Introduction to Fractal Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Hausdorff Measure and Dimension

- Hausdorff Measure
- Hausdorff Dimension
- Calculation of Hausdorff Dimension

Subsection 1

Hausdorff Measure

Covers

• Recall that if *U* is any non-empty subset of *n*-dimensional Euclidean space, \mathbb{R}^n , the **diameter** of *U* is defined as

$$|U| = \sup \{ |x - y| : x, y \in U \},\$$

i.e., as the greatest distance apart of any pair of points in U.

- A δ-cover {U_i} of F is a countable (or finite) collection of sets of diameter at most δ that cover F.
- This means that

$$F \subseteq \bigcup_{i=1}^{\infty} U_i$$
, with $0 \le |U_i| \le \delta$, for each *i*.

Hausdorff Measure

- Let F be a subset of \mathbb{R}^n .
- Let s be a non-negative number.
- For any $\delta > 0$, we define

$$\mathcal{H}^{s}_{\delta}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a } \delta\text{-cover of } F \right\}.$$

- So this process involves:
 - Looking at all covers of F by sets of diameter at most δ ;
 - Seeking to minimize the sum of the *s*-th powers of the diameters.

Hausdorff Measure (Cont'd)

- As δ decreases, the class of permissible covers of F is reduced.
- Therefore, the infimum $\mathcal{H}^{s}_{\delta}(F)$ increases.
- So it approaches a limit as $\delta \to 0$.
- We write

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(F).$$

- This limit exists for any subset F of \mathbb{R}^n .
- The limiting value can be (and usually is) 0 or ∞ .
- We call $\mathcal{H}^{s}(F)$ the *s*-dimensional Hausdorff measure of *F*.

Hausdorff Measure is a Measure

- \bullet With a certain amount of effort, \mathcal{H}^{s} may be shown to be a measure.
- It is straightforward to show that:

•
$$\mathcal{H}^{s}(\emptyset) = 0;$$

- If E is contained in F then $\mathcal{H}^{s}(E) \leq \mathcal{H}^{s}(F)$;
- If $\{F_i\}$ is any countable collection of sets, then

$$\mathcal{H}^{s}\left(\bigcup_{i=1}^{\infty}F_{i}\right)\leq\sum_{i=1}^{\infty}\mathcal{H}^{s}(F_{i}).$$

 It is rather harder to show that there is equality in the last relation if the {F_i} are disjoint Borel sets.

Hausdorff Measure and Volume

- Hausdorff measures generalize the familiar ideas of length, area, volume, etc.
- It may be shown that, for subsets of Rⁿ, n-dimensional Hausdorff measure is, to within a constant multiple, just n-dimensional Lebesgue measure, i.e., the usual n-dimensional volume.
- Let c_n be the volume of an *n*-dimensional ball of diameter 1,

$$c_n = \begin{cases} \frac{\pi^{n/2}}{2^n} (\frac{n}{2})!, & \text{if } n \text{ is even}, \\ \pi^{(n-1)/2} \frac{(\frac{n-1}{2})!}{n!}, & \text{if } n \text{ is odd}. \end{cases}$$

• Then, if F is a Borel subset of \mathbb{R}^n , then

$$\mathcal{H}^n(F) = \frac{1}{c_n} \operatorname{vol}^n(F).$$

Hausdorff Measure and Volume: Low Dimensions

- Similarly, for "nice" lower-dimensional subsets of \mathbb{R}^n , we have that:
 - $\mathcal{H}^0(F)$ is the number of points in F;
 - $\mathcal{H}^1(F)$ gives the length of a smooth curve F;
 - $\mathcal{H}^2(F) = \frac{4}{\pi} \operatorname{area}(F)$ if F is a smooth surface;
 - $\mathcal{H}^3(F) = \frac{6}{\pi} \operatorname{vol}(F);$
 - $\mathcal{H}^m(F) = \frac{1}{c_m} \operatorname{vol}^m(F)$ if F is a smooth *m*-dimensional submanifold of \mathbb{R}^n (i.e., an *m*-dimensional surface in the classical sense).

