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The Stochastic Dynamic Programming Problem
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The Setup

In the general stochastic dynamic programming problem, we
suppose that a system is observed at the beginning of each period
and its state is determined.

Let S denote the set of all possible states.

After observing the state of the system, an action must be chosen.

If the state is x and action a is chosen, then:

(a) A reward r(x , a) is earned;
(b) The next state, call it Y (x , a), is a random variable whose distribution

depends only on x and a.
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Maximal Expected Return

Suppose our objective is to maximize the expected sum of rewards
that can be earned over N time periods.

Let Vn(x) denote the maximal expected sum of rewards that can be
earned in the next n time periods given that the current state is x .

If we initially choose action a, then:

A reward r(x , a) is immediately earned;
The next state will be Y (x , a).

If Y (x , a) = y , then at that point:

There will be an additional n − 1 time periods to go;
So the maximal expected additional return would be Vn−1(y).
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Maximal Expected Return (Cont’d)

Summarizing, assuming that:
The current state is x ;
We initially choose action a,

the maximal expected return that could be earned over the next n
time periods is

r(x , a) + E [Vn−1(Y (x , a))].

Hence, the overall maximal expected return Vn(x) satisfies

Vn(x) = max
a

{r(x , a) + E [Vn−1(Y (x , a))]}.

Starting with V0(x) = 0 the preceding equation can be used to
recursively solve:

For the function V1(x);
For the function V2(x);
...
For the function VN(x).
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Optimal Value Function

The optimal policy, when there are n additional time periods to go
with the current state being x , chooses the action (or one of the
actions) that maximizes the right side of the preceding.

We let an(x) be the action maximizing r(x , a) + E [Vn−1(Y (x , a))].

This is written as

an(x) = argmaxa{r(x , a) + E [Vn−1(Y (x , a))]}, n = 1, . . . ,N.

Then an optimal policy chooses, for all n and x , an(x), when:

The state is x ;
There are n time periods remaining.

The function Vn(x) is called the optimal value function.

The equation for Vn(x) is called the optimality equation.
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Discrete Form

Suppose S is a subset of the set of all integers.

Let Pi ,a(j) denote the probability that the next state is j , when:

The current state is i ;
Action a is chosen.

In this case, the optimality equation can be written

Vn(i) = max
a







r(i , a) +
∑

j

Pi ,a(j)Vn−1(j)







.
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Continuous Form

Suppose, on the other hand, that S is a continuous set.

Let fx ,a(y) be the probability density of the next state given that:

The current state is x ;
Action a is chosen.

In this case, the optimality equation can be written

Vn(x) = max
a

{

r(x , a) +

∫

fx ,a(y)Vn−1(y)dy

}

.
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Discounting

In certain problems future costs may be discounted.

Specifically, a cost incurred k time periods in the future may be
discounted by the factor βk .

In such cases the optimality equation becomes

Vn(x) = max
a

{r(x , a) + βE [Vn−1(Y (x , a))]}.

For instance, if we wanted to maximize the present value of the sum
of rewards, then we would let β = 1

1+r
, where r is the interest rate

per period.

The quantity β is called the discount factor.

It is usually assumed to satisfy 0 ≤ β ≤ 1.
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Optimal Return from a Call Option

Assume the following discrete time model for the price movement of a
security.

Whatever the price history so far, the price of the security during the
following period is its current price multiplied by a random variable Y .

Assume an interest rate of r > 0 per period.

Let β = 1
1+r

.

We want to determine the appropriate value of an American call
option having:

Exercise value K ;
Expiration time at the end of n additional periods.
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Comments

We are not assuming that Y has only two possible values.

So there will not be a unique risk-neutral probability law.

Consequently, arbitrage considerations will not enable us to determine
the value of the option.

We make the additional assumption that the security cannot be sold
short for the market price.

So there will no longer be an arbitrage argument against early
exercising.

