )dµ =

∫

X

χBdµ.
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 1 (Cont’d)

We obtained
∫

X

(χB ◦ f )dµ =

∫

X

χBdµ.

For a simple function

s =
n
∑

k=1

akχBk
,

it follows that
∫

X

(s ◦ f )dµ =

∫

X

sdµ.

In general, we have

ψ = ψ+ − ψ− and ψ+, ψ− ≥ 0.

By the definition of Lebesgue integrals, it is sufficient to establish the
result for nonnegative functions.
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 1 (Cont’d)

Let ψ : X → R+
0 be a µ-integrable function.

By the definition of the integral, there exists a sequence of simple
functions (sn)n∈N, such that:

1. 0 ≤ sn ≤ sn+1 ≤ ψ for n ∈ N, with limn→∞ sn(x) = ψ(x), for x ∈ X ;
2. limn→∞

∫

X
sndµ =

∫

X
ψdµ.

By Fatou’s Lemma,

∫

X
limn→∞ (sn ◦ f )dµ ≤ lim infn→∞

∫

X
(sn ◦ f )dµ

= lim infn→∞

∫

X
sndµ

= limn→∞

∫

X
sndµ

=
∫

X
ψdµ

< ∞.

Hence, the function limn→∞ (sn ◦ f ) = ψ ◦ f is µ-integrable.
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 1 (Conclusion)

By construction, sn ◦ f ր ψ ◦ f when n → ∞.

By the Monotone Convergence Theorem, the limit exists,

lim
n→∞

∫

X

(sn ◦ f )dµ =

∫

X

lim
n→∞

(sn ◦ f )dµ =

∫

X

(ψ ◦ f )dµ.

Finally, we obtain

∫

X
(ψ ◦ f )dµ = limn→∞

∫

X
(sn ◦ f )dµ

= limn→∞

∫

X
sndµ

=
∫

X
ψdµ.

This completes the proof of the lemma.
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 2

Now we consider the set

A =

{

x ∈ X : sup
n∈N

n−1
∑

k=0

ϕ(f k(x)) > 0

}

.

Lemma

We have
∫

A

ϕdµ ≥ 0.

The functions s0(x) = 0 and sn(x) =
∑n−1

k=0 ϕ(f
k(x)), for n ∈ N,

satisfy the identity

sn(f (x)) =

n−1
∑

k=0

ϕ(f k(f (x))) =

n−1
∑

k=0

ϕ(f k+1(x)) = sn+1(x) − ϕ(x).
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Ergodic Theory Proof of the Ergodic Theorem

Lemma 2 (Cont’d)

Write tn(x) = max {s1(x), . . . , sn(x)} and rn(x) = max {0, tn(x)}.

Then we obtain
rn(f (x)) = tn+1(x)− ϕ(x).

On the set An = {x ∈ X : tn(x) > 0}, we have tn(x) = rn(x). Thus,

∫

An

tn+1dµ ≥

∫

An

tndµ =

∫

An

rndµ =

∫

X

rndµ.

We now have, taking into account Lemma 1,

∫

An
ϕdµ =

∫

An
tn+1dµ−

∫

An
(rn ◦ f )dµ

≥
∫

X
rndµ−

∫

X
(rn ◦ f )dµ = 0.

Now we note that An ⊆ An+1, for all n ∈ N, and
⋃

∞

n=1 An = A.

Hence, letting n → ∞, we obtain
∫

A
ϕdµ ≥ 0.
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem

Given a, b ∈ Q with a < b, consider the set

B = Ba,b =

{

x ∈ X : lim inf
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) < a < b < lim sup
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x))

}

.

Consider also the function

ψ(x) =

{

ϕ(x) − b, if x ∈ B ,

0, if x 6∈ B .

Define

Aψ = {x ∈ X : supn∈N
1
n

∑n−1
k=0 ψ(f

k(x)) > 0}

= {x ∈ X : supn∈N
1
n

∑n−1
k=0 ϕ(f

k(x)) > b}.

By Lemma 2,
∫

Aψ
ψdµ ≥ 0.
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Cont’d)

We note that Aψ ⊇ B .

Since f −1B = B , we also have, for x 6∈ B ,

n−1
∑

k=0

ψ(f k(x)) = 0.

That is
X\B ⊆ X\Aψ.

This shows that Aψ = B .

So the inequality
∫

Aψ
ψdµ ≥ 0 is equivalent to

∫

B

ϕdµ ≥ bµ(B).
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Cont’d)

Similarly, we may consider

ψ(x) =

{

a− ϕ(x), if x ∈ B ,

0, if x 6∈ B .

By similar reasoning, we can show that
∫

B

ϕdµ ≤ aµ(B).

Since a < b, it follows that µ(Ba,b) = µ(B) = 0.

But the union of the sets Ba,b, for a, b ∈ Q, with a < b, coincides
with the set of points x ∈ X , such that

lim inf
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) < lim sup
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)).

So ϕf (x) = limn→∞
1
n

∑n−1
k=0 ϕ(f

k(x)) exists for almost every x ∈ X .
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Cont’d)

It remains to establish the integrability of the function ϕf and the
identity

∫

X

ϕf dµ =

∫

X

ϕdµ.

Write ϕ = ϕ+ − ϕ−.

The functions ϕ+ and ϕ− are µ-integrable.

By the previous argument, the limits

ϕ+
f (x) = limn→∞

1
n

∑n−1
k=0 ϕ

+(f k(x)),

ϕ−

f (x) = limn→∞
1
n

∑n−1
k=0 ϕ

−(f k(x))

exist for almost every x ∈ X .
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Cont’d)

By Fatou’s Lemma, together with Lemma 1,

∫

X
ϕ+
f dµ ≤ lim infn→∞

1
n

∑n−1
k=0(ϕ

+ ◦ f k)dµ

= lim infn→∞
1
n

∑n−1
k=0 ϕ

+dµ

=
∫

X
ϕ+dµ

< ∞.

Analogously,
∫

X

ϕ−

f dµ ≤

∫

X

ϕ−dµ <∞.

Thus, the functions ϕ+
f and ϕ−

f are µ-integrable.

It follows that ϕf is also µ-integrable.
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Cont’d)

Consider, for each a, b ∈ Q, with a < b, the set

Da,b = {x ∈ X : a ≤ ϕf (x) ≤ b}.

One can repeat the former argument to show that

aµ(Da,b) ≤

∫

Da,b

ϕdµ ≤ bµ(Da,b).

We also have

aµ(Da,b) ≤

∫

Da,b

ϕf dµ ≤ bµ(Da,b).

Thus,
∣

∣

∣

∣

∣

∫

Da,b

ϕf dµ−

∫

Da,b

ϕdµ

∣

∣

∣

∣

∣

≤ (b − a)µ(Da,b).
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Ergodic Theory Proof of the Ergodic Theorem

Proof of the Ergodic Theorem (Conclusion)

We obtained
∣

∣

∣

∣

∣

∫

Da,b

ϕf dµ−

∫

Da,b

ϕdµ

∣

∣

∣

∣

∣

≤ (b − a)µ(Da,b).

Hence, given r > 0, and setting En = Dnr ,(n+1)r , we obtain

|
∫

X
ϕf dµ−

∫

X
ϕdµ| ≤

∑

n∈Z |
∫

En
ϕf dµ−

∫

En
ϕdµ|

≤
∑

n∈Z rµ(En)

= r .

Letting r → 0, we conclude that
∫

X

ϕf dµ =

∫

X

ϕdµ.
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