Introducing the Scaling Property

- On magnification by a factor λ :
 - The length of a curve is multiplied by λ ;
 - The area of a plane region is multiplied by λ^2 ;
 - The volume of a 3-dimensional object is multiplied by λ^3 .
- The s-dimensional Hausdorff measure scales with a factor λ^s.

The Scaling Property

Scaling Property

Let S be a similarity transformation of scale factor $\lambda > 0$. If $F \subseteq \mathbb{R}^n$, then

 $\mathcal{H}^{s}(S(F)) = \lambda^{s} \mathcal{H}^{s}(F).$

Suppose {U_i} is a δ-cover of F. Then we have:
{S(U_i)} is a λδ-cover of S(F);
∑|S(U_i)|^s = λ^s ∑|U_i|^s.
On taking the infimum,

$$\mathcal{H}^{s}_{\lambda\delta}(S(F)) \leq \lambda^{s}\mathcal{H}^{s}_{\delta}(F).$$

Letting $\delta \rightarrow 0$ gives that

$$H^{s}(S(F)) \leq \lambda^{s} \mathcal{H}^{s}(F).$$

Replacing S by S^{-1} , and so λ by $\frac{1}{\lambda}$, and F by S(F) gives the opposite inequality.

George Voutsadakis (LSSU)

More General Transformations and Hausdorff Measure

Proposition

Let $F \subseteq \mathbb{R}^n$ and $f: F \to \mathbb{R}^m$ be a mapping such that

$$|f(x)-f(y)| \leq c|x-y|^{\alpha}, \quad x,y \in F,$$

for constants c > 0 and $\alpha > 0$. Then for each s,

$$\mathcal{H}^{s/\alpha}(f(F)) \leq c^{s/\alpha}\mathcal{H}^s(F).$$

Suppose {U_i} is a δ-cover of F.
 We have

$$|f(F \cap U_i)| \leq c|F \cap U_i|^{\alpha} \leq c|U_i|^{\alpha}.$$

It follows that $\{f(F \cap U_i)\}$ is an ε -cover of f(F), where $\varepsilon = c\delta^{\alpha}$.

More General Transformations (Cont'd)

We got that {f(F ∩ U_i)} is an ε-cover of f(F), where ε = cδ^α.
 We also have

$$\sum_{i} |f(F \cap U_i)|^{s/\alpha} \leq c^{s/\alpha} \sum_{i} |U_i|^s.$$

So

$$\mathcal{H}^{s/\alpha}(f(F)) \leq c^{s/\alpha}\mathcal{H}^s_{\delta}(F).$$

As
$$\delta \rightarrow 0$$
, we get $\varepsilon \rightarrow 0$.
This shows that

$$\mathcal{H}^{s/\alpha}(f(F)) \leq c^{s/\alpha}\mathcal{H}^s(F).$$

Hölder and Lipschitz Conditions

Condition

$$|f(x) - f(y)| \le c|x - y|^{\alpha}$$

is known as a Hölder condition of exponent α .

- Such a condition implies that *f* is continuous.
- Particularly important is the case $\alpha = 1$, i.e.,

$$|f(x)-f(y)| \leq c|x-y|, \quad x,y \in F.$$

• Then f is called a Lipschitz mapping.

Moreover, we get

$$\mathcal{H}^{s}(f(F)) \leq c^{s}\mathcal{H}^{s}(F).$$

Differentiable Functions With Bounded Derivative

• Let f be a differentiable function with bounded derivative,

 $|f'(x)| \leq c$, for all x.

• The Mean Value Theorem asserts that, for all a, b, there exists a < c < b, such that $f'(c) = \frac{f(b) - f(a)}{b - a}.$

• Hence, for all x, y, there exists x < z < y, such that

$$|f(x) - f(y)| = |f'(z)||x - y| \le c|x - y|.$$

• So f is a Lipschitz mapping.

