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Brownian Motion and Geometric Brownian Motion Brownian Motion

Brownian Motion

Consider a collection of random variables X (t), t ≥ 0.

Imagine we are observing some process as it evolves over time.

The index parameter t represents time.

X (t) is interpreted as the state of the process at time t.

Definition

The collection of random variables X (t), t ≥ 0 is said to be a Brownian
motion with drift parameter µ and variance parameter σ2 if the following
hold:

(a) X (0) is a given constant.

(b) For y , t > 0, the random variable X (y + t)− X (y):

Is independent of the process values up to time y ;

Has a normal distribution with mean µt and variance tσ2.
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Brownian Motion and Geometric Brownian Motion Brownian Motion

Consequence

Assumption (b) says that, for any history of the process up to the
present time y , the change in the value of the process over the next t
time units is a normal random variable with mean µt and variance
tσ2.

Note that any future value X (y + t) is equal to the present value
X (y) plus the change in value X (y + t)− X (y).

Thus, the assumption implies that it is only the present value of the
process, and not any past values, that determines probabilities about
future values.
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Brownian Motion and Geometric Brownian Motion Brownian Motion

Continuity Property

An important property of Brownian motion is that X (t) will, with
probability 1, be a continuous function of t.

Althought this is a mathematically deep result, it is not difficult to see
why it might be true.

To prove that X (t) is continuous, we must show that

lim
h→0

(X (t + h)− X (t)) = 0.

Bu the random variable X (t + h)− X (t) has mean µh and variance
hσ2.

So it converges as h → 0 to a random variable with mean 0 and
variance 0.

That is, it converges to the constant 0, thus arguing for continuity.
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Brownian Motion and Geometric Brownian Motion Brownian Motion

Nowhere Differentiability

We saw that X (t) is, with probability 1, a continuous function of t.

However, it possesses the property of being nowhere differentiable.

To see why this might be the case, note that

X (t + h)− X (t)

h

has mean µ and variance σ2

h
.

The variance of this ratio is converging to infinity as h → 0.

So it is not surprising that the ratio does not converge.
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Subsection 2

Brownian Motion as a Limit of Simpler Models
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Brownian Motion as a Limit of Simpler Models

Let ∆ be a small increment of time.

Set p = 1
2 (1 +

µ
σ

√
∆).

Consider a process such that, every ∆ time units, the value of the
process behaves in either of two ways:

It increases by the amount σ
√
∆ with probability p;

It decreases by the amount σ
√
∆ with probability 1− p.

Successive changes in value are independent.

Take ∆ smaller and smaller.

The changes occur more and more frequently;
The change amounts become smaller and smaller.

The process becomes a Brownian motion with drift parameter µ and
variance parameter σ2.

Consequently, Brownian motion can be approximated by a relatively
simple process that either increases or decreases by a fixed amount at
regularly specified times.
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Verification

Let

Xi =

{

1, if the change at time i∆ is an increase
−1, if the change at time i∆ is a decrease

.

Let X (0) be the process value at time 0.

Then its value after n changes is

X (n∆) = X (0) + σ
√
∆(X1 + · · ·+ Xn).

By time t, there would have been n = t
∆ changes.

This gives

X (t)− X (0) = σ
√
∆

t/∆
∑

i=1

Xi .

George Voutsadakis (LSSU) Mathematical Finance March 2024 10 / 39



Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Verification (Cont’d)

Note that:

The Xi , i = 1, . . . , t
∆ , are independent;

As ∆ goes to 0 there are more and more terms in
∑t/∆

i=1 Xi .

Thus, the Central Limit Theorem suggests that this sum converges to
a normal random variable.

Consequently, as ∆ goes to 0, the process value at time t becomes a
normal random variable.

To compute its mean and variance, note that

E [Xi ] = 1(p)− 1(1 − p) = 2p − 1 = µ
σ

√
∆;

Var(Xi ) = E [X 2
i ]− (E [Xi ])

2 = 1− (2p − 1)2.
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Verification (Cont’d)

Hence,

E [X (t)− X (0)] = E
[

σ
√
∆

∑t/∆
i=1 Xi

]

= σ
√
∆

∑t/∆
i=1 E [Xi ]

= σ
√
∆ t

∆
µ
σ

√
∆

= µt.