To determine the appropriate value of the option under these
conditions, we will suppose that the successive Y ’s are independent
with a common specified distribution.

We aim to determine the maximal expected present-value return that
can be obtained from the option.
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Available Options and Returns

The current state of the system will be the current price.

Define the optimal value function Vj(x) to equal the maximal
expected present-value return from the option given that:

It has not yet been exercised;
A total of j periods remain before the option expires;
The current price of the security is x .

Suppose the preceding describes the current situation.

If the option is exercised, then a return x − K is earned and the
problem ends;
If the option is not exercised, then the maximal expected present-value
return will be E [βVj−1(xY )].
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Optimal Policy

The overall best is the maximum of the best one can obtain under the
different possible actions.

So the optimality equation is

Vj(x) = max {x − K , βE [Vj−1(xY )]}.

Moreover, the boundary condition is

V0(x) = (x − K )+ = max {x − K , 0}.

Consider the policy that, when the current price is x and j periods
remain before the option expires:

Exercises if Vj(x) = x − K ;
Does not exercise if Vj (x) > x − K .

This is an optimal policy.

So the optimal policy exercises in state x when j periods remain if
and only if Vj(x) = x − K .
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Structure of the Optimal Policy

We determine the structure of the optimal policy.

We show that:

If E [Y ] ≥ 1 + r , then the call option should never be exercised early;
If E [Y ] < 1 + r , then there is a nondecreasing sequence xj , j ≥ 0, such
that the policy:

Exercise when j periods remain, if the current price is at least xj .

is an optimal policy.
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First Case

Lemma

If E [Y ] ≥ 1 + r , then the policy that only exercises when no additional
time remains and the price is greater than K is an optimal policy.

It follows from the optimality equation that Vj(x) ≥ x − K .

We also have βE [Y ] ≥ β(1 + r) = 1.

So, for j ≥ 1,

βE [Vj−1(xY )] ≥ βE [xY − K ] ≥ x − βK > x − K .

Thus, it is never optimal to exercise early.
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An Auxiliary Lemma

Lemma

If E [Y ] < 1 + r , then Vj(x)− x is a decreasing function of x .

The proof is by induction on j .

For j = 0, V0(x)− x = max {−K ,−x}. So the result holds.

Assume that Vj−1(x) − x is decreasing in x .

Then, by the optimality equation,

Vj(x)− x = max {−K , βE [Vj−1(xY )]− x}
= max {−K , β(E [Vj−1(xY )]− xE [Y ]) + βxE [Y ]− x}
= max {−K , βE [Vj−1(xY )− xY ] + x(βE [Y ]− 1)}.

By the induction hypothesis, for all Y , (Vj−1(xY )− xY ) ց x .

Therefore E [Vj−1(xY )− xY ] is also decreasing in x .

As βE [Y ] < 1, x(βE [Y ]− 1) is decreasing in x .

So βE [Vj−1(xY )− xY ] + x(βE [Y ]− 1) is decreasing in x .
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Second Case

Proposition

If E [Y ] < 1 + r , then there is a increasing sequence xj , j ≥ 0, such that
the policy that exercises when j periods remain, whenever the current price
is at least xj , is an optimal policy.

Let xj = min {x : Vj(x) = x − K} be the minimal price at which it is
optimal to exercise when j periods remain.

By the preceding lemma, for x ′ > xj ,

Vj(x
′)− x ′ ≤ Vj(xj)− xj = −K .

But the optimality equation yields that Vj(x
′) ≥ x ′ − K .

So we see that
Vj(x

′) = x ′ − K .

This shows that it is optimal to exercise when j stages remain and the
current price is x ′ if and only if x ′ ≥ xj .
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Second Case (Cont’d)

We show, next, that xj increases in j .

We use that Vj(x) is increasing in j .

This follows from the fact that having additional time before the
option expires cannot reduce the maximal expected return.

Using Vj(x) ր j , yields

Vj−1(xj ) ≤ Vj(xj) = xj − K .

