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Mathematical Background Introduction

From Smooth Sets to Fractal Geometry

In the past, mathematics has been concerned largely with sets and
functions to which the methods of classical calculus can be applied.

Sets or functions that are not sufficiently smooth or regular have
tended to be ignored as “pathological” and not worthy of study.

They were regarded mostly as individual curiosities and rarely as a
class to which a general theory might be applicable.

More recently, it has been realized that a great deal can be said, and
is worth saying, about the mathematics of non-smooth objects.

Often, irregular sets provide a much better representation of natural
phenomena than do the figures of classical geometry.

Fractal geometry is a general framework for the study of such sets.
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Mathematical Background Introduction

Construction of the Middle Third Cantor Set

Let E0 be the interval [0, 1].

Let E1 be the set obtained by deleting the middle third of E0, so that
E1 consists of the two intervals [0, 13 ] and [23 , 1].

Deleting the middle thirds of these intervals gives E2.

Thus E2 comprises the four intervals [0, 19 ], [
2
9 ,

1
3 ], [

2
3 ,

7
9 ], [

8
9 , 1].

We continue in this way, with Ek obtained by deleting the middle
third of each interval in Ek−1.

Thus, Ek consists of 2k intervals each of length 3−k .
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Mathematical Background Introduction

The Middle Third Cantor Set

The middle third Cantor set F consists of the numbers that are in
Ek for all k .

Mathematically,

F =

∞
⋂

k=0

Ek .

The Cantor set F may be thought of as the limit of the sequence of
sets Ek as k tends to infinity.

At first glance it might appear that we have removed so much of the
interval [0, 1] during the construction of F , that nothing remains.

In fact, F is an infinite (and indeed uncountable) set, which contains
infinitely many numbers in every neighborhood of each of its points.
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Mathematical Background Introduction

Structure of the Middle Third Cantor Set

The set F consists precisely of those numbers in [0, 1] whose base 3
expansion does not contain the digit 1.

That is F consists of all numbers

a13
−1 + a23

−2 + a33
−3 + · · · ,

with ai = 0 or 2 for each i .

To see this, note that:

To get E1 from E0 we remove those numbers with a1 = 1;
To get E2 from E1 we remove those numbers with a2 = 1;
...
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Mathematical Background Introduction

Features of the Middle Third Cantor Set

(i) F is self-similar.

The part of F in the interval [0, 13 ] and the part of F in [ 23 , 1] are both
geometrically similar to F , scaled by a factor 1

3 .
The parts of F in each of the four intervals of E2 are similar to F but
scaled by a factor 1

9 .
...

The Cantor set contains copies of itself at many different scales.
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Mathematical Background Introduction

Features of the Middle Third Cantor Set (Cont’d)

(ii) The set F has a “fine structure”.

That is, it contains detail at arbitrarily small scales.

The more we enlarge the picture of the Cantor set, the more gaps
become apparent to the eye.

(iii) Although F has an intricate detailed structure, the actual definition of
F is very straightforward.

(iv) F is obtained by a recursive procedure.

The construction consisted of repeatedly removing the middle thirds
of intervals.

Successive steps give increasingly good approximations Ek to F .
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Mathematical Background Introduction

Features of the Middle Third Cantor Set (Cont’d)

(v) The geometry of F is not easily described in classical terms.

It is not:

The locus of the points that satisfy some simple geometric condition;
The set of solutions of any simple equation.

(vi) It is awkward to describe the local geometry of F .

Near each of its points, there are a large number of other points,
separated by gaps of varying lengths.

(vii) Although F is in some ways quite a large set (it is uncountably
infinite), its size is not quantified by the usual measures such as
length.

By any reasonable definition F has length zero.
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Mathematical Background Introduction

Construction of the Koch Curve

Let E0 be a line segment of unit length.

The set E1 consists of the four segments
obtained by removing the middle third of
E0 and replacing it by the other two sides
of the equilateral triangle based on the
removed segment.

We construct E2 by applying the same
procedure to each of the segments in E1,
and so on.
Thus Ek comes from replacing the middle third of each straight line
segment of Ek−1 by the other two sides of an equilateral triangle.

When k is large, the curves Ek−1 and Ek differ only in fine detail.

As k tends to infinity, the sequence of polygonal curves Ek

approaches a limiting curve F , called the von Koch curve.

George Voutsadakis (LSSU) Fractal Geometry April 2024 11 / 90



Mathematical Background Introduction

Features of the von Kock Curve

The von Koch curve has similar features to those of the middle third
Cantor set:

It is made up of four “quarters” each similar to the whole, but scaled
by a factor 1

3 .
The fine structure is reflected in the irregularities at all scales.
This intricate structure stems from a basically simple construction.
Whilst it is reasonable to call F a curve, it is much too irregular to
have tangents in the classical sense.
A simple calculation shows that Ek is of length ( 43 )

k .
Letting k tend to infinity implies that F has infinite length.
On the other hand, F occupies zero area in the plane.
Therefore, neither length nor area provides a very useful description of
the size of F .
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Mathematical Background Introduction

The Sierpiński Triangle

The Sierpiński triangle or gasket is obtained by repeatedly removing
(inverted) equilateral triangles from an initial equilateral triangle of
unit side length.