Furthermore,

Var(X (t)− X (0)) = Var
(

σ
√
∆

∑t/∆
i=1 Xi

)

= σ2∆
∑t/∆

i=1 Var(Xi)

= σ2t[1− (2p − 1)2].

We have p → 1
2 as ∆ → 0.

So Var(X (t)− X (0)) → tσ2 as ∆ → 0.
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Verification (Cont’d)

Consequently, as ∆ gets smaller and smaller, X (t)− X (0) converges
to a normal random variable with mean µ and variance σ2.

In addition:

Successive process changes are independent;
Each has the same probability of being an increase.

Hence, X (y + t)− X (y) has the same distribution as does
X (t)− X (0).

Moreover, it is independent of earlier process changes before time y .

Hence, as ∆ goes to 0, the collection of process values over time
becomes a Brownian motion process with drift parameter µ and
variance parameter σ2.
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Independence of the Drift Parameter

Theorem

Given that X (t) = x , the conditional probability law of the collection of
prices X (y), 0 ≤ y ≤ t, is the same for all values of µ.

Let s = X (0) be the price at time 0.

Consider the approximating model where the price changes every ∆
time units by an amount equal, in absolute value, to c ≡ σ

√
∆.

Note that c does not depend on µ.

By time t, there would have been t
∆ changes.

Suppose the price has increased from time 0 to time t by x − s.

It follows that, of the t
∆ changes, there have been:

A total of t
2∆ + x−s

2c positive changes;
A total of t

2∆ − x−s
2c negative changes.

In fact ( t
2∆ + x−s

2c )c − ( t
2∆ − x−s

2c )c = x−s
c

c = x − s.
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Brownian Motion and Geometric Brownian Motion Brownian Motion as a Limit of Simpler Models

Independence of the Drift Parameter (Cont’d)

Each change is, independently, a positive change with the same
probability p.

So, conditional on there being a total of t
2∆ + x−s

2c positive changes
out of the first t

∆ changes, all possible choices of the changes that
were positive are equally likely.

[That is, if a coin having probability p is flipped m times, then, given
that k heads resulted, the subset of trials that resulted in heads is
equally likely to be any of the

(

m
k

)

subsets of size k .]

Although p depends on µ, the conditional distribution of the history
of prices up to time t, given that X (t) = x , does not depend on µ.

It depends on σ, because c , the size of a change, depends on σ.

So, if σ changed, then so would the number of the t
∆ changes that

would have had to be positive for S(t) to equal x .

Letting ∆ go to 0 now completes the proof.
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Subsection 3

Geometric Brownian Motion
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Geometric Brownian Motion

Definition

Let X (t), t ≥ 0 be a Brownian motion process with drift parameter µ and
variance parameter σ2, and let

S(t) = eX (t)
, t ≥ 0.

The process S(t), t ≥ 0, is said to be be a geometric Brownian motion

process with drift parameter µ and variance parameter σ2.
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Geometric Brownian Motion Features

Let S(t), t ≥ 0 be a geometric Brownian motion process with drift
parameter µ and variance parameter σ2.

We have, by definition, that log (S(t)), t ≥ 0, is a Brownian motion.

Moreover,

log (S(t + y))− log (S(y)) = log

(

S(t + y)

S(y)

)

.

Thus, by definition, for all y , t > 0, the quantity log (S(t+y)
S(y) ):

Is independent of the process values up to time y ;
Has a normal distribution with mean µt and variance tσ2.
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Advantages for Modeling Prices of Securities

When used to model the price of a security over time, the geometric
Brownian motion process has some advantages over the Brownian
motion process:

First, it is the logarithm of the stock’s price, assumed to be a normal
random variable.
So the model does not allow for negative stock prices.
Second, it consists of ratios, rather than differences, of prices separated
by a fixed amount of time that have the same distribution.
So it makes what many feel is the more reasonable assumption of a
percentage, rather than absolute, change in price whose probabilities
do not depend on the current price.
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Remarks

When geometric Brownian motion is used to model the price of a
security over time, it is common to call σ the volatility parameter.

If S(0) = s, then we can write

S(t) = seX (t)
, t ≥ 0,

where X (t), t ≥ 0, is a Brownian motion process with X (0) = 0.

