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Probability Probabilities and Events

Subsection 1

Probabilities and Events
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Probability Probabilities and Events

Experiments and Outcomes

Consider an experiment.

The sample space S is the set of all possible outcomes of the
experiment.

If there are m possible outcomes of the experiment, then we will
generally number them 1 through m.

So S = {1, 2, . . . ,m}.

When dealing with specific examples, we will usually give more
descriptive names to the outcomes.
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Probability Probabilities and Events

Example

Let the experiment consist of flipping a coin.

Let the outcome be the side that lands face up.

Thus, the sample space of this experiment is

S = {h, t},

where the outcome is:

h if the coin shows heads;
t if the coin shows tails.

George Voutsadakis (LSSU) Mathematical Finance March 2024 5 / 64



Probability Probabilities and Events

Example

Suppose the experiment consists of rolling a pair of dice.

The outcome is the pair (i , j), where:

i is the value that appears on the first die;
j is the value that appears on the second die.

Then the sample space consists of the following 36 outcomes:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).
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Probability Probabilities and Events

Example

Suppose the experiment consists of a race of r horses numbered
1, 2, 3, . . . , r .

The outcome is the order of finish of these horses.

Then the sample space is

S = {all orderings of the numbers 1, 2, 3, . . . , r}.

For instance, if r = 4 then the outcome is (1, 4, 2, 3) if:

The number 1 horse comes in first;
The number 4 horse comes in second;
The number 2 horse comes in third;
The number 3 horse comes in fourth.

George Voutsadakis (LSSU) Mathematical Finance March 2024 7 / 64



Probability Probabilities and Events

Probability

Consider once again an experiment with the sample space

S = {1, 2, . . . ,m}.

We will now suppose that there are numbers p1, . . . , pm with

pi ≥ 0, i = 1, . . . ,m, and

m
∑

i=1

pi = 1,

and such that pi is the probability that i is the outcome of the
experiment.
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Probability Probabilities and Events

Example

Consider again the experiment of flipping a coin.

The coin is said to be fair or unbiased if it is equally likely to land on
heads as on tails.

Thus, for a fair coin we would have that ph = pt =
1
2 .

If the coin were biased and heads were twice as likely to appear as
tails, then we would have

ph =
2

3
, pt =

1

3
.
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Probability Probabilities and Events

Example

Consider the experiment of rolling a pair of dice.

If an unbiased pair of dice were rolled, then all possible outcomes
would be equally likely.

So

p(i , j) =
1

36
, 1 ≤ i ≤ 6, 1 ≤ j ≤ 6.
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Probability Probabilities and Events

Example

Consider the experiment consisting of a race of three horses.

Then we are given the six nonnegative numbers that sum to 1:

p1,2,3, p1,3,2, p2,1,3, p2,3,1, p3,1,2, p3,2,1,

where pi ,j ,k represents the probability that:

Horse i comes in first;
Horse j comes in second;
Horse k comes in third.
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Probability Probabilities and Events

Events

Any set of possible outcomes of the experiment is called an event.

That is, an event is a subset of S , the set of all possible outcomes.

For any event A, we say that A occurs whenever the outcome of the
experiment is a point in A.

Let P(A) denote the probability that event A occurs.

We can determine P(A) by using the equation

P(A) =
∑

i∈A

pi .

Note that this implies P(S) =
∑

i pi = 1.

In words, the probability that the outcome of the experiment is in the
sample space is equal to 1, which, since S consists of all possible
outcomes of the experiment, is the desired result.
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Probability Probabilities and Events

Example

Suppose the experiment consists of rolling a pair of fair dice.

Let A be the event that the sum of the dice is equal to 7.

Then
A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

We have P(A) = 6
36 = 1

6 .

Let B be the event that the sum is 8.

Then
B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

So we have

P(B) = p(2, 6) + p(3, 5) + p(4, 4) + p(5, 3) + p(6, 2) =
5

36
.
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Probability Probabilities and Events

Example

Consider a horse race between three horses.