For many purposes, it is better to think of this procedure as
repeatedly replacing an equilateral triangle by three triangles of half
the height.
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Mathematical Background Introduction

The Cantor Dust

A plane analogue of the Cantor set, a “Cantor dust” is obtained by
dividing at each stage each remaining square into 16 smaller squares
of which four are kept and the rest discarded.

Of course, other arrangements or numbers of squares could be used
to get different sets.

Such examples have properties similar to those of the Cantor set and
the von Koch curve.
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Mathematical Background Introduction

Julia Sets

The highly intricate structure of the Julia set stems from the single
quadratic function f (z) = z2 + c , for a suitable constant c .

This set is not strictly self-similar in the sense of the Cantor set.

It is “quasi-self-similar” in that arbitrarily small portions of the set
can be magnified and then distorted smoothly to coincide with a large
part of the set.
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Mathematical Background Introduction

Graph of Function Defined by an Infinite Sum

Consider the graph of the function f (t) =
∑∞

k=0(
3
2 )

−k/2 sin ((32 )
k t).

It has a fine structure due to the infinite summation.

It is not a smooth curve to which classical calculus is applicable.

George Voutsadakis (LSSU) Fractal Geometry April 2024 16 / 90



Mathematical Background Introduction

Fractals

These types of sets are commonly referred to as fractals.

The word “fractal” was coined by Mandelbrot.

It comes from the Latin fractus, meaning broken, to describe objects
too irregular to fit into a traditional geometrical setting.

Properties such as those listed before are characteristic of fractals.

Any fractal will have a fine structure, i.e., detail at all scales.
Many fractals have some degree of self-similarity.

They are made up of parts that resemble the whole in some way.

The resemblance may be weaker than strict geometrical similarity.
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Mathematical Background Introduction

Dimension

Methods of classical geometry and calculus are unsuited to studying
fractals and we need alternative techniques.

The main tool of fractal geometry is dimension in its many forms.

We are familiar with the idea that:

A (smooth) curve is a 1-dimensional object;
A surface is a 2-dimensional object.

It is less clear that, for many purposes, we should regard:

The Cantor set as having dimension log 2
log 3 = 0.631 . . .;

The von Koch curve as having dimension log 4
log 3 = 1.262 . . ..

The number log 4
log 3 = 1.262 . . . is, at least, consistent with the von

Koch curve being:

“larger than 1-dimensional” (having infinite length);
“smaller than 2-dimensional” (having zero area).
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Mathematical Background Introduction

The Similarity Dimension

This notion of “dimension” reflects scaling and selfsimilarity.
The figure shows a line segment made up of
four copies of itself, scaled by a factor 1

4 . The

segment has dimension − log 4
log (1/4) = 1.

A square is made up of four copies of itself scaled
by a factor 1

2 , i.e., with half the side length. It has

dimension − log 4
log (1/2) = 2.

In the same way, the von Koch curve is made up
of four copies of itself scaled by a factor 1

3 . It

has dimension − log 4
log (1/3) =

log 4
log 3 .

The Cantor set may be regarded as comprising
four copies of itself scaled by a factor 1

9 . It has

dimension − log 4
log (1/9) =

log 2
log 3 .

In general, a set made up of m copies of itself scaled by a factor r
might be thought of as having dimension − logm

log r .

This number is referred to as the similarity dimension.
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Mathematical Background Introduction

Other Notions of Dimension

Unfortunately, similarity dimension is meaningful only for a relatively
small class of strictly self-similar sets.

There are other definitions of dimension that are much more widely
applicable.

For example, Hausdorff dimension and the box-counting dimensions

may be defined for any sets.

Moreover, in these four examples, they may be shown to equal the
similarity dimension.

Roughly speaking, a dimension provides a description of how much
space a set fills.

It measures the prominence of the irregularities of a set when viewed at
very small scales;
It contains information about the geometrical properties of a set.

George Voutsadakis (LSSU) Fractal Geometry April 2024 20 / 90



Mathematical Background Introduction

Properties Characteristic of Fractals

When we refer to a set F as a fractal, we will typically have the
following in mind:

(i) F has a fine structure, i.e., detail on arbitrarily small scales.
(ii) F is too irregular to be described in traditional geometrical language,

both locally and globally.
(iii) Often F has some form of self-similarity, perhaps approximate or

statistical.
(iv) Usually, the “fractal dimension” of F (defined in some way) is greater

than its topological dimension.
(v) In most cases of interest F is defined in a very simple way, perhaps

recursively.
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Mathematical Background Basic Set Theory

Subsection 2

Basic Set Theory
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Mathematical Background Basic Set Theory

The n-Dimensional Euclidean Space

We work in n-dimensional Euclidean space, Rn, where R1 = R is
the “real line” and R2 is the (Euclidean) plane.

Points in Rn will be denoted by lower case letters x , y , etc., and in
the coordinate form x = (x1, . . . , xn), y = (y1, . . . , yn).

Addition and scalar multiplication are defined in the usual manner:

x + y = (x1 + y1, . . . , xn + yn),
λx = (λx1, . . . , λxn),

where λ is a real scalar.
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Mathematical Background Basic Set Theory

The n-Dimensional Euclidean Space (Cont’d)

We use the usual Euclidean distance or metric on Rn.

If x , y are points of Rn, the distance between them is

|x − y | =
(

n
∑

i=1

|xi − yi |2
)1/2

.