Translation and Rotation Invariance of Hausdorff Measure

• Suppose f is an isometry, i.e.,

$$|f(x)-f(y)|=|x-y|.$$

- In particular, both f and f^{-1} are Lipschitz.
- Thus, $\mathcal{H}^{s}(f(F)) = \mathcal{H}^{s}(F)$.
- It follows that Hausdorff measures are:
 - Translation invariant, i.e.,

$$\mathcal{H}^{s}(F+z)=\mathcal{H}^{s}(F),$$

where $F + z = \{x + z : x \in F\};$

Rotation invariant.

Subsection 2

Hausdorff Dimension

The Hausdorff Dimension

We defined

$$\mathcal{H}^{s}_{\delta}(F) = \inf \left\{ \sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a } \delta\text{-cover of } F
ight\}.$$

For any set F ⊆ ℝⁿ and δ < 1, H^s_δ(F) is non-increasing with s.
So

$$\mathcal{H}^{s}(F) = \lim_{\delta o 0} \mathcal{H}^{s}_{\delta}(F)$$

is also non-increasing.

• In fact, if t > s and $\{U_i\}$ is a δ -cover of F, we have

$$\sum_{i} |U_i|^t \leq \sum_{i} |U_i|^{t-s} |U_i|^s \leq \delta^{t-s} \sum_{i} |U_i|^s.$$

The Hausdorff Dimension (Cont'd)

Taking infima,

$$\mathcal{H}^t_{\delta}(F) \leq \delta^{t-s} \mathcal{H}^s_{\delta}(F).$$

• Letting $\delta \rightarrow 0$ we see that, for t > s,

 $\mathcal{H}^{s}(F) < \infty$ implies $\mathcal{H}^{t}(F) = 0$.

- Thus, a graph of H^s(F) against s shows that there is a critical value of s at which H^s(F) "jumps" from ∞ to 0.
- This critical value is called the **Hausdorff dimension** of *F*, and written

The Hausdorff Dimension and *s*-Sets

• The **Hausdorff dimension** of a set $F \subseteq \mathbb{R}^n$ is defined formally by

$$\dim_{\mathsf{H}} F = \inf \{ s \ge 0 : \mathcal{H}^{s}(F) = 0 \} = \sup \{ s : \mathcal{H}^{s}(F) = \infty \},\$$

taking the supremum of the empty set to be 0.

We have

$$\mathcal{H}^{s}(F) = \begin{cases} \infty, & \text{if } 0 \leq s < \dim_{H} F, \\ 0, & \text{if } s > \dim_{H} F. \end{cases}$$

- If s = dim_HF, then H^s(F) may be zero or infinite, or may satisfy 0 < H^s(F) < ∞.
- A Borel set F satisfying $0 < \mathcal{H}^{s}(F) < \infty$ is called an s-set.

Example

• Let F be a flat disc of unit radius in \mathbb{R}^3 .

From familiar properties of length, area and volume, we have:

•
$$\mathcal{H}^1(F) = \mathsf{length}(F) = \infty;$$

•
$$0 < \mathcal{H}^2(F) = \frac{4}{\pi} \times \operatorname{area}(F) = 4 < \infty;$$

•
$$\mathcal{H}^3(F) = \frac{6}{\pi} \times \operatorname{vol}(F) = 0.$$

Thus $\dim_{H} F = 2$ and we have:

•
$$\mathcal{H}^{s}(F) = \infty$$
, if $s < 2$;

•
$$\mathcal{H}^{s}(F) = 0$$
, if $s > 2$.

Monotonicity of Hausdorff Dimension

• If $E \subseteq F$, then $\dim_{H} E \leq \dim_{H} F$.

