# Introduction to Fractal Geometry 

## George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

## (1) Hausdorff Measure and Dimension

- Hausdorff Measure
- Hausdorff Dimension
- Calculation of Hausdorff Dimension


## Subsection 1

## Hausdorff Measure

## Covers

- Recall that if $U$ is any non-empty subset of $n$-dimensional Euclidean space, $\mathbb{R}^{n}$, the diameter of $U$ is defined as

$$
|U|=\sup \{|x-y|: x, y \in U\},
$$

i.e., as the greatest distance apart of any pair of points in $U$.

- A $\delta$-cover $\left\{U_{i}\right\}$ of $F$ is a countable (or finite) collection of sets of diameter at most $\delta$ that cover $F$.
- This means that

$$
F \subseteq \bigcup_{i=1}^{\infty} U_{i}, \text { with } 0 \leq\left|U_{i}\right| \leq \delta, \text { for each } i
$$

## Hausdorff Measure

- Let $F$ be a subset of $\mathbb{R}^{n}$.
- Let $s$ be a non-negative number.
- For any $\delta>0$, we define

$$
\mathcal{H}_{\delta}^{s}(F)=\inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } F\right\} .
$$

- So this process involves:
- Looking at all covers of $F$ by sets of diameter at most $\delta$;
- Seeking to minimize the sum of the $s$-th powers of the diameters.


## Hausdorff Measure (Cont'd)

- As $\delta$ decreases, the class of permissible covers of $F$ is reduced.
- Therefore, the infimum $\mathcal{H}_{\delta}^{s}(F)$ increases.
- So it approaches a limit as $\delta \rightarrow 0$.
- We write

$$
\mathcal{H}^{s}(F)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)
$$

- This limit exists for any subset $F$ of $\mathbb{R}^{n}$.
- The limiting value can be (and usually is) 0 or $\infty$.
- We call $\mathcal{H}^{s}(F)$ the $s$-dimensional Hausdorff measure of $F$.


## Hausdorff Measure is a Measure

- With a certain amount of effort, $\mathcal{H}^{s}$ may be shown to be a measure.
- It is straightforward to show that:
- $\mathcal{H}^{s}(\emptyset)=0$;
- If $E$ is contained in $F$ then $\mathcal{H}^{s}(E) \leq \mathcal{H}^{s}(F)$;
- If $\left\{F_{i}\right\}$ is any countable collection of sets, then

$$
\mathcal{H}^{s}\left(\bigcup_{i=1}^{\infty} F_{i}\right) \leq \sum_{i=1}^{\infty} \mathcal{H}^{s}\left(F_{i}\right) .
$$

- It is rather harder to show that there is equality in the last relation if the $\left\{F_{i}\right\}$ are disjoint Borel sets.


## Hausdorff Measure and Volume

- Hausdorff measures generalize the familiar ideas of length, area, volume, etc.
- It may be shown that, for subsets of $\mathbb{R}^{n}, n$-dimensional Hausdorff measure is, to within a constant multiple, just $n$-dimensional Lebesgue measure, i.e., the usual $n$-dimensional volume.
- Let $c_{n}$ be the volume of an $n$-dimensional ball of diameter 1 ,

$$
c_{n}= \begin{cases}\frac{\pi^{n / 2}}{2^{n}}\left(\frac{n}{2}\right)!, & \text { if } n \text { is even }, \\ \pi^{(n-1) / 2} \frac{\left(\frac{n-1}{2}\right)!}{n!}, & \text { if } n \text { is odd. }\end{cases}
$$

- Then, if $F$ is a Borel subset of $\mathbb{R}^{n}$, then

$$
\mathcal{H}^{n}(F)=\frac{1}{c_{n}} \mathrm{vol}^{n}(F)
$$

## Hausdorff Measure and Volume: Low Dimensions

- Similarly, for "nice" lower-dimensional subsets of $\mathbb{R}^{n}$, we have that:
- $\mathcal{H}^{0}(F)$ is the number of points in $F$;
- $\mathcal{H}^{1}(F)$ gives the length of a smooth curve $F$;
- $\mathcal{H}^{2}(F)=\frac{4}{\pi} \operatorname{area}(F)$ if $F$ is a smooth surface;
- $\mathcal{H}^{3}(F)=\frac{6}{\pi} \operatorname{vol}(F)$;
- $\mathcal{H}^{m}(F)=\frac{1}{c_{m}} \operatorname{vol}^{m}(F)$ if $F$ is a smooth $m$-dimensional submanifold of $\mathbb{R}^{n}$ (i.e., an $m$-dimensional surface in the classical sense).


## Introducing the Scaling Property

- On magnification by a factor $\lambda$ :
- The length of a curve is multiplied by $\lambda$;
- The area of a plane region is multiplied by $\lambda^{2}$;
- The volume of a 3 -dimensional object is multiplied by $\lambda^{3}$.
- The s-dimensional Hausdorff measure scales with a factor $\lambda^{s}$.