In particular, we have, for all x , y , z ∈ Rn:
The triangle inequality

|x + y | ≤ |x |+ |y |;
The reverse triangle inequality

|x − y | ≥ ||x | − |y || ;
The metric triangle inequality

|x − y | ≤ |x − z |+ |z − y |.
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Mathematical Background Basic Set Theory

Set Notation

Sets, which will generally be subsets of Rn, are denoted by capital
letters E ,F ,U, etc.

x ∈ E means that the point x belongs to the set E .

E ⊆ F means that E is a subset of the set F .

{x : condition} is the set of x for which “condition” is true.

The empty set, which contains no elements, is written as ∅.
The integers are denoted by Z and the rational numbers by Q.

We use a superscript + to denote the positive elements of a set.

R+ is the set of positive real numbers;
Z+ is the set of positive integers.

Occasionally we refer to the complex numbers C.

C may be identified with the plane R2, with x1 + ix2 corresponding to
the point (x1, x2).
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Mathematical Background Basic Set Theory

Balls

The closed ball of center x and radius r is defined by

B(x , r) = {y : |y − x | ≤ r}.

The open ball is

Bo(x , r) = {y : |y − x | < r}.

The closed ball contains its bounding sphere, but the open ball does
not.

In R2 a ball is a disc.

In R1 a ball is just an interval.
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Mathematical Background Basic Set Theory

Cubes

If a < b, we write:

[a, b] for the closed interval

{x : a ≤ x ≤ b};

(a, b) for the open interval

{x : a < x < b}.

Similarly [a, b) denotes the half-open interval {x : a ≤ x < b}, etc.
The coordinate cube of side 2r and center x = (x1, . . . , xn) is the set

{y = (y1, . . . , yn) : |yi − xi | ≤ r , for all i = 1, . . . , n}.

A cube in R2 is just a square and in R1 is an interval.
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Mathematical Background Basic Set Theory

δ-Neighborhoods

The δ-neighborhood or δ-parallel body, Aδ, of a set A is the set of
points within distance δ of A,

Aδ = {x : |x − y | ≤ δ, for some y in A}.
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Mathematical Background Basic Set Theory

Union Intersection, Difference, Cartesian Product

We write A ∪ B for the union of the sets A and B , i.e. the set of
points belonging to either A or B , or both.

We write A ∩ B for their intersection, the set of points in both A

and B .

The union of an arbitrary collection of sets {Aα} is denoted

⋃

α

Aα.

It consists of those points in at least one of the sets Aα.

The intersection of an arbitrary collection of sets {Aα} is denoted

⋂

α

Aα.

It consists of the set of points common to all of the Aα.
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Mathematical Background Basic Set Theory

Union Intersection, Difference, Cartesian Product

A collection of sets is disjoint if the intersection of any pair is the
empty set.

The difference A\B of A and B consists of the points in A but not B .

The set Rn\A is termed the complement of A.

The (Cartesian) product of A and B is the set of all ordered pairs

A× B = {(a, b) : a ∈ A and b ∈ B}.

If A ⊆ Rn and B ⊆ Rm, then A× B ⊆ Rn+m.
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Mathematical Background Basic Set Theory

Vector Sum and Scalar Multiple of Sets

Let A and B be subsets of Rn and λ a real number.

We define the vector sum of the sets as

A+ B = {x + y : x ∈ A and y ∈ B}.

We define the scalar multiple by

λA = {λx : x ∈ A}.
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Mathematical Background Basic Set Theory

Cardinalities

An infinite set A is countable if its elements can be listed in the form
x1, x2, . . . with every element of A appearing at a specific place in the
list.

Otherwise the set is uncountable.

Example: The sets Z and Q are countable but R is uncountable.

A countable union of countable sets is countable.
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Mathematical Background Basic Set Theory

Suprema and Infima

Let A be any non-empty set of real numbers.

The supremum supA is the least number m, such that x ≤ m, for
every x in A, or is +∞ if no such number exists.

The infimum inf A is the greatest number m, such that m ≤ x , for all
x in A, or is −∞ if no such number exists.

Intuitively the supremum and infimum are thought of as the
maximum and minimum of the set, though it is important to realize
that supA and inf A need not be members of the set A itself.

Example: sup (0, 1) = 1, but 1 6∈ (0, 1).

We write
sup
x∈B

( )

for the supremum of the quantity in brackets, which may depend on
x , as x ranges over the set B .
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Mathematical Background Basic Set Theory

Diameter and Boundedness

We define the diameter |A| of a (non-empty) subset of Rn as the
greatest distance apart of pairs of points in A,

|A| = sup {|x − y | : x , y ∈ A}.

Example: In Rn:

A ball of radius r has diameter 2r ;
A cube of side length δ has diameter δ

√
n.

A set A is bounded if it has finite diameter.

Equivalently, A is bounded if it is contained in some ball.
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Mathematical Background Basic Set Theory

Convergence of Sequences

A sequence {xk} in Rn converges to a point x of Rn as k → ∞ if,
given ε > 0, there exists a number K , such that

|xk − x | < ε, for all k > K .

Equivalently, {xk} in Rn converges to a point x of Rn if and only if
|xk − x | converges to 0.

The number x is called the limit of the sequence.

We write xk → x or lim
k→∞

xk = x .
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Mathematical Background Basic Set Theory

Open and Closed Sets

A subset A of Rn is open if, for all points x in A, there is some ball
B(x , r), centered at x and of positive radius, that is contained in A.