By the measure property, for all s,

 $\mathcal{H}^{s}(E) \leq \mathcal{H}^{s}(F).$

Therefore,

$$\begin{aligned} \dim_{\mathsf{H}} E &= \inf \left\{ s \geq 0 : \mathcal{H}^{s}(E) = 0 \right\} \\ &\leq \inf \left\{ s \geq 0 : \mathcal{H}^{s}(F) = 0 \right\} \\ &= \dim_{\mathsf{H}} F. \end{aligned}$$

Countable Stability of Hausdorff Dimension

• If F_1, F_2, \ldots is a (countable) sequence of sets then

$$\dim_{\mathsf{H}} \bigcup_{i=1}^{\infty} F_i = \sup_{1 \le i < \infty} \{\dim_{\mathsf{H}} F_i\}.$$

By Monotonicity, for every *j*, $\dim_{H} F_{j} \leq \dim_{H} \bigcup_{i=1}^{\infty} F_{i}$. Therefore, $\sup_{1 \leq i < \infty} {\dim_{H} F_{i}} \leq \dim_{H} \bigcup_{i=1}^{\infty} F_{i}$. Suppose, for all *i*,

 $\dim_{\mathrm{H}} F_i \leq s.$

Then, for all i, $\mathcal{H}^{s}(F_{i}) = 0$. So $\mathcal{H}^{s}(\bigcup_{i=1}^{\infty} F_{i}) = 0$. We conclude

$$\dim_{\mathsf{H}} \bigcup_{i=1}^{\infty} F_i = \inf \{ s \ge 0 : \mathcal{H}^s(\bigcup_{i=1}^{\infty} F_i) = 0 \}$$

$$\le \sup_{1 \le i < \infty} \{ \dim_{\mathsf{H}} F_i \}.$$

Hausdorff Dimension of Countable Sets

• If F is countable, then

$$\dim_{\mathsf{H}} F = 0.$$

If F_i is a single point, we have:

- $\mathcal{H}^0(F_i) = 1;$
- dim_H $F_i = 0$.

So by countable stability

$$\dim_{\mathsf{H}}\bigcup_{i=1}^{\infty}F_{i}=0.$$

Hausdorff Dimension of Open Sets

• If $F \subseteq \mathbb{R}^n$ is open, then

$$\dim_{\mathrm{H}} F = n.$$

Suppose $F \subseteq \mathbb{R}^n$ is open.

Clearly, F contains a ball of positive n-dimensional volume.

Therefore, $\dim_{\mathrm{H}} F \geq n$.

But F is contained in countably many balls.

Therefore, by Monotonicity and Countable Stability,

 $\dim_{\mathrm{H}} F \leq n.$

We conclude that $\dim_{\mathrm{H}} F = n$.

Hausdorff Dimension of Smooth Sets

 If F is a smooth (i.e., continuously differentiable) m-dimensional submanifold (i.e., m-dimensional surface) of ℝⁿ then

$$\dim_{\mathsf{H}} F = m.$$

- In particular:
 - Smooth curves have dimension 1;
 - Smooth surfaces have dimension 2.
- Essentially, this may be deduced from the relationship between Hausdorff and Lebesgue measures.

Transformations Satisfying a Hölder Condition

Proposition

Let $F \subseteq \mathbb{R}^n$ and suppose that $f: F \to \mathbb{R}^m$ satisfies a Hölder condition

$$|f(x)-f(y)|\leq c|x-y|^{lpha},\quad x,y\in F.$$

Then dim_H $f(F) \leq \frac{1}{\alpha} \dim_{H} F$.

• If $s > \dim_{H} F$, then by the preceding proposition,

$$\mathcal{H}^{s/\alpha}(f(F)) \leq c^{s/\alpha}\mathcal{H}^s(F) = 0.$$

Thus, $\dim_{\mathsf{H}} f(F) \leq \frac{s}{\alpha}$, for all $s > \dim_{\mathsf{H}} F$.