By the optimality equation, Vj−1(xj ) ≥ xj − K .

So the preceding equation shows that Vj−1(xj ) = xj − K .

But xj−1 is the smallest value of x for which Vj−1(x) = x − K .

So the preceding yields that xj−1 ≤ xj and completes the proof.
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Example

An urn initially has:

n red balls;
m blue balls.

At each stage the player may randomly choose a ball from the urn.

If the ball is red, then 1 is earned;
If it is blue, then 1 is lost.

The chosen ball is discarded.

At any time the player can decide to stop playing.

We maximize the player’s total expected net return.

We analyze this as a dynamic programming problem with the state
equal to the current composition of the urn.
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Example (Optimality Equation)

We let V (r , b) denote the maximum expected additional return given
that there are currently:

r red balls in the urn;
b blue balls in the urn.

The expected immediate reward if a ball is chosen in state (r , b) is

r

r + b
−

b

r + b
=

r − b

r + b
.

The best one can do after the initial draw is:
V (r − 1, b) if a red ball is chosen;
V (r , b − 1) if a blue ball is chosen.

So the optimality equation is

V (r , b) = max

{

0,
r − b

r + b
+

r

r + b
V (r − 1, b) +

b

r + b
V (r , b − 1)

}

.

We start with V (r , 0) = r and V (0, b) = 0.

Then use the optimality equation to obtain V (n,m).
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Example

Suppose we can make up to n bets in sequence.

Each bet consists of choosing a stake amount s, which can be any
nonnegative value less than or equal to the current fortune.

The result of the bet is that the amount sY is returned, where Y is a
nonnegative random variable with a known distribution.

We wish to maximize the expected value of the logarithm of the final
fortune after n bets have taken place.

The state is the current fortune.

Let Vn(x) be the maximal expected logarithm of the final fortune if:

The current fortune is x ;
n bets remain.

Let the decision be the fraction α of the current wealth to stake.
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Example (Optimality Equation)

After betting the amount αx :

The fortune is αxY + x − αx = x(αY + 1− α);
n− 1 bets remain.

So the optimality equation becomes

Vn(x) = max
0≤α≤1

E [Vn−1(x(αY + 1− α))].
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Example (Fist Step)

We assumed V0(x) = log(x).

So we get

V1(x) = max0≤α≤1 E [log (x(αY + 1− α))]

= log (x) + max0≤α≤1 E [log (αY + 1− α)]

= log (x) + C ,

where C = max0≤α≤1 E [log (αY + 1− α)].

Denote again the value of α that maximizes E [log (αY + 1− α)] by

α∗ = argmaxαE [log (αY + 1− α)].

Then the optimal policy when only one bet can be made is to bet α∗x

if your current wealth is x .
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Example (Next Step)

Now suppose the current fortune is x and two bets remain.

Then the maximal expected logarithm of the final fortune is

V2(x) = max0≤α≤1 E [V1(x(αY + 1− α))]

= max0≤α≤1 E [log (x(αY + 1− α)) + C ]

= log (x) + C +max0≤α≤1 E [log (αY + 1− α)]

= log (x) + 2C .

Once again, it is optimal to stake the fraction α∗ of the total wealth.

Using mathematical induction, we can show:

For all n,
Vn(x) = log (x) + nC ;

It is optimal, no matter how many bets remain, to always stake the
fraction α∗ of the total wealth.
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Subsection 2

Infinite Time Models
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Setup

We look at stochastic dynamic programming problems in which the
total expected reward earned over an infinite time horizon is to be
maximized.

The problem begins at time 0.

Xn is the state at time n.

An is the action chosen at time n.

A policy π is a rule for choosing actions.

Eπ indicates that we are taking the expectation under the assumption
that policy π is employed.

We want to choose the policy π that maximizes

Vπ(x) = Eπ

[

∞
∑

n=0

r(Xn,An)|X0 = x

]

.