A set is closed if, whenever {xk} is a sequence of points of A
converging to a point x of Rn, then x is in A.

The empty set ∅ and Rn are regarded as both open and closed.
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Mathematical Background Basic Set Theory

Properties of Open and Closed Sets and Neighborhoods

A set is open if and only if its complement is closed.

The union of any collection of open sets is open.

The intersection of any finite number of open sets is open.

The intersection of any collection of closed sets is closed.

The union of any finite number of closed sets is closed.

A set A is called a neighborhood of a point x if there is some (small)
ball B(x , r) centered at x and contained in A.
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Mathematical Background Basic Set Theory

Closure, Interior, Boundary

The intersection of all the closed sets containing a set A is called the
closure of A, written A.

The closure of A is thought of as the smallest closed set containing A.

The union of all open sets contained in A is the interior int(A) of A.

The interior is thought of as the largest open set contained in A.

The boundary ∂A of A is given by ∂A = A\int(A).
Thus, x ∈ ∂A if and only if the ball B(x , r) intersects both A and its
complement, for all r > 0.

A set B is a dense subset of A if B ⊆ A ⊆ B,

Equivalently, B is a dense subset of A if and only if there are points
of B arbitrarily close to each point of A.

George Voutsadakis (LSSU) Fractal Geometry April 2024 38 / 90



Mathematical Background Basic Set Theory

Compactness

A set A is compact if any collection of open sets which covers A
(i.e., with union containing A) has a finite subcollection which also
covers A.

Technically, compactness is an extremely useful property that enables
infinite sets of conditions to be reduced to finitely many.

The Heine-Borel Theorem states that, a subset of Rn is compact if
and only if it is closed and bounded.

So, for most of our purposes, it is enough to take the definition of a
compact subset of Rn as one that is both closed and bounded.
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Mathematical Background Basic Set Theory

Properties of Compactness

The intersection of any collection of compact sets is compact.

If A1 ⊇ A2 ⊇ · · · is a decreasing sequence of compact sets, then the
intersection

⋂∞
i=1 Ai is non-empty.

If for compact sets Ai ,
⋂∞

i=1 Ai is contained in V for some open set

V , then the finite intersection
⋂k

i=1 Ai is contained in V , for some k .
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Mathematical Background Basic Set Theory

Connectedness

A subset A of Rn is connected if there do not exist open sets U and
V such that:

A ⊆ U ∪ V ;
A ∩ U and A ∩ V disjoint and non-empty.

Intuitively, we think of a set A as connected if it consists of just one
“piece”.

The largest connected subset of A containing a point x is called the
connected component of x .

The set A is totally disconnected if the connected component of
each point consists of just that point.

A sufficient condition for A to be totally disconnected is that, for
every pair of points x and y in A, there exist disjoint open sets U and
V , such that x ∈ U, y ∈ V and A ⊆ U ∪ V .
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Mathematical Background Basic Set Theory

Borel Sets

The class of Borel sets is the smallest collection of subsets of Rn

with the following properties:

(a) Every open set and every closed set is a Borel set;
(b) The union of every finite or countable collection of Borel sets is a Borel

set;
(c) The intersection of every finite or countable collection of Borel sets is a

Borel set.

Virtually all of the subsets of Rn that will be of any interest to us will
be Borel sets.

Any set that can be constructed using a sequence of countable unions
or intersections starting with the open sets or closed sets will certainly
be Borel.
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Mathematical Background Functions and Limits

Subsection 3

Functions and Limits
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Mathematical Background Functions and Limits

Functions

Let X and Y be any sets.

A mapping, function or transformation f from X to Y is a rule or
formula that associates a point f (x) of Y with each point x of X .

We write f : X → Y to denote this situation.

X is called the domain of f .

Y is called the codomain.

If A is any subset of X , we write f (A) for the image of A,

f (A) = {f (x) : x ∈ A}.

If B is a subset of Y , we write f −1(B) for the inverse image or
pre-image of B ,

f −1(B) = {x ∈ X : f (x) ∈ B}.

The inverse image of a single point can contain many points.
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Mathematical Background Functions and Limits

Injections, Surjections and Bijections

A function f : X → Y is called an injection or a one-to-one

function if
x 6= y implies f (x) 6= f (y).

That is, f is an injection if different elements of X are mapped to
different elements of Y .

The function is called a surjection or an onto function if, for every
y in Y , there is an element x in X with f (x) = y .

I.e., f is a surjection if every element of Y is the image of some point
in X .

A function that is both an injection and a surjection is called a
bijection or one-to-one correspondence between X and Y .
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Mathematical Background Functions and Limits

Inverse Functions

Suppose f : X → Y is a bijection.

Then we may define the inverse function f −1 : Y → X by taking
f −1(y) as the unique element x of X such that f (x) = y .

In this situation, we have:

f −1(f (x)) = x , for all x in X ;
f (f −1(y)) = y , for all y in Y .
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Mathematical Background Functions and Limits

Composition of Functions

The composition of the functions f : X → Y and g : Y → Z is the
function g ◦ f : X → Z , given by

(g ◦ f )(x) = g(f (x)).