If X is a normal random variable, then it can be shown that

E [eX ] = exp

{

E [X ] +
Var(X )

2

}

.
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Remarks (Cont’d)

Assume, now, that S(t), t ≥ 0, is a geometric Brownian motion
process with:

Drift µ;
Volatility σ;
S(0) = s.

Then

E [S(t)] = seµt+
tσ2

2 = se(µ+
σ
2

2
)t
.

Thus, under geometric Brownian motion, the expected price of a
security grows at rate µ+ σ2

2 .

µ+ σ2

2 is often called the rate of the geometric Brownian motion.

Consequently, a geometric Brownian motion with rate parameter µr

and volatility σ would have drift parameter µr − σ2

2 .
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Geometric Brownian Motion as a Limit

Let S(t), t ≥ 0 be a geometric Brownian motion process with drift
parameter µ and volatility parameter σ.

Because X (t) = log (S(t)), t ≥ 0, is Brownian motion, we can use its
approximating process to obtain an approximating process for
geometric Brownian motion.

We have
S(y +∆)

S(y)
= eX (y+∆)−X (y)

.

It follows that
S(y +∆) = S(y)eX (y+∆)−X (y)

.
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Brownian Motion and Geometric Brownian Motion Geometric Brownian Motion

Geometric Brownian Motion as a Limit (Cont’d)

Set

u = eσ
√
∆
, d = e−σ

√
∆
, p =

1

2

(

1 +
µ

σ

√
∆
)

.

We can approximate geometric Brownian motion by a model for the
price of a security in which:

Price changes occur only at times that are integral multiples of ∆;
Price changes occur in one of two possible ways:

The price is multiplied by the factor u with probability p;

The price is multiplied by the factor d with probability 1− p.

As ∆ goes to 0, this model becomes geometric Brownian motion.

Consequently, geometric Brownian motion can be approximated by a
relatively simple process that goes either up or down by fixed factors
at regularly spaced times.
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Subsection 4

The Maximum Variable
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

The Maximum Variable

Let X (v), v ≥ 0, be a Brownian motion process with drift parameter
µ and variance parameter σ2.

Suppose that X (0) = 0, so that the process starts at state 0.

Now, define
M(t) = max

0≤v≤t
X (v)

to be the maximal value of the Brownian motion up to time t.

We derive the conditional distribution of M(t) given the value of
X (t).

We then use this to derive the unconditional distribution of M(t).
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Conditional Distribution

Theorem

For y > x ,

P(M(t) ≥ y |X (t) = x) = e−2y(y−x)/tσ2
, y ≥ 0.

Because X (0) = 0, it follows that M(t) ≥ 0.

So the result is true when y = 0 (both sides are equal to 1).

Suppose that y > 0.

By a previous theorem, P(M(t) ≥ y |X (t) = x) does not depend on µ.

So let us take µ = 0.

Let Ty denote the first time the Brownian motion reaches y .

Brownian motion is continuous.

So before the process can exceed y it must pass through y .

So the event M(t) ≥ y is equivalent to Ty ≤ t.
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Conditional Distribution (Cont’d)

Let h be a small positive number for which y > x + h. Then

P(M(t) ≥ y , x ≤ X (t) ≤ x + h)

= P(Ty ≤ t, x ≤ X (t) ≤ x + h)

= P(x ≤ X (t) ≤ x + h|Ty ≤ t)P(Ty ≤ t).

Now, given Ty ≤ t, the event x ≤ X (t) ≤ x + h will occur if, after
hitting y , the additional amount X (t)− X (Ty ) = X (t)− y by which
the process changes by time t is between x − y and x + h − y .

The distribution of this change is symmetric about 0 (µ = 0).

The distribution of a normal variable is symmetric about its mean.

So the additional change is just as likely to be between −(x + h − y)
and −(x − y) as it is to be between x − y and x + h − y .
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Conditional Distribution (Cont’d)

Consequently,

P(x ≤ X (t) ≤ x + h|Ty ≤ t)

= P(x − y ≤ X (t)− y ≤ x + h− y |Ty ≤ t)

= P(−(x + h− y) ≤ X (t)− y ≤ −(x − y)|Ty ≤ t).