Let A denote the event that horse number 1 wins.

Then
A = {(1, 2, 3), (1, 3, 2)}.

Moreover, we have
P(A) = p1,2,3 + p1,3,2.
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Probability Probabilities and Events

Complement of an Event

For any event A, we let Ac , called the complement of A, be the
event containing all those outcomes in S that are not in A.

That is, Ac occurs if and only if A does not.

We can show that
P(Ac) = 1− P(A).

We have

P(A) + P(Ac) =
∑

i∈A

pi +
∑

i∈Ac

pi =
∑

i

pi = 1.

So the probability that the outcome is not in A is 1 minus the
probability that it is in A.
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Probability Probabilities and Events

The Null Event

The complement of the sample space S is the null event ∅, which
contains no outcomes.

We have
P(∅) = 0.

In fact,
P(∅) = 1− P(∅c) = 1− P(S) = 1− 1 = 0.

Alternatively, since ∅ contains no outcomes,

P(∅) =
∑

∅ = 0.
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Probability Probabilities and Events

Union and Intersection

For any events A and B , we define the union of A and B ,

A ∪ B ,

as the event consisting of all outcomes that are in A, or in B , or in
both A and B .

Also, we define the intersection of A and B ,

AB (sometimes written A ∩ B),

as the event consisting of all outcomes that are both in A and in B .
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Probability Probabilities and Events

Example

Let the experiment consist of rolling a pair of dice.

Let:

A be the event that the sum is 10;
B be the event that both dice land on even numbers greater than 3.

Then we have:

A = {(4, 6), (5, 5), (6, 4)};
B = {(4, 4), (4, 6), (6, 4), (6, 6)}.

Therefore:

A ∪ B = {(4, 4), (4, 6), (5, 5), (6, 4), (6, 6)};

AB = {(4, 6), (6, 4)}.
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Probability Probabilities and Events

Addition Theorem

For any events A and B , we can write

P(A ∪ B) =
∑

i∈A∪B

pi , P(A) =
∑

i∈A

pi , P(B) =
∑

i∈B

pi .

Proposition (Addition Theorem of Probability)

If A and B are events, then

P(A ∪ B) = P(A) + P(B)− P(AB).

That is, the probability that the outcome of the experiment is in A or in
B equals the probability that it is in A, plus the probability that it is in B ,
minus the probability that it is in both A and B .

Every outcome in both A and B is counted twice in P(A) +P(B) and
only once in P(A ∪ B).
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Probability Probabilities and Events

Example

Suppose the probabilities that the Dow-Jones stock index increases
today is 0.54, that it increases tomorrow is 0.54, and that it increases
both days is 0.28.

What is the probability that it does not increase on either day?

Define the following events:

A is the event that the index increases today;
B is the event that it increases tomorrow.

Then the probability that it increases on at least one of these days is

P(A ∪ B) = P(A) + P(B)− P(AB)

= 0.54 + 0.54− 0.28 = 0.80.

The probability that it increases on neither day is 1− 0.80 = 0.20.

George Voutsadakis (LSSU) Mathematical Finance March 2024 20 / 64



Probability Probabilities and Events

Mutually Exclusive or Disjoint Events

Events A and B are mutually exclusive or disjoint if

AB = ∅.

That is, events are mutually exclusive if they cannot both occur.

If A and B are mutually exclusive,

P(A ∪ B) = P(A) + P(B).

We have
P(A ∪ B) = P(A) + P(B)− P(AB)

= P(A) + P(B)− P(∅)

= P(A) + P(B)− 0

= P(A) + P(B).
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Probability Conditional Probability

Subsection 2

Conditional Probability
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Probability Conditional Probability

Example: Conditional Probability

Suppose that each of two teams is to produce an item.

The items will be rated as either acceptable or unacceptable.

The sample space of this experiment will then be

S = {(a, a), (a, u), (u, a), (u, u)},

where (a, u) means, for instance, that:

The first team produced an acceptable item;
The second team produced an unacceptable item.