This definition extends to the composition of any finite number of
functions in the obvious way,

(fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1)(x) = fn(fn−1(· · · (f2(f1(x))) · · · )).
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Mathematical Background Functions and Limits

Transformations and Congruences

Functions from Rn to Rn with a geometric significance are often
referred to as transformations and are denoted by capital letters.

The transformation S : Rn → Rn is called a congruence or isometry

if it preserves distances, i.e., if

|S(x)− S(y)| = |x − y |, for all x , y in Rn.

Congruences also preserve angles.

Moreover, they transform sets into geometrically congruent ones.
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Mathematical Background Functions and Limits

Translations, Rotations and Reflections

Translations are of the form

S(x) = x + a.

They have the effect of shifting points parallel to the vector a.

Rotations centered at a are such that

|S(x)− a| = |x − a|, for all x .

For convenience we also regard the identity transformation given by
I (x) = x as a rotation.

Reflections map points to their mirror images in some
(n − 1)-dimensional plane.

A congruence that may be achieved by a combination of a rotation
and a translation, i.e., does not involve reflection, is called a rigid

motion or direct congruence.
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Mathematical Background Functions and Limits

Similarities

A transformation S : Rn → Rn is a similarity of ratio or scale c > 0
if

|S(x)− S(y)| = c |x − y |, for all x , y in Rn.

A similarity transforms sets into geometrically similar ones with all
lengths multiplied by the factor c .
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Mathematical Background Functions and Limits

Linear Transformations

A transformation T : Rn → Rn is linear if, for all x , y ∈ Rn and
λ ∈ R:

T (x + y) = T (x) + T (y);
T (λx) = λT (x).

Linear transformations may be represented by matrices in the usual
way.

Such a linear transformation is nonsingular if

T (x) = 0 if and only if x = 0.
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Affine Transformations

An affine transformation or an affinity is a transformation
S : Rn → Rn of the form

S(x) = T (x) + a,

where:

T is a non-singular linear transformation;
a is a point in Rn.

An affinity’s contracting or expanding effect need not be the same in
every direction.

If T is orthonormal, then S is a congruence.

If T is a scalar multiple or an orthonormal transformation, then T is a
similarity.
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Groups of Transformations

It is worth pointing out that such classes of transformations form
groups under composition of mappings.

Example: The composition of two translations is a translation.

The identity transformation is trivially a translation.

The inverse of a translation is a translation.

Finally, the associative law S ◦ (T ◦ U) = (S ◦ T ) ◦ U holds for all
translations S ,T ,U.

Similar group properties hold for:

The congruences;
The rigid motions;
The similarities;
The affinities.
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Hölder, Lipschitz and bi-Lipschitz Functions

A function f : X → Y is called a Hölder function of exponent α if

|f (x)− f (y)| ≤ c |x − y |α, x , y ∈ X ,

for some constant c ≥ 0.

The function f is called a Lipschitz function if α may be taken to be
equal to 1, that is if

|f (x)− f (y)| ≤ c |x − y |, x , y ∈ X .

f is called a bi-Lipschitz function if

c1|x − y | ≤ |f (x)− f (y)| ≤ c2|x − y |, x , y ∈ X ,

for 0 < c1 ≤ c2 < ∞.

If f is bi-Lipschitz, both f and f −1 : f (X ) → X are Lipschitz.
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Limit

Let X and Y be subsets of Rn and Rm, respectively.

Let f : X → Y be a function, and let a be a point of X .

We say that f (x) has limit y (or tends to y , or converges to y) as
x tends to a, if, given ε > 0, there exists δ > 0, such that, for all
x ∈ X ,

|x − a| < δ implies |f (x)− y | < ε.

We write f (x) → y as x → a or by limx→a f (x) = y .

For a function f : X → R, we say that f (x) tends to infinity

(written f (x) → ∞) as x → a if, given M, there exists δ > 0, such
that, for all x ∈ X ,

|x − a| < δ implies f (x) > M.

The definition of f (x) → −∞ is similar.
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Introducing Lower and Upper Limits

Suppose that f : R+ → R.

If f (x) is increasing as x decreases, then limx→0 f (x) exists either as a
finite limit or as ∞.

If f (x) is decreasing as x decreases, then limx→0 f (x) exists and is
finite or −∞.

Of course, f (x) can fluctuate wildly for small x and limx→0 f (x) need
not exist at all.

The notions of lower and upper limits are used to describe such
fluctuations.

George Voutsadakis (LSSU) Fractal Geometry April 2024 56 / 90



Mathematical Background Functions and Limits

Lower and Upper Limits

We define the lower limit as

lim
x→0

f (x) ≡ lim
r→0

(inf {f (x) : 0 < x < r}).

Since inf {f (x) : 0 < x < r} is either −∞ for all positive r or else
increases as r decreases, limx→0f (x) always exists.

The upper limit is defined as

lim
x→0

f (x) ≡ lim
r→0

(sup {f (x) : 0 < x < r}).
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Properties of Lower and Upper Limits

The lower and upper limits exist (as real numbers or −∞ or ∞) for
every function f .

They are indicative of the variation in
values of f for x close to 0.

limx→0 f (x) ≤ limx→0f (x);

If the lower and upper limits are
equal, then limx→0 f (x) exists and
equals this common value.

If f (x) ≤ g(x) for x > 0, then limx→0 f (x) ≤ limx→0 g(x) and
limx→0f (x) ≤ limx→0g(x).