Combining the preceding equalities gives

P(M(t) ≥ y , x ≤ X (t) ≤ x + h)

= P(2y − x − h ≤ X (t) ≤ 2y − x |Ty ≤ t)P(Ty ≤ t)

= P(2y − x − h ≤ X (t) ≤ 2y − x ,Ty ≤ t)

= P(2y − x − h ≤ X (t) ≤ 2y − x).

By hypothesis, y > x + h. This implies that 2y − x − h > y .

So, by continuity, 2y − x − h ≤ X (t) implies Ty ≤ t.
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Conditional Distribution (Cont’d)

Now we have

P(M(t) ≥ y |x ≤ X (t) ≤ x + h) =
P(2y − x − h ≤ X (t) ≤ 2y − x)

P(x ≤ X (t) ≤ x + h)

≈
fX (t)(2y − x)h

fX (t)(x)h
(for h small),

where fX (t), the density function of X (t), is the density of a normal
random variable with mean 0 and variance tσ2.

On letting h → 0 in the preceding, we obtain that

P(M(t) ≥ y |X (t) = x) =
fX (t)(2y − x)

fX (t)(x)

=
e−(2y−x)2/2tσ2

e−x2/2tσ2

= e−2y(y−x)/tσ2
.
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Distribution

With Z being a standard normal distribution function, let

Φ(x) = 1− Φ(x) = P(Z > x).

Corollary

For y ≥ 0

P(M(t) ≥ y) = e2yµ/σ
2
Φ

(

µt + y

σ
√
t

)

+Φ

(

y − µt

σ
√
t

)

.

Conditioning on X (t), and using the theorem gives

P(M(t) ≥ y) =
∫∞
−∞ P(M(t) ≥ y |X (t) = x)fX (t)(x)dx

=
∫ y

−∞ P(M(t) ≥ y |X (t) = x)fX (t)(x)dx

+
∫∞
y

P(M(t) ≥ y |X (t) = x)fX (t)(x)dx

=
∫ y

−∞ e−2y(y−x)/tσ2
fX (t)(x)dx +

∫∞
y

fX (t)(x)dx .

George Voutsadakis (LSSU) Mathematical Finance March 2024 30 / 39



Brownian Motion and Geometric Brownian Motion The Maximum Variable

Distribution (Cont’d)

fX (t) is the density function of a normal random variable with mean
µt and variance tσ2:

P(M(t) ≥ y)

=
∫ y

−∞ e−2y(y−x)/tσ2 1√
2πtσ2

e−(x−µt)2/2tσ2
dx + P(X (t) > y)

= 1√
2πtσ

e−2y2/tσ2
e−µ2t2/2tσ2

×
∫ y

−∞ exp {− 1
2tσ2 (x

2 − 2µtx − 4yx)}dx + P(X (t) > y)

= 1√
2πtσ

e−(4y2+µ2t2)/2tσ2

×
∫ y

−∞ exp {− 1
2tσ2 (x

2 − 2x(µt + 2y))}dx + P(X (t) > y).

Now, x2 − 2x(µt + 2y) = (x − (µt + 2y))2 − (µt + 2y)2. So

P(M(t) ≥ y) = e−(4y2+µ2t2−(µt+2y)2)/2tσ2 1√
2πtσ

×
∫ y

−∞ e−(x−µt−2y)2/2tσ2
dx + P(X (t) > y).
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

Distribution (Cont’d)

We got

P(M(t) ≥ y) = e−(4y2+µ2t2−(µt+2y)2)/2tσ2 1√
2πtσ

×
∫ y

−∞ e−(x−µt−2y)2/2tσ2
dx + P(X (t) > y).

Let Z be a standard normal random variable.

Change variables w = x−µt−2y
σ
√
t

.

Then dx = σ
√
tdw and

P(M(t) ≥ y) = e2yµ/σ
2 1√

2π

∫

−µt−y

σ
√

t

−∞ e−w2/2dw

+ P
(

X (t)−µt

σ
√
t

>
y−µt
σ
√
t

)

= e2yµ/σ
2
P
(

Z <
−µ−y

σ
√
t

)

+ P
(

Z >
y−µt
σ
√
t

)

= e2yµ/σ
2
P
(

Z >
µt+y

σ
√
t

)

+ P
(

Z >
y−µt
σ
√
t

)

.
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Distribution of Hitting Time

In the proof of the theorem we let Ty denote the first time the
Brownian motion is equal to y .