Suppose that the probabilities of these outcomes are

P(a, a) = 0.54, P(a, u) = 0.28, P(u, a) = 0.14, P(u, u) = 0.04.

Suppose we are told that exactly one of the items was acceptable.

What is the probability that it was produced by the first team?
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Probability Conditional Probability

Example: Conditional Probability (Cont’d)

To determine this probability, consider the following reasoning.

Given that there was exactly one acceptable item produced, it follows
that the outcome of the experiment was either (a, u) or (u, a).

The outcome (a, u) was initially twice as likely as the outcome (u, a).

So it should remain twice as likely given the information that one of
them occurred.

Therefore:

The probability that the outcome was (a, u) is 2
3 ;

The probability that the outcome was (u, a) is 1
3 .
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Probability Conditional Probability

Conditional Probability

Let A = {(a, u), (a, a)} denote the event that the item produced by
the first team is acceptable.

Let B = {(a, u), (u, a)} be the event that exactly one of the produced
items is acceptable.

The probability that the item produced by the first team was
acceptable given that exactly one of the produced items was
acceptable is called the conditional probability of A given B .

It is denoted as
P(A|B).
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Probability Conditional Probability

Definition of Conditional Probability

A general formula for P(A|B) is obtained by an argument similar to
the one given above.

If the event B occurs, then, in order for the event A to occur, it is
necessary that the occurrence be a point in both A and B , i.e., in AB .

Now, since we know that B has occurred, it follows that B can be
thought of as the new sample space.

Hence, the probability that the event AB occurs will equal the
probability of AB relative to the probability of B .

That is,

P(A|B) =
P(AB)

P(B)
.

.
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Probability Conditional Probability

Example

A coin is flipped twice, with all four points in the sample space
S = {(h, h), (h, t), (t, h), (t, t)} equally likely.

What is the conditional probability that both flips land on heads,
given that:
(a) The first flip lands on heads?
(b) At least one of the flips lands on heads?

Define the following events.
A = {(h, h)} is the event that both flips land on heads;
B = {(h, h), (h, t)} is the event that the first flip lands on heads;
C = {(h, h), (h, t), (t, h)} is the event that at least one of the flips
lands on heads.

We have the following solutions.

P(A|B) = P(AB)
P(B) = P({(h,h)})

P({(h,h),(h,t)}) = 1/4
2/4 = 1

2 ;

P(A|C ) = P(AC)
P(C) = P({(h,h)})

P({(h,h),(h,t),(t,h)}) = 1/4
3/4 = 1

3 .
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Probability Conditional Probability

Example (Cont’d)

Some are surprised that the answers to (a) and (b) are not identical.

We provide a brief explanation.

Conditional on the first flip landing on heads, the second one is still
equally likely to land on either heads or tails.

So the probability in Part (a) is 1
2 .

On the other hand, knowing that at least one of the flips lands on
heads is equivalent to knowing that the outcome is not (t, t).

Thus, given that at least one of the flips lands on heads, there remain
the three equally likely possibilities (h, h), (h, t), (t, h).

This shows that the answer to Part (b) is 1
3 .
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Probability Conditional Probability

The Multiplication Theorem of Probability

Multiplication Theorem of Probability: Given events, A and B ,

P(AB) = P(B)P(A|B).

By the definition of P(A|B),

P(A|B) =
P(AB)

P(B)
.

Multiplying by P(B) gives the Multiplication Formula.

So the probability that both A and B occur is the probability that B
occurs multiplied by the conditional probability that A occurs given
that B occurred.
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Probability Conditional Probability

Example

Suppose that two balls are to be withdrawn, without replacement,
from an urn that contains 9 blue and 7 yellow balls.

If each ball drawn is equally likely to be any of the balls in the urn at
the time, what is the probability that both balls are blue?

Let B1 and B2 denote, respectively, the events that the first and
second balls withdrawn are blue.