In the same way, it is possible to define lower and upper limits as
x → a for functions f : X → R, where X is a subset of Rn, a in X .

George Voutsadakis (LSSU) Fractal Geometry April 2024 58 / 90



Mathematical Background Functions and Limits

Comparing Functions

We often need to compare two functions f , g : R+ → R for small
values.

We write f (x) ∼ g(x) to mean that

lim
x→0

f (x)

g(x)
= 1.

We will often have that f (x) ∼ xs .

This means that f obeys an approximate power law of exponent s
when x is small.

On the other hand, the notation f (x) ≃ g(x) is used more loosely.

It means that f (x) and g(x) are approximately equal in some sense,
to be specified in the particular circumstances.

George Voutsadakis (LSSU) Fractal Geometry April 2024 59 / 90



Mathematical Background Functions and Limits

Continuity and Homeomorphisms

A function f : X → Y is continuous at a point a of X if

lim
x→a

f (x) = f (a).

f and is continuous on X if it is continuous at all points of X .

Lipschitz and Hölder mappings are continuous.

If f : X → Y is a continuous bijection with continuous inverse
f −1 : Y → X , then f is called a homeomorphism.

Then, the sets X and Y are called homeomorphic.

Congruences, similarities and affine transformations on Rn are
examples of homeomorphisms.
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Differentiability

The function f : R → R is differentiable at x with the number f ′(x)
as derivative if

lim
h→0

f (x + h)− f (x)

h
= f ′(x).

Mean Value Theorem: Given a < b and f differentiable on [a, b],
there exists c with a < c < b, such that

f (b)− f (a)

b − a
= f ′(c).

Intuitively, any chord of the graph of f is parallel to the slope of f at
some intermediate point.

f is continuously differentiable if f ′(x) is continuous in x .
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Differentiability (Multiple Variables)

Suppose f : Rn → Rn.

We say that f is differentiable at x with derivative the linear
mapping f ′(x) : Rn → Rn if

lim
|h|→0

|f (x + h)− f (x)− f ′(x)h|
|h| = 0.
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Convergence and Uniform Convergence

Consider a sequence of functions fk : X → Y , where X and Y are
subsets of Euclidean spaces.

We say that functions fk converge pointwise to a function
f : X → Y if, for every x ∈ X ,

lim
k→∞

fk(x) = f (x).

We say that the convergence is uniform if

sup
x∈X

|fk(x) − f (x)| → 0 as k → ∞.

Uniform convergence is stronger than pointwise convergence.

The rate at which the limit is approached must be uniform across X .

If the functions fk are continuous and converge uniformly to f , then f

is continuous.
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Logarithms

Logarithms will always be to base e.

For a, b > 0, we have:

log ab = log a + log b;

log ac = c log a, for real numbers c .

The identity ac = bc log a/ log b will often be used:

ac = blogb a
c

= b
log ac

log b = b
c log a

log b .

The logarithm is the inverse of the exponential function.

e log x = x , for all x > 0;
log ey = y , for all y ∈ R.
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Subsection 4

Measures and Mass Distributions
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Measures

We call µ a measure on Rn if µ assigns a non-negative number,
possibly ∞, to each subset of Rn, such that:

(a) µ(∅) = 0;
(b) µ(A) ≤ µ(B) if A ⊆ B;
(c) if A1,A2, . . . is a countable (or finite) sequence of sets then

µ

(

∞
⋃

i=1

Ai

)

≤
∞
∑

i=1

µ(Ai ),

with equality holding, i.e.,

µ

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

µ(Ai ),

if the Ai are disjoint Borel sets.

We call µ(A) the measure of the set A, and think of µ(A) as the size
of A measured in some way.
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The Properties of Measures

Condition (a) says that the empty set has zero measure;

Condition (b) says “the larger the set, the larger the measure”;

Condition (c) says that if a set is a union of a countable number of
pieces (which may overlap) then the sum of the measure of the pieces
is at least equal to the measure of the whole.

Moreover, if a set is decomposed into a countable number of disjoint
Borel sets then the total measure of the pieces equals the measure of
the whole.
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Increasing Collections of Sets

If A ⊇ B , then A may is the disjoint union A = B ∪ (A\B).

So, if A and B are Borel sets,

µ(A\B) = µ(A)− µ(B).

Similarly, if A1 ⊆ A2 ⊆ · · · is an increasing sequence of Borel sets
then lim

i→∞
µ(Ai) = µ(

⋃∞
i=1 Ai ).

To see this, note that
⋃∞

i=1 Ai = A1 ∪ (A2\A1) ∪ (A3\A2) ∪ · · · , with
this union disjoint. So we get

µ(
⋃∞

i=1 Ai) = µ(A1) +
∑∞

i=1(µ(Ai+1)− µ(Ai))

= µ(A1) + limk→∞

∑k
i=1(µ(Ai+1)− µ(Ai))

= limk→∞ µ(Ak).

If, for δ > 0, Aδ are Borel sets that are increasing as δ decreases, i.e.,
Aδ′ ⊆ Aδ, for 0 < δ < δ′, then lim

δ→0
µ(Aδ) = µ(

⋃

δ>0 Aδ).
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Support and Mass Distribution

The support of µ, written sptµ, is the smallest closed set X , such
that

µ(Rn\X ) = 0

The support of a measure is always closed.

x is in the support if and only if µ(B(x , r)) > 0, for all r > 0.