We will assume that the sum is well defined and finite.
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Setup (Cont’d)

Suppose the one stage rewards r(x , a) are bounded, |r(x , a)| < M.

Assume a discount factor β, with 0 ≤ β < 1.

The expected total discounted cost of a policy π is ≤ M
1−β

.

Now consider the optimal value function

V (x) = max
π

Vπ(x).

V (x) satisfies the optimality equation

V (x) = max
a

{r(x , a) + E [V (Y (x , a))]}.
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Example: An Optimal Asset Selling Problem

Suppose we receive an offer each day for an asset we want to sell.

When the offer is received, we must:

Pay a cost c > 0;
Decide whether to accept or to reject the offer.

Suppose that successive offers are independent with probability mass
function

pj = P(offer is j), j ≥ 0.

We want to determine the policy that maximizes the expected net
return.

The state is the current offer.

Let V (i) denote the maximal additional net return from here on,
given that an offer of i has just been received.
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Example (Optimality Equation)

If the offer is accepted, then −c + i is received and the problem ends.

If the offer is rejected, then c is paid and we wait for the next offer.

The next offer will equal j with probability pj .

If the next offer is j , then the maximal expected return from that
point on would be V (j).

So the maximal expected net return if the offer of i is rejected is
−c +

∑

j pjV (j).

The maximum expected net return is the maximum of the maximum
in the two cases.

So the optimality equation is

V (i) = max







−c + i ,−c +
∑

j

pjV (j)







.

Setting v =
∑

j pjV (j), we get V (i) = −c +max {i , v}
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Example (Solution)

It follows from the preceding that the optimal policy is to accept offer
i if and only if it is at least v .

To determine v , note that

V (i) =

{

−c + v , if i ≤ v ,

−c + i , if i > v .

Hence,

v =
∑

i piV (i) = − c +
∑

i≤v vpi +
∑

i>v ipi

v
∑

pi − v
∑

i≤v pi = −c +
∑

i>v ipi

v
∑

i>v pi = −c +
∑

i>v ipi
∑

i>v(i − v)pi = c

c =
∑

i (i − v)+pi .
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Example (Optimal Policy)

Let X be a random variable having the distribution of an offer.

Then the preceding states that

c = E [(X − v)+].

That is, v is that value that makes E [(X − v)+] equal to c .

In most cases, v will have to be numerically determined.

The optimal policy is to accept the first offer that is at least v .

Since v =
∑

i piV (i), v is the maximum expected net return before
the initial offer is received.
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Example: A Machine Replacement Model

Suppose that at the beginning of each period a machine is evaluated
to be in some state i , i = 0, . . . ,M.

After the evaluation, one must decide whether to pay the amount R
and replace the machine or leave it alone.

If the machine is replaced, then a new machine, whose state is 0, will
be in place at the beginning of the next period.
If a machine in state i is not replaced, then at the beginning of the
next time period that machine will be in state j with probability Pi ,j .

Suppose that an operating cost C (i) is incurred whenever the
machine in use is evaluated as being in state i .

Assume a discount factor 0 < β < 1.

The objective is to minimize the total expected discounted cost over
an infinite time horizon.
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Example (Optimality Equation)

Let V (i) be the minimal expected discounted cost when starting in i .
If the machine is replaced:

We incur an immediate cost C (i) + R ;
The minimal expected additional cost from then on is βV (0).

If the machine is not replaced:
Our immediate cost is C (i);
The best we can do, if the next state is j , is βV (j).

So, if we continue in state i , the minimal expected total discounted
cost is C (i) + β

∑

j Pi ,jV (j).

The optimality equation is

V (i) = C (i) + min







R + βV (0), β
∑

j

Pi ,jV (j)







.

Moreover, the policy that replaces a machine in state i if and only if
β
∑

j Pi ,jV (j) ≥ R + βV (0) is an optimal policy.
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Example (Increasing Minimal Expected Discounted Cost)

Suppose we want to determine conditions that imply that V (i) is
increasing in i .