Clearly, P(B1) =
9
16 .

Given that the first ball withdrawn is blue, the second ball is equally
likely to be any of the remaining 15 balls, of which 8 are blue.

Therefore, P(B2|B1) =
8
15 .

By the Multiplication Theorem,

P(B1B2) = P(B1)P(B2|B1) =
9

16

8

15
=

3

10
.
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Probability Conditional Probability

Independent Events

The conditional probability of A given that B has occurred is not
generally equal to the unconditional probability of A.

In general, knowing that the outcome of the experiment is an element
of B changes the probability that it is an element of A.

We say that A is independent of B if

P(A|B) = P(A).

We know that P(A|B) = P(AB)
P(B) .

So A is independent of B if

P(AB) = P(A)P(B).

This relation is symmetric in A and B .

Hence, whenever A is independent of B , B is also independent of A.

We say A and B are independent events.
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Probability Conditional Probability

Example

Suppose that:

The probability that the closing price of a stock is at least as high as
the close on the previous day is 0.52;
The results for successive days are independent.

Find the probability that the closing price goes down in each of the
next four days, but not on the following day.

Let Ai be the event that the closing price goes down on day i .

Then, by independence, we have

P(A1A2A3A4A
c
5) = P(A1)P(A2)P(A3)P(A4)P(A

c
5)

= (0.48)4(0.52) = 0.0276.
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Probability Random Variables and Expected Values

Subsection 3

Random Variables and Expected Values
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Probability Random Variables and Expected Values

Random Variables

Numerical quantities whose values are determined by the outcome of
the experiment are known as random variables.

Example:

(a) The sum obtained when rolling dice is a random variable.

(b) The number of heads that result in a series of coin flips is a random
variable.

Since the value of a random variable is determined by the outcome of
the experiment, we can assign probabilities to each of its possible
values.
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Probability Random Variables and Expected Values

Example

Let X denote the sum when a pair of fair dice are rolled.

The possible values of X are 2, 3, . . . , 12.

We have the following associated probabilities:

P{X = 2} = P{(1, 1)} = 1
36 ;

P{X = 3} = P{(1, 2), (2, 1)} = 2
36 ;

P{X = 4} = P{(1, 3), (2, 2), (3, 1)} = 3
36 ;

P{X = 5} = P{(1, 4), (2, 3), (3, 2), (4, 1)} = 4
36 ;

P{X = 6} = P{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} = 5
36 ;

P{X = 7} = P{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} = 6
36 ;

P{X = 8} = P{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} = 5
36 ;

P{X = 9} = P{(3, 6), (4, 5), (5, 4), (6, 3)} = 4
36 ;

P{X = 10} = P{(4, 6), (5, 5), (6, 4)} = 3
36 ;

P{X = 11} = P{(5, 6), (6, 5)} = 2
36 ;

P{X = 12} = P{(6, 6)} = 1
36 .
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Probability Random Variables and Expected Values

Probability Distribution of a Random Variable

Let X be a random variable with possible values x1, x2, . . . , xn.

The probability distribution of X is the set of probabilities

P{X = xj}, j = 1, . . . , n.

X must assume one of the values x1, x2, . . . , xn.

It follows that
n
∑

j=1

P{X = xj} = 1.
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Probability Random Variables and Expected Values

Expected Value of a Random Variable

Definition

If X is a random variable whose possible values are x1, x2, . . . , xn, then the
expected value of X , denoted by E [X ], is defined by

E [X ] =

n
∑

j=1

xjP{X = xj}.

Alternative names for E [X ] are the expectation or the mean of X .

In words, E [X ] is a weighted average of the possible values of X ,
where the weight given to a value is equal to the probability that X
assumes that value.
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Probability Random Variables and Expected Values

Example: A Fair Bet

Let the random variable X denote the amount that we win when we
make a certain bet.

Find E [X ] if there is:

A 60% chance that we lose 1;
A 20% chance that we win 1;
A 20% chance that we win 2.