We say that µ is a measure on a set A if A contains the support of µ.

A measure on a bounded subset of Rn for which 0 < µ(Rn) < ∞ will
be called a mass distribution.

We think of µ(A) as the mass of the set A.
Intuitively, we take a finite mass and spread it in some way across a set
X to get a mass distribution on X .

George Voutsadakis (LSSU) Fractal Geometry April 2024 69 / 90



Mathematical Background Measures and Mass Distributions

Examples

The counting measure: For each subset A of Rn let µ(A) be:

The number of points in A if A is finite;
∞, otherwise.

Then µ is a measure on Rn.

Point mass: Let a be a point in Rn.

Define µ(A) to be:

1, if A contains a;
0, otherwise.

Then µ is a mass distribution.

It is thought of as a point mass concentrated at a
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Example: Lebesgue Measure on R

Lebesgue measure L1 extends the idea of “length” to a large
collection of subsets of R that includes the Borel sets.

For open and closed intervals, we take

L1(a, b) = L1[a, b] = b − a.

If A =
⋃

i [ai , bi ] is a finite or countable union of disjoint intervals, we
let

L1(A) =
∑

(bi − ai)

be the length of A thought of as the sum of the length of the
intervals.
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Example: Lebesgue Measure on R (Cont’d)

This leads us to the definition of the Lebesgue measure L1(A) of an
arbitrary set A:

L1(A) = inf

{

∞
∑

i=1

(bi − ai ) : A ⊆
∞
⋃

i=1

[ai , bi ]

}

.

I.e., we look at all coverings of A by countable collections of intervals,
and take the smallest total interval length possible.

Lebesgue measure on R is generally thought of as “length”.

We often write length(A) for L1(A) to emphasize this meaning.
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Example: Lebesgue measure on Rn

If A = {(x1, . . . , xn) ∈ Rn : ai ≤ xi ≤ bi} is a “coordinate
parallelepiped” in Rn, the n-dimensional volume of A is given by

voln(A) = (b1 − a1)(b2 − a2) · · · (bn − an).

Of course, vol1 is length, vol2 is area and vol3 is the usual
3-dimensional volume.

Then n-dimensional Lebesgue measure Ln is defined by extending
n-dimensional volume to a large class of sets by

Ln(A) = inf

{

∞
∑

i=1

voln(Ai ) : A ⊆
∞
⋃

i=1

Ai

}

,

where the infimum is taken over all coverings of A by coordinate
parallelepipeds Ai .
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Example: Lebesgue measure on Rn (Cont’d)

We get that Ln(A) = voln(A) if A is a coordinate parallelepiped.

The same holds, more generally, for any set for which the volume can
be determined by the usual rules of mensuration.

For intuition, we sometimes write:

area(A) in place of L2(A);
vol(A) for L3(A);
voln(A) for Ln(A).

Sometimes, we need to define “k-dimensional” volume on a
k-dimensional plane X in Rn.

This may be done by identifying X with Rk and using Lk on subsets
of X in the obvious way.

George Voutsadakis (LSSU) Fractal Geometry April 2024 74 / 90



Mathematical Background Measures and Mass Distributions

Example: Uniform Mass Distribution on a Line Segment

Let L be a line segment of unit length in the plane.

Define
µ(A) = L1(L ∩ A),

i.e., the “length” of intersection of A with L.

For all A, with A ∩ L = ∅,

µ(A) = 0.

So µ is a mass distribution with support L.

We may think of µ as unit mass spread evenly along the line segment
L.
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Restriction of a Measure

Let µ be a measure on Rn.

Let E be a Borel subset of Rn.

We may define a measure ν on Rn, called the restriction of µ to E ,
by

ν(A) = µ(E ∩ A), for every set A.

Then ν is a measure on Rn with support contained in E .
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Mass Distributions on Subsets of Rn

Let E0 consist of the single Borel set E .

For k = 1, 2, . . ., let Ek be a collection of disjoint Borel subsets of E ,
such that each set U in Ek :

Is contained in one of the sets of Ek−1;
Contains a finite number of the sets in Ek+1.

We assume that the maximum diameter of the sets in Ek tends to 0
as k → ∞.
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Mass Distributions on Subsets of Rn (Cont’d)

We define a mass distribution on E by repeated subdivision.

We let µ(E ) satisfy 0 < µ(E ) < ∞.

We split this mass between the sets
U1, . . . ,Um in E1 by defining µ(Ui) in such a
way that

m
∑

i=1

µ(Ui) = µ(E ).

Similarly, we assign masses to the sets of E2 so that if U1, . . . ,Um are
the sets of E2 contained in a set U of E1, then

m
∑

i=1

µ(Ui) = µ(U).
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Mass Distributions on Subsets of Rn (Cont’d)

In general, we assign masses so that

∑

i

µ(Ui) = µ(U)

for each set U of Ek , where the {Ui} are the disjoint sets in Ek+1

contained in U.

For each k , we let Ek be the union of the sets in Ek .
We define µ(A) = 0, for all A, with A ∩ Ek = ∅.
Let E denote the collection of sets that belong to Ek for some k

together with the subsets of Rn\Ek .

The above procedure defines the mass µ(A) of every set A in E .