Lipschitz Transformations

Corollary

- (a) If $f : F \to \mathbb{R}^m$ is Lipschitz, then $\dim_H f(F) \le \dim_H F$.
- (b) If $f: F \to \mathbb{R}^m$ is a bi-Lipschitz transformation, i.e.,

$$c_1|x-y| \leq |f(x)-f(y)| \leq c_2|x-y|, \quad x,y \in F,$$

where $0 < c_1 \leq c_2 < \infty$, then $\dim_H f(F) = \dim_H F$.

- Part (a) follows from the preceding proposition taking α = 1.
 Applying this to f⁻¹: f(F) → F gives the other inequality for (b).
- Hausdorff dimension is invariant under bi-Lipschitz transformations.
- Thus, if two sets have different dimensions there cannot be a bi-Lipschitz mapping from one onto the other.

Sets of Hausdorff Dimension Less Than 1

Proposition

A set $F \subseteq \mathbb{R}^n$ with dim_HF < 1 is totally disconnected.

Let x and y be distinct points of F.
 Define a mapping f : ℝⁿ → [0,∞) by

$$f(z)=|z-x|.$$

f does not increase distances, since

$$|f(z) - f(w)| = ||z - x| - |w - x||$$

$$\leq |(z - x) - (w - x)|$$

$$= |z - w|.$$

By the preceding corollary,

$$\dim_{\mathsf{H}} f(F) \leq \dim_{\mathsf{H}} F < 1.$$

Sets of Hausdorff Dimension Less Than 1 (Cont'd)

Thus f(F) is a subset of ℝ of H¹-measure or length zero.
So f(F) has a dense complement.
Choose r with r ∉ f(F) and 0 < r < f(y).
Then we have

$$F = \{z \in F : |z - x| < r\} \cup \{z \in F : |z - x| > r\}.$$

Thus, F is contained in two disjoint open sets with x in one set and y in the other.

So x and y lie in different connected components of F.

Subsection 3

Calculation of Hausdorff Dimension

Example: The Cantor Dust

- Let *F* be the Cantor dust constructed from the unit square. At each stage of the construction:
 - The squares are divided into 16 squares with a quarter of the side length;
 - The same pattern of four squares is retained.

Then $1 \leq \mathcal{H}^1(F) \leq \sqrt{2}$. So dim_HF = 1.

Let E_k be the *k*-th stage of the construction.

Observe that E_k consists of 4^k squares of side 4^{-k} .

Thus, each square is of diameter $4^{-k}\sqrt{2}$.

Take the squares of E_k as a δ -cover of F, where $\delta = 4^{-k}\sqrt{2}$.

Then an estimate for the infimum in the definition is

$$\mathcal{H}^1_\delta(F) \leq 4^k 4^{-k} \sqrt{2}.$$

As $k \to \infty$, $\delta \to 0$, giving $\mathcal{H}^1(F) \le \sqrt{2}$.

Example: The Cantor Dust (Cont'd)

We turn to providing a lower estimate.
 Let proj denote orthogonal projection onto the x-axis.
 Orthogonal projection does not increase distances.
 So, if x, y ∈ ℝ²,

$$|\operatorname{proj} x - \operatorname{proj} y| \le |x - y|.$$

So proj is a Lipschitz mapping.

By virtue of the construction of F, the projection or "shadow" of F on the *x*-axis, projF, is the unit interval [0, 1]. So we have.

1	=	length[0, 1]
	=	$\mathcal{H}^1([0,1])$
	=	$\mathcal{H}^1(proj F)$
	Lipschitz	$\mathcal{H}^{1}(\mathbf{F})$

Remarks

- The same argument and result hold for a set obtained by:
 - Repeated division of squares into m^2 squares of side length $\frac{1}{m}$;
 - Retention of one square in each column.
- This trick of using orthogonal projection to get a lower estimate of Hausdorff measure only works in special circumstances and is not the basis of a more general method.