We have
E [X ] = − 1(0.6) + 1(0.2) + 2(0.2) = 0.

Thus, the expected amount that is won on this bet is equal to 0.

A bet whose expected winnings is equal to 0 is called a fair bet.
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Probability Random Variables and Expected Values

Bernoulli Random Variables

A Bernoulli random variable with parameter p is a random
variable X , which is:

Equal to 1 with probability p;
Equal to 0 with probability 1− p.

The expected value is

E [X ] = 1(p) + 0(1 − p) = p.
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Probability Random Variables and Expected Values

Linearity of Expected Value

For constants a and b,

E [aX + b] = aE [X ] + b.

Let Y = aX + b.

Since Y will equal axj + b when X = xj , it follows that

E [Y ] =
∑n

j=1(axj + b)P{X = xj}

=
∑n

j=1 axjP{X = xj}+
∑n

j=1 bP{X = xj}

= a
∑n

j=1 xjP{X = xj}+ b
∑n

j=1 P{X = xj}

= aE [X ] + b.
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Probability Random Variables and Expected Values

Expectation of Sum of Random Variables

An important result is that the expected value of a sum of random
variables is equal to the sum of their expected values.

Proposition

For random variables X1, . . . ,Xk ,

E





k
∑

j=1

Xj



 =

k
∑

j=1

E [Xj ].
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Probability Random Variables and Expected Values

Binomial Random Variables

Consider n independent trials, each of which is a success with
probability p.

The random variable X , equal to the total number of successes that
occur, is called a binomial random variable with parameters n, p.

X has probability distribution

P(X = i) =

(

n

i

)

pi(1− p)n−i
, i = 0, . . . , n.

By independence, any sequence of trial outcomes resulting in i

successes and n − i failures has probability of occurrence

pi(1− p)n−i
.

Moreover, there are
(

n
i

)

= n!
(n−i)!i ! such sequences.
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Probability Random Variables and Expected Values

Binomial Random Variables (Cont’d)

We could compute the expected value of X by using the preceding to
write

E [X ] =

n
∑

i=0

iP(X = i) =

n
∑

i=0

i

(

n

i

)

pi(1− p)n−i

and then attempt to simplify it.

It is easier to compute E [X ] by using X =
∑n

j=1 Xj , where Xj is
defined to equal 1 if trial j is a success and to equal 0 otherwise.

Using the preceding proposition, we obtain that

E [X ] = E





n
∑

j=1

Xj



 =
n
∑

j=1

E [Xj ] = np.

The final equality used the expected value of a Bernoulli random
variable.
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Probability Random Variables and Expected Values

Equal Likelihood of Type of Success

Proposition

Consider n independent trials, each of which is a success with probability
p. Then, given that there is a total of i successes in the n trials, each of
the

(

n
i

)

subsets of i trials is equally likely to be the set of trials that
resulted in successes.

Let T be any subset of size i of the set {1, . . . , n}.

Let A be the event that all of the trials in T were successes.

Let X be the number of successes in the n trials.

Then

P(A|X = i) =
P(A,X = i)

P(X = i)
.
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Probability Random Variables and Expected Values

Equal Likelihood of Type of Success

P(A,X = i) is the probability that:

All trials in T are successes;
All trials not in T are failures.

Using the independence of the trials, we obtain

P(A|X = i) =
pi(1− p)n−i

(

n
i

)

pi(1− p)n−i
=

1
(

n
i

) .
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Probability Random Variables and Expected Values

Independent Random Variables

The random variables X1, . . . ,Xn are said to be independent if
probabilities concerning any subset of them are unchanged by
information as to the values of the others.

Example: Consider the experiment of choosing randomly k balls from
a set of N balls, n of which are red.

Let

Xi =

{

1, if the ith ball chosen is red
0, if the ith ball chosen is black

.