One condition we might want to assume is that the operating costs
C (i) are increasing in i .

Assumption 1: C (i + 1) ≥ C (i), i ≥ 0.

After some thought, we can see that Assumption 1 by itself would not
imply that V (i) increases in i .

Assume, e.g., that C (10) < C (11).
Even though state 11 has a higher operating cost than state 10, it may
be more likely to get us to a better state.
So it is possible that state 11 is preferable to state 10.
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Example (Assumption 2)

To rule this out, we assume that N(i), the next state of a not replaced
machine, currently in state i , is stochastically increasing in i .

Assumption 2: Ni+1 ≥st Ni , i ≥ 0.

Recall that Ni+1 ≥st Ni means

P(Ni+1 ≥ k) ≥ P(Ni ≥ k), for all k .

This can be written as

∑

j≥k

Pi+1,j ≥
∑

j≥k

Pi ,j , for all k .

By a previous proposition, Assumption 2 is equivalent to

Assumption 2: E [h(Ni)] increases in i whenever h is an increasing
function.
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Example (Theorem)

Theorem

Under Assumptions 1 and 2:

(a) V (i) is increasing in i .

(b) For some 0 ≤ i∗ ≤ ∞, the policy that replaces when in state i if and
only if i ≥ i∗ is an optimal policy.

Let Vn(i) denote the minimal expected discounted costs over an
n-period problem that starts with a machine in state i . Then

Vn(i) = C (i) + min







R + βVn−1(0), β
∑

j

Pi ,jVn−1(j)







, n ≥ 1.

We argue by induction that Vn(i) is increasing in i , for all n.
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Example (Part (a))

Suppose n = 1. We have V1(i) = C (i).

By Assumption 1, the result holds when n = 1.

Assume that Vn−1(i) is increasing in i .

By Assumption 2, E [Vn−1(Ni )] increases in i .

But we have:

E [Vn−1(Ni )] =
∑

j Pi ,jVn−1(j);

Vn(i) = C (i) + min
{

R + βVn−1(0), β
∑

j Pi ,jVn−1(j)
}

.

Hence, using Assumption 1, Vn(i) increases in i .

Now V (i) = limn→∞ Vn(i).

So V (i) increases in i .
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Example (Part (b))

We prove (b) by using that the optimal policy is to replace the
machine in state i if and only if

β
∑

j

Pi ,jV (j) ≥ R + βV (0).

This can be written as

E [V (Ni )] ≥
R + βV (0)

β
.

But E [V (Ni )] is, by Part (a) and Assumption 2, increasing in i .

Let

i∗ = min

{

i : E [V (Ni )] ≥
R + βV (0)

β

}

.

Then E [V (Ni )] ≥
R+βV (0)

β
if and only if i ≥ i∗.
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Subsection 3

Optimal Stopping Problems
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Optimal Stopping Problems

An optimal stopping problem is a two-action problem.

When in state x , one can choose between:

Pay c(x) and continue to the next state Y (x), whose distribution
depends only on x ;
Stop and earn a final reward r(x).

Let V (x) be the maximal expected net additional return given that
the current state is x .

The optimality equation is

V (x) = max {r(x),−c(x) + E [V (Y (x))]}.
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A Special Case

Suppose the state space is the set of integers.

Let Pi ,j be the probability of going from state i to state j , if one
decides not to stop in state i .

Then the optimality equation takes the form

V (i) = max







r(i),−c(i) +
∑

j

Pi ,jV (j)







.
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The Finite Time Version

Let Vn(i) denote the maximal expected net return given that:

The current state is i ;
One is only allowed to go at most n additional time periods before
stopping.

Then, by the usual argument,

V0(i) = r(i);
Vn(i) = max {r(i),−c(i) +

∑

j Pi ,jVn−1(j)}.