That is,

Ty =

{

∞, if X (t) 6= y for all t ≥ 0
min (t : X (t) = y), otherwise

In addition, it follows from the continuity of Brownian motion paths
that, for y > 0, the process would have hit y by time t if and only if
the maximum of the process by time t is at least y . That is,

Ty ≤ t ⇔ M(t) ≥ y .

Hence, the corollary yields that

P(Ty ≤ t) = e2yµ/σ
2
Φ

(

y + µt

σ
√
t

)

+Φ

(

y − µt

σ
√
t

)

.
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Brownian Motion and Geometric Brownian Motion The Maximum Variable

The Minimum Variable

Let Mµ,σ(t) denote a random variable having the distribution of the
maximum value up to time t of a Brownian motion process that
starts at 0 and has drift parameter µ and variance parameter σ2.

The distribution of Mµ,σ(t) is given by the corollary.

Suppose we want the distribution of

M∗(t) = min
0≤v≤t

X (v).

The process −X (v), v ≥ 0, is a Brownian motion with drift
parameter −µ and variance parameter σ2. So, for y > 0,

P(M∗(t) ≤ −y) = P(min0≤v≤t X (v) ≤ −y)

= P(−max0≤v≤t −X (v) ≤ −y)

= P(max0≤v≤t −X (v) ≥ y)

= P(M−µ,σ(t) ≥ y)

= e−2yµ/σ2
Φ(−µt+y

σ
√
t
) + Φ(y+µt

σ
√
t
).
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Subsection 5

The Cameron-Martin Theorem
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Brownian Motion and Geometric Brownian Motion The Cameron-Martin Theorem

Notation

Consider a Brownian motion process with variance parameter σ2.

We use the notation
Eµ

to denote taking expectations under the assumption that the drift
parameter is µ.

E.g.,
E0

signifies that the expectation is taken under the assumption that the
drift parameter is 0.
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Brownian Motion and Geometric Brownian Motion The Cameron-Martin Theorem

The Cameron-Martin Theorem

Theorem

Let W be a random variable whose value is determined by the history of
the Brownian motion up to time t. That is, the value of W is determined
by a knowledge of the values of X (s), 0 ≤ s ≤ t. Then,

Eµ[W ] = e−µ2t/2σ2
E0[WeµX (t)/σ2

].

Condition on X (t), which is normal with mean µt and variance tσ2.

Take into account that, given X (t) = x , the conditional distribution
of the process W up to time t is the same for all values µ.
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Brownian Motion and Geometric Brownian Motion The Cameron-Martin Theorem

The Cameron-Martin Theorem (Cont’d)

We obtain

Eµ[W ] =
∫∞
−∞ Eµ[W |X (t) = x ] 1√

2πtσ2
e−(x−µt)2/2tσ2

dx

=
∫∞
−∞ E0[W |X (t) = x ] 1√

2πtσ2
e−(x−µt)2/2tσ2

dx

=
∫∞
−∞ E0[W |X (t) = x ] 1√

2πtσ2
e−x2/2tσ2

e(2µx−µ2t)/2σ2
dx .

Define
Y = e−µ2t/2σ2

eµX (t)/σ2
= e(2µX (t)−µ2t)/2σ2

.

Then

E0[WY ] =

∫ ∞

−∞
E0[WY |X (t) = x ]

1√
2πtσ2

e−x2/2tσ2
dx .
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Brownian Motion and Geometric Brownian Motion The Cameron-Martin Theorem

The Cameron-Martin Theorem (Cont’d)

We have

E0[WY ] =

∫ ∞

−∞
E0[WY |X (t) = x ]

1√
2πtσ2

e−x2/2tσ2
dx .

But, given that X (t) = x , the random variable Y is equal to the
constant e(2µx−µ2t)/2σ2

.

So the preceding yields

E0[WY ] =
∫∞
−∞ e(2µx−µ2t)/2σ2

E0[W |X (t) = x ] 1√
2πtσ2

e−x2/2tσ2
dx

= Eµ[W ],

where the final equality used the equality of the preceding slide.
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