Then X1, . . . ,Xn would be:

Independent if each selected ball is replaced before the next selection is
made.
Non independent if each selection is made without replacing previously
selected balls.
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Probability Random Variables and Expected Values

Variance of a Random Variable

Whereas the average of the possible values of X is indicated by its
expected value, its spread is measured by its variance.

Definition

The variance of X , denoted by Var(X ), is defined by

Var(X ) = E [(X − E [X ])2].

In other words, the variance measures the average square of the
difference between X and its expected value.
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Probability Random Variables and Expected Values

Variance of a Bernoulli Random Variable

Proposition

The variance of a Bernoulli random variable with parameter p is given by

Var(X ) = p − p2.

Because E [X ] = p, we see that

(X − E [X ])2 =

{

(1− p)2, with probability p

p2, with probability 1− p

Hence,
Var(X ) = E [(X − E [X ])2]

= (1− p)2p + p2(1− p)

= p − p2.
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Probability Random Variables and Expected Values

Variance of Linear Expression

If a and b are constants, then

Var(aX + b) = a2Var(X ).

We have

Var(aX + b) = E [(aX + b − E [aX + b])2]

= E [(aX + b − aE [X ]− b)2]

= E [(aX − aE [X ])2]

= E [a2(X − E [X ])2]

= a2Var(X ).
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Probability Random Variables and Expected Values

Variance of Sum of Independent Random Variables

It is not generally true that the variance of the sum of random
variables is equal to the sum of their variances.

This holds, however, when the random variables are independent.

Proposition

If X1, . . . ,Xk are independent random variables, then

Var





k
∑

j=1

Xj



 =

k
∑

j=1

Var(Xj).
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Probability Random Variables and Expected Values

Variance of a Binomial Random Variable

Proposition

The variance of a binomial random variable X with parameters n and p is

Var(X ) = np(1− p).

Recall that X represents the number of successes in n independent
trials (each of which is a success with probability p).

We can thus represent it as X =
∑n

j=1 Xj , where Xj is defined to
equal 1 if trial j is a success and 0 otherwise.

Hence,
Var(X ) =

∑n
j=1 Var(Xj)

=
∑n

j=1 p(1− p)

= np(1− p).
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Probability Random Variables and Expected Values

Standard Deviation

The square root of the variance is called the standard deviation.

We will see, that a random variable tends to lie within a few standard
deviations of its expected value.
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Probability Covariance and Correlation

Subsection 4

Covariance and Correlation
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Probability Covariance and Correlation

Covariance

The covariance of any two random variables X and Y , denoted by
Cov(X ,Y ), is defined by

Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

Upon multiplying the terms within the expectation, and then taking
expectation term by term, it can be shown that

Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

A positive value of the covariance indicates that X and Y both tend
to be large at the same time.

A negative value indicates that when one is large the other tends to
be small.

Independent random variables have covariance equal to 0.
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Probability Covariance and Correlation

Example: Covariance for Bernoulli Random Variables

Let X and Y both be Bernoulli random variables.

Each takes on either the value 0 or 1.
We use the identity Cov(X ,Y ) = E [XY ]− E [X ]E [Y ].

Note that

XY =

{

1, if X = Y = 1
0, otherwise

.

So we get

Cov(X ,Y ) = P{X = 1,Y = 1} − P{X = 1}P{Y = 1}.

From this, we see that

Cov(X ,Y ) > 0 ⇔ P{X = 1,Y = 1} > P{X = 1}P{Y = 1}

⇔ P{X=1,Y=1}
P{X=1} > P{Y = 1}

⇔ P{Y = 1|X = 1} > P{Y = 1}.

That is, the covariance of X and Y is positive if the outcome that
X = 1 makes it more likely that Y = 1.
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Probability Covariance and Correlation

Properties of Covariance

We can show that covariance has the following properties.