Having additional time periods before one must stop cannot hurt.

So we get that:

Vn(i) increases in n;
Vn(i) ≤ V (i).
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Stability

Definition

If lim
n→∞

Vn(i) = V (i), the stopping problem is said to be stable.

Most, though not all, stopping-rule problems that arise are stable.

A sufficient condition for the stopping problem to be stable is the
existence of constants c > 0 and r < ∞ such that

c(x) > c and r(x) < r , for all x .
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One-Stage Lookahead Policy

One-Stage Lookahead Policy: Stop in state i if stopping would
give a return that is at least as large as the expected return obtained
by continuing for exactly one more period and then stopping.

Suppose we are at state i .
Immediate stopping yields a final return r(i);
Going exactly one more period and then stopping results in an
expected additional return of −c(i) +

∑

j Pi ,j r(j).

Let

B =







i : r(i) ≥ −c(i) +
∑

j

Pi ,jr(j)







be the set of states for which immediate stopping is at least as good
as continuing for one period and then stopping.

The one-stage lookahead policy is the policy that:
Stops when the current state i is in B;
Continues when the current state i is not in B.
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Optimality of One-Stage Lookahead

Consider an optimal stopping problem.

Assume that it is stable.

Assume that the set of states B is closed.

This means that, if the current state is in B , and one chooses to
continue, then the next state will necessarily also be in B .

We show that, for optimal stopping problems satisfying those two
conditions, the one state lookahead policy is an optimal policy.

Theorem

Suppose the problem satisfies the following:

It is stable;

Pi ,j = 0 for i ∈ B, j 6∈ B.

Then the one stage lookahead policy is an optimal policy.
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Optimality of One-Stage Lookahead (Cont’d)

Note first that it cannot be optimal to stop in state i when i 6∈ B .

This is so because better than stopping is to continue exactly one
additional stage and then stop.

So we need to prove that it is optimal to stop in state i when i ∈ B .

I.e., that V (i) = r(i), i ∈ B .

We prove this by showing, by induction, that for all n,

Vn(i) = r(i), i ∈ B .

We have V0(i) = r(i). So the preceding is true when n = 0.

Assume that Vn−1(i) = r(i), for all i ∈ B .
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Optimality of One-Stage Lookahead (Cont’d)

Then, for i ∈ B ,

Vn(i) = max







r(i),−c(i) +
∑

j

Pi ,jVn−1(j)







= max







r(i),−c(i) +
∑

j∈B

Pi ,jVn−1(j)







(B closed)

= max







r(i),−c(i) +
∑

j∈B

Pi ,jr(j)







(induction)

= r(i). (i ∈ B)

Hence, Vn(i) = r(i) for i ∈ B .

By stability, we obtain the result.
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Example

Consider a burglar each of whose attempted burglaries is successful
with probability p.

If successful, the amount of loot earned is j with probability pj ,
j = 0, . . . ,m.
If unsuccessful, the burglar is caught and loses everything he has
accumulated to that time, and the problem ends.

The burglar’s problem is to decide whether to attempt another
burglary or to stop and enjoy his accumulated loot.

We find the optimal policy.
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Example (Optimality Equation)

The state is the total loot so far collected.

If the current total loot is i and the burglar decides to stop, then he
receives a reward i and the problem ends.
If he decides to continue, then, if successful, the new state will be i + j

with probability pj .

Let V (i) is the burglar’s maximal expected reward, given that the
current state is i .

The optimality equation is

V (i) = max







i , p
∑

j

pjV (i + j)







.
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Example (Cont’d)

Define

B =







i : i ≥ p
∑

j

pj(i + j)







.

The one-stage lookahead policy calls for stopping in state i if i ∈ B .

Let µ =
∑

j jpj be the expected return from a successful burglary.

Then

B = {i : i ≥ p(i + µ)} =

{

i : i ≥
pµ

1− p

}

.

The state cannot decrease (unless the burglar is caught and then no
additional decisions are needed).