Example: The Cantor Set

• Let F be the middle third Cantor set. If $s = \frac{\log 2}{\log 3} = 0.6309...$, then $\dim_{\mathrm{H}} F = s$ and $\frac{1}{2} \leq \mathcal{H}^{s}(F) \leq 1$.

Heuristic Calculation: The Cantor set *F* splits into a left part $F_L = F \cap [0, \frac{1}{3}]$ and a right part $F_R = F \cap [\frac{2}{3}, 1]$.

• Both parts are geometrically similar to F but scaled by a ratio $\frac{1}{3}$;

•
$$F = F_L \cup F_R$$
, with this union disjoint.

Thus, for any s, using Scaling of Hausdorff measures,

$$\mathcal{H}^{s}(F) = \mathcal{H}^{s}(F_{\mathsf{L}}) + \mathcal{H}^{s}(F_{\mathsf{R}}) = \left(\frac{1}{3}\right)^{s} \mathcal{H}^{s}(F) + \left(\frac{1}{3}\right)^{s} \mathcal{H}^{s}(F).$$

Suppose at the critical value $s = \dim_{\mathsf{H}} F$ we have $0 < \mathcal{H}^{s}(F) < \infty$. Then, we may divide by $\mathcal{H}^{s}(F)$ to get $1 = 2\left(\frac{1}{3}\right)^{s}$.

Thus, $s = \frac{\log 2}{\log 3}$.

Example: The Cantor Set (Cont'd)

• **Rigorous Calculation**: We call the intervals that make up the sets E_k in the construction of F level-k intervals. E_k consists of 2^k level-k intervals each of length 3^{-k} . Take the intervals of E_k as a 3^{-k} -cover of F. Then, for $s = \frac{\log 2}{\log 3}$, we get

$$\mathcal{H}_{3^{-k}}^{s}(F) \leq 2^{k} 3^{-ks} = 2^{k} \left(3^{\frac{\log 2}{\log 3}}\right)^{-k} = 2^{k} (3^{\log_{3} 2})^{-k} = 2^{k} 2^{-k} = 1.$$

Letting $k \to \infty$ gives $\mathcal{H}^{s}(F) \leq 1$. To prove that $\mathcal{H}^{s}(F) \geq \frac{1}{2}$, we show that, for any cover $\{U_i\}$ of F,

$$\sum |U_i|^s \geq \frac{1}{2} = 3^{-s}.$$

It is enough to assume that the $\{U_i\}$ are intervals.

By expanding them slightly and using the compactness of F, we need only consider a finite collection $\{U_i\}$ of closed subintervals of [0, 1].

Example: The Cantor Set (Conclusion)

• For each U_i , let k be the integer such that

$$3^{-(k+1)} \leq |U_i| < 3^{-k}.$$

The separation of the level-k intervals is at least 3^{-k} . So U_i can intersect at most one level-k interval. If $j \ge k$, then, by construction, U_i intersects at most $2^{j-k} = 2^j 3^{-sk} \le 2^j 3^s |U_i|^s$ level-j intervals of E_j . Choose j large enough so that $3^{-(j+1)} \le |U_i|$, for all U_i . The $\{U_i\}$ intersect all 2^j basic intervals of length 3^{-j} . So counting intervals gives

$$2^j \leq \sum_i 2^j 3^s |U_i|^s.$$

This reduces to the desired inequality.

Remarks on the Heuristic Method

- The "heuristic" method of calculation used in the preceding example gives the right answer for the dimension of many self-similar sets.
 Example: The von Koch curve is made up of four copies of itself scaled by a factor ¹/₃. Hence it has dimension ^{log 4}/_{log 3}.
- More generally, suppose

$$F=\bigcup_{i=1}^m F_i,$$

where:

- Each F_i is geometrically similar to F but scaled by a factor c_i ;
- The F_i do not overlap "too much".

Then the heuristic argument gives $\dim_{H} F$ as the number *s* satisfying

$$\sum_{i=1}^m c_i^s = 1.$$