## The Scaling Property

## Scaling Property

Let $S$ be a similarity transformation of scale factor $\lambda>0$. If $F \subseteq \mathbb{R}^{n}$, then

$$
\mathcal{H}^{s}(S(F))=\lambda^{s} \mathcal{H}^{s}(F)
$$

- Suppose $\left\{U_{i}\right\}$ is a $\delta$-cover of $F$. Then we have:
- $\left\{S\left(U_{i}\right)\right\}$ is a $\lambda \delta$-cover of $S(F)$;
- $\sum\left|S\left(U_{i}\right)\right|^{s}=\lambda^{s} \sum\left|U_{i}\right|^{s}$.

On taking the infimum,

$$
\mathcal{H}_{\lambda \delta}^{s}(S(F)) \leq \lambda^{s} \mathcal{H}_{\delta}^{s}(F)
$$

Letting $\delta \rightarrow 0$ gives that

$$
H^{s}(S(F)) \leq \lambda^{s} \mathcal{H}^{s}(F)
$$

Replacing $S$ by $S^{-1}$, and so $\lambda$ by $\frac{1}{\lambda}$, and $F$ by $S(F)$ gives the opposite inequality.

## More General Transformations and Hausdorff Measure

## Proposition

Let $F \subseteq \mathbb{R}^{n}$ and $f: F \rightarrow \mathbb{R}^{m}$ be a mapping such that

$$
|f(x)-f(y)| \leq c|x-y|^{\alpha}, \quad x, y \in F
$$

for constants $c>0$ and $\alpha>0$. Then for each $s$,

$$
\mathcal{H}^{s / \alpha}(f(F)) \leq c^{s / \alpha} \mathcal{H}^{s}(F) .
$$

- Suppose $\left\{U_{i}\right\}$ is a $\delta$-cover of $F$.

We have

$$
\left|f\left(F \cap U_{i}\right)\right| \leq c\left|F \cap U_{i}\right|^{\alpha} \leq c\left|U_{i}\right|^{\alpha} .
$$

It follows that $\left\{f\left(F \cap U_{i}\right)\right\}$ is an $\varepsilon$-cover of $f(F)$, where $\varepsilon=c \delta^{\alpha}$.

## More General Transformations (Cont'd)

- We got that $\left\{f\left(F \cap U_{i}\right)\right\}$ is an $\varepsilon$-cover of $f(F)$, where $\varepsilon=c \delta^{\alpha}$. We also have

$$
\sum_{i}\left|f\left(F \cap U_{i}\right)\right|^{s / \alpha} \leq c^{s / \alpha} \sum_{i}\left|U_{i}\right|^{s}
$$

So

$$
\mathcal{H}^{s / \alpha}(f(F)) \leq c^{s / \alpha} \mathcal{H}_{\delta}^{s}(F)
$$

As $\delta \rightarrow 0$, we get $\varepsilon \rightarrow 0$.
This shows that

$$
\mathcal{H}^{s / \alpha}(f(F)) \leq c^{s / \alpha} \mathcal{H}^{s}(F) .
$$

## Hölder and Lipschitz Conditions

- Condition

$$
|f(x)-f(y)| \leq c|x-y|^{\alpha}
$$

is known as a Hölder condition of exponent $\alpha$.

- Such a condition implies that $f$ is continuous.
- Particularly important is the case $\alpha=1$, i.e.,

$$
|f(x)-f(y)| \leq c|x-y|, \quad x, y \in F
$$

- Then $f$ is called a Lipschitz mapping.
- Moreover, we get

$$
\mathcal{H}^{s}(f(F)) \leq c^{s} \mathcal{H}^{s}(F)
$$

## Differentiable Functions With Bounded Derivative

- Let $f$ be a differentiable function with bounded derivative,

$$
\left|f^{\prime}(x)\right| \leq c, \quad \text { for all } x
$$

- The Mean Value Theorem asserts that, for all $a, b$, there exists $a<c<b$, such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$



- Hence, for all $x, y$, there exists $x<z<y$, such that

$$
|f(x)-f(y)|=\left|f^{\prime}(z)\right||x-y| \leq c|x-y|
$$

- So $f$ is a Lipschitz mapping.


## Translation and Rotation Invariance of Hausdorff Measure

- Suppose $f$ is an isometry, i.e.,

$$
|f(x)-f(y)|=|x-y| .
$$

- In particular, both $f$ and $f^{-1}$ are Lipschitz.
- Thus, $\mathcal{H}^{s}(f(F))=\mathcal{H}^{s}(F)$.
- It follows that Hausdorff measures are:
- Translation invariant, i.e.,

$$
\mathcal{H}^{s}(F+z)=\mathcal{H}^{s}(F),
$$

where $F+z=\{x+z: x \in F\} ;$

- Rotation invariant.


## Subsection 2

## Hausdorff Dimension

## The Hausdorff Dimension

- We defined

$$
\mathcal{H}_{\delta}^{s}(F)=\inf \left\{\sum_{i=1}^{\infty}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } F\right\} .
$$

- For any set $F \subseteq \mathbb{R}^{n}$ and $\delta<1, \mathcal{H}_{\delta}^{s}(F)$ is non-increasing with $s$.
- So

$$
\mathcal{H}^{s}(F)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)
$$

is also non-increasing.