George Voutsadakis (LSSU) Fractal Geometry April 2024 79 / 90



Mathematical Background Measures and Mass Distributions

Justification of the Construction

Proposition

Let µ be defined on a collection of sets E as above. Then the definition of
µ may be extended to all subsets of Rn so that µ becomes a measure.
The value of µ(A) is uniquely determined if A is a Borel set. The support
of µ is contained in

⋂∞
k=1 E k .

Note on Proof: If A is any subset of Rn, let

µ(A) = inf

{

∑

i

µ(Ui) : A ⊆
⋃

i

Ui and Ui ∈ E
}

.

Thus we take the smallest value we can of
∑∞

i=1 µ(Ui) where the sets
Ui are in E and cover A.
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Justification of the Construction (Cont’d)

For A a subset of Rn, we defined

µ(A) = inf

{

∑

i

µ(Ui) : A ⊆
⋃

i

Ui and Ui ∈ E
}

.

We have already defined µ(Ui) for Ui ∈ E .
It is not difficult to see that if A is one of the sets in E , then this
reduces to the mass µ(A) specified in the construction.

Since µ(Rn\Ek) = 0, we have µ(A) = 0 if A is an open set that does
not intersect Ek for some k .

This shows that the support of µ is in E k for all k .
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Example

Let Ek denote the collection of “binary intervals” of length 2−k of the
form

[r2−k , (r + 1)2−k ), 0 ≤ r ≤ 2k − 1.

Take
µ[r2−k , (r + 1)2−k) = 2−k .

Then the above construction gives the Lebesgue measure µ on [0, 1].

Note on calculation: The requirements are satisfied.

If I is an interval in Ek of length 2−k and I1, I2 are the two
subintervals of I in Ek+1 of length 2−k−1, we have

µ(I ) = µ(I1) + µ(I2).

By the proposition, µ extends to a mass distribution on [0, 1].

We have µ(I ) = length(µ) for I in E .
This implies that µ coincides with Lebesgue measure on any set.
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Almost Everywhere

We say that a property holds for almost all x , or almost everywhere

(with respect to a measure µ) if the set for which the property fails
has µ-measure zero.

Example: We say almost all real numbers are irrational with respect
to Lebesgue measure.

The rational numbers Q are countable.

They may be listed as x1, x2, . . ., say.

So L1(Q) =
∑∞

i=1L1{xi} = 0.
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Hypothesis on Functions

We would like to avoid technical difficulties involved in integrating
functions with respect to measures.

Let f : D → R be a function defined on a Borel subset D of Rn.

We will assume that the set

f −1(−∞, a] = {x ∈ D : f (x) ≤ a}

is a Borel set for all real numbers a.

A very large class of functions satisfies this condition.

It includes all continuous functions, for which f −1(−∞, a] is closed
and therefore a Borel set.

All functions to be integrated are taken to satisfy this condition.
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Integration

Suppose, first, that f : D → R is a simple function, i.e., one that
takes only finitely many values a1, . . . , ak .

We define the integral with respect to the measure µ of a
non-negative simple function f as

∫

fdµ =

k
∑

i=1

aiµ{x : f (x) = ai}.

The integral of more general functions is defined using approximation
by simple functions.

If f : D → R is a non-negative function, we define its integral as

∫

fdµ = sup

{
∫

gdµ : g is simple, 0 ≤ g ≤ f

}

.
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Integration (Cont’d)

To complete the definition, if f takes both positive and negative
values, we let

f +(x) = max {f (x), 0} and f −(x) = max {−f (x), 0}.

Then, we have
f = f + − f −.

We define
∫

fdµ =

∫

f +dµ−
∫

f −dµ,

provided that
∫

f +dµ and
∫

f −dµ are both finite.
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Properties of Integrals

For functions f : D → R and g : D → R,

∫

(f + g)dµ =

∫

fdµ+

∫

gdµ.

For a function f : D → R and a scalar λ,
∫

λfdµ = λ

∫

fdµ.

Monotone Convergence Theorem: If fk : D → R is an increasing
sequence of non-negative functions converging (pointwise) to f , then

lim
k→∞

∫

fkdµ =

∫

fdµ.
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Properties of Integrals (Cont’d)

Given a Borel subset A of D, define its indicator function
χA : Rn → R, by

χA(x) =

{

1, if x ∈ A,

0, otherwise.

If A is a Borel subset of D, we define integration over the set A by

∫

A

fdµ =

∫

f χAdµ.

If f (x) ≥ 0 and
∫

fdµ = 0, then

f (x) = 0 for µ-almost all x .
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Integration Notation

Integration is denoted in various ways, such as

∫

fdµ,

∫

f or

∫

f (x)dµ(x),

depending on the emphasis.

When µ is n-dimensional Lebesgue measure Ln, we usually write

∫

fdx or

∫

f (x)dx

in place of
∫

fdLn.
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Egoroff’s Theorem

Let D be a Borel subset of Rn.

Let µ a measure with µ(D) < ∞.

Let f1, f2, . . . and f be functions from D to R, such that

fk(x) → f (x), for each x in D.

Egoroff’s Theorem asserts that, for any δ > 0, there is a Borel subset
E of D, such that µ(D\E ) < δ and such that the sequence {fk}
converges uniformly to f on E .

I.e., {fk} satisfies

sup
x∈E

|fk(x)− f (x)| → 0, as k → ∞.

For the measures that we shall be concerned with, it may be shown
that we can always take the set E to be compact.
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