So B is closed.

It follows that the one-stage lookahead policy that stops when the
total loot is at least pµ

1−p
is an optimal policy.
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Example

Recall the Optimal Asset Selling Problem.

We receive an offer each day for an asset we desire to sell.

When the offer is received, we must:

Pay a cost c > 0;
Decide whether to accept or reject the offer.

Successive offers are independent with probability mass function

pj = P(offer is j), j ≥ 0.

The problem is to determine the policy that maximizes the expected
net return.
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Example (One-Stage Lookahead Policy)

Let E [X ] be the expected value of a new offer.

Define
B = {j : j ≥ −c + E [X ]}.

The one-stage lookahead policy of a previous example calls for
accepting an offer j if j ∈ B .

B is not a closed set of states (because successive offers need not be
increasing).

So the one-stage lookahead policy would not necessarily be an
optimal policy.
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The Recall Problem

Suppose we allow the seller to be able to recall any past offer.

So a rejected offer is not lost, but may be accepted at any future time.

In this case, the state after a new offer is observed would be the
maximum offer ever received.

Suppose j is the current state.

Suppose X is the offer in the final stage.

The selling price, if we go exactly one more stage, is j + (X − j)+.

Hence, the set of stopping states of the one-stage lookahead policy is

B = {j : j ≥ j + E [(X − j)+]− c} = {j : E [(X − j)+] ≤ c}.

We have
E [(X − j)+] is a decreasing function of j ;
The state, being the maximum offer so far received, cannot decrease.

So B is a closed set of states.

Hence, the one-stage lookahead policy is optimal in this problem.
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The Recall Problem (Cont’d)

Let v be such that
E [(X − v)+] = c .

Then the one-stage lookahead policy in the recall problem is to
accept the first offer that is at least v .

But this policy can be employed even when no recall is allowed.

So it must also be an optimal policy in the no recall problem.

Suppose it were not an optimal policy for the no-recall problem.

Then the maximum expected net return in the no-recall problem
would be strictly larger than in the recall problem.

This is clearly not possible.
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Example

Consider a tournament involving k players, in which player i ,
i = 1, . . . , k , starts with an initial fortune of ni > 0.

In each period, two of the players are chosen to play a game.

The game is equally likely to be won by either player.

The winner of the game receives 1 from the loser.

A player whose fortune drops to 0 is eliminated.

The tournament continues until one player has the entire fortune of

k
∑

i=1

ni .

For fixed i and j , let Ni ,j be the number of games in which i plays j .

We are interested in E [Ni ,j ].
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Example (Cont’d)

We set up a stopping rule problem.

After two players have been chosen for a game, they may:

Stop and receive a final reward equal to the product of the current
fortunes of players i and j ;
Continue, receiving a reward of:

1 in that period, if the two contestants are i and j ;
0, if the contestants are not i and j .

Suppose the current fortunes of i and j are n and m.

Stopping at this time will yield a final reward of nm.
If we continue for one additional period and then stop, we receive:

A total reward of nm, if i and j are not the competitors in the current
round (0 during that period and, then, nm when we stop the following
period);
The expected amount 1 + 1

2
(n+ 1)(m− 1) + 1

2
(n− 1)(m+ 1) = nm, if

i and j are the competitors.
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Example (Cont’d)

Hence, in all cases the return from immediately stopping is exactly
the same as the expected return from going exactly one more period
and then stopping.

Thus, the one-stage lookahead policy always calls for stopping.

So its set of stopping states is closed.

It follows that it is an optimal policy.

But continuing on for an additional period and then stopping yields
the same expected return as immediately stopping.

So always continuing is also optimal.

Now observe that:
The total return from the policy that always continues is the number
Ni ,j of times that i and j play each other;
The return from immediately stopping is ninj .

We conclude that E [Ni ,j ] = ninj .

This holds no matter how the contestants in each round are chosen.
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