For random variables X and Y , and constant c :

Cov(X ,Y ) = Cov(Y ,X );

Cov(X ,X ) = Var(X );

Cov(cX ,Y ) = cCov(X ,Y );

Cov(c ,Y ) = 0.
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Probability Covariance and Correlation

Additivity of Covariance

Covariance, like expected value, satisfies a linearity property:

Cov(X1 + X2,Y ) = Cov(X1,Y ) + Cov(X2,Y ).

We have:

Cov(X1 + X2,Y ) = E [(X1 + X2)Y ]− E [X1 + X2]E [Y ]

= E [X1Y + X2Y ]− (E [X1] + E [X2])E [Y ]

= E [X1Y ]− E [X1]E [Y ] + E [X2Y ]− E [X2]E [Y ]

= Cov(X1,Y ) + Cov(X2,Y ).

This can be generalized to:

Cov





n
∑

i=1

Xi ,

m
∑

j=1

Yj



 =

n
∑

i=1

m
∑

j=1

Cov(Xi ,Yj).
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Probability Covariance and Correlation

Variance of a Sum of Random Variables

We get for the variance of the sum of random variables:

Var

(

n
∑

i=1

Xi

)

= Cov





n
∑

i=1

Xi ,

n
∑

j=1

Xj





=

n
∑

i=1

n
∑

j=1

Cov(Xi ,Xj)

=

n
∑

i=1

Cov(Xi ,Xi) +

n
∑

i=1

∑

j 6=i

Cov(Xi ,Xj)

=

n
∑

i=1

Var(Xi) +

n
∑

i=1

∑

j 6=i

Cov(Xi ,Xj).
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Probability Covariance and Correlation

Correlation

The correlation ρ(X ,Y ) between random variables X and Y is
defined by

ρ(X ,Y ) =
Cov(X ,Y )

√

Var(X )Var(Y )
.

It reflects the degree to which large values of X tend to be associated
with large values of Y .

It can be shown that

−1 ≤ ρ(X ,Y ) ≤ 1.
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Probability Covariance and Correlation

Example

If X and Y are linearly related by the equation Y = a + bX , then
ρ(X ,Y ) equals:

1 when b is positive;
−1 when b is negative.

We have:

Var(Y ) = b2Var(X );
Cov(X ,Y ) = bVar(X ).

Therefore,

ρ(X ,Y ) =
bVar(X )

√

Var(X )b2Var(X )
=

bVar(X )

|b|Var(X )
=

b

|b|
.

This yields

ρ(X ,Y ) =

{

1, if b > 0
−1, if b < 0

.
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Probability Conditional Expectation

Subsection 5

Conditional Expectation
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Probability Conditional Expectation

Conditional Expectation

For random variables X and Y , we define the conditional expectation
of X given that Y = y by

E [X |Y = y ] =
∑

x

xP(X = x |Y = y).

Like the ordinary expectation of X , the conditional expectation of X
given that Y = y is a weighted average of the possible values of X .

However, the value x is weighted not by the unconditional probability
that X = x , but by its conditional probability given the information
that Y = y .
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Probability Conditional Expectation

Expected Value and Conditional Expectation

The expected value of X is a weighted average of the conditional
expectation of X given that Y = y .

Proposition

E [X ] =
∑

y

E [X |Y = y ]P(Y = y).

We have
∑

y E [X |Y = y ]P(Y = y)

=
∑

y

∑

x xP(X = x |Y = y)P(Y = y)

=
∑

y

∑

x xP(X = x ,Y = y)

=
∑

x x
∑

y P(X = x ,Y = y)

=
∑

x xP(X = x)

= E [X ].
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Probability Conditional Expectation

Conditional Expectation as a Function of Y

Let E [X |Y ] be that function of the random variable Y which, when
Y = y , is defined to equal E [X |Y = y ].

The expected value of any function of Y , say h(Y ), can be expressed
as

E [h(Y )] =
∑

y

h(y)P(Y = y).

So we have

E [E [X |Y ]] =
∑

y

E [X |Y = y ]P(Y = y).

Hence, the preceding proposition can be written as

E [X ] = E [E [X |Y ]].
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