- In fact, if $t>s$ and $\left\{U_{i}\right\}$ is a $\delta$-cover of $F$, we have

$$
\sum_{i}\left|U_{i}\right|^{t} \leq \sum_{i}\left|U_{i}\right|^{t-s}\left|U_{i}\right|^{s} \leq \delta^{t-s} \sum_{i}\left|U_{i}\right|^{s}
$$

## The Hausdorff Dimension (Cont'd)

- Taking infima,

$$
\mathcal{H}_{\delta}^{t}(F) \leq \delta^{t-s} \mathcal{H}_{\delta}^{s}(F)
$$

- Letting $\delta \rightarrow 0$ we see that, for $t>s$,

$$
\mathcal{H}^{s}(F)<\infty \quad \text { implies } \quad \mathcal{H}^{t}(F)=0
$$

- Thus, a graph of $\mathcal{H}^{s}(F)$ against $s$ shows that there is a critical value of $s$ at which $\mathcal{H}^{s}(F)$ "jumps" from $\infty$ to 0 .
- This critical value is called the Hausdorff dimension of $F$, and written

$$
\operatorname{dim}_{H} F .
$$

## The Hausdorff Dimension and $s$-Sets

- The Hausdorff dimension of a set $F \subseteq \mathbb{R}^{n}$ is defined formally by

$$
\operatorname{dim}_{H} F=\inf \left\{s \geq 0: \mathcal{H}^{s}(F)=0\right\}=\sup \left\{s: \mathcal{H}^{s}(F)=\infty\right\}
$$

taking the supremum of the empty set to be 0 .

- We have

$$
\mathcal{H}^{s}(F)= \begin{cases}\infty, & \text { if } 0 \leq s<\operatorname{dim}_{H} F, \\ 0, & \text { if } s>\operatorname{dim}_{\mathrm{H}} F\end{cases}
$$

- If $s=\operatorname{dim}_{H} F$, then $\mathcal{H}^{s}(F)$ may be zero or infinite, or may satisfy $0<\mathcal{H}^{s}(F)<\infty$.
- A Borel set $F$ satisfying $0<\mathcal{H}^{s}(F)<\infty$ is called an $s$-set.


## Example

- Let $F$ be a flat disc of unit radius in $\mathbb{R}^{3}$.

From familiar properties of length, area and volume, we have:

- $\mathcal{H}^{1}(F)=$ length $(F)=\infty$;
- $0<\mathcal{H}^{2}(F)=\frac{4}{\pi} \times \operatorname{area}(F)=4<\infty$;
- $\mathcal{H}^{3}(F)=\frac{6}{\pi} \times \operatorname{vol}(F)=0$.

Thus $\operatorname{dim}_{H} F=2$ and we have:

- $\mathcal{H}^{s}(F)=\infty$, if $s<2$;
- $\mathcal{H}^{s}(F)=0$, if $s>2$.


## Monotonicity of Hausdorff Dimension

- If $E \subseteq F$, then $\operatorname{dim}_{H} E \leq \operatorname{dim}_{H} F$.

By the measure property, for all $s$,

$$
\mathcal{H}^{s}(E) \leq \mathcal{H}^{s}(F)
$$

Therefore,

$$
\begin{aligned}
\operatorname{dim}_{H} E & =\inf \left\{s \geq 0: \mathcal{H}^{s}(E)=0\right\} \\
& \leq \inf \left\{s \geq 0: \mathcal{H}^{s}(F)=0\right\} \\
& =\operatorname{dim}_{H} F
\end{aligned}
$$

## Countable Stability of Hausdorff Dimension

- If $F_{1}, F_{2}, \ldots$ is a (countable) sequence of sets then

$$
\operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i}=\sup _{1 \leq i<\infty}\left\{\operatorname{dim}_{H} F_{i}\right\} .
$$

By Monotonicity, for every $j, \operatorname{dim}_{H} F_{j} \leq \operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i}$.
Therefore, $\sup _{1 \leq i<\infty}\left\{\operatorname{dim}_{H} F_{i}\right\} \leq \operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i}$.
Suppose, for all $i$,

$$
\operatorname{dim}_{H} F_{i} \leq s
$$

Then, for all $i, \mathcal{H}^{s}\left(F_{i}\right)=0$. So $\mathcal{H}^{s}\left(\bigcup_{i=1}^{\infty} F_{i}\right)=0$.
We conclude

$$
\begin{aligned}
\operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i} & =\inf \left\{s \geq 0: \mathcal{H}^{s}\left(\bigcup_{i=1}^{\infty} F_{i}\right)=0\right\} \\
& \leq \sup _{1 \leq i<\infty}\left\{\operatorname{dim}_{H} F_{i}\right\}
\end{aligned}
$$

## Hausdorff Dimension of Countable Sets

- If $F$ is countable, then

$$
\operatorname{dim}_{H} F=0 .
$$

If $F_{i}$ is a single point, we have:

- $\mathcal{H}^{0}\left(F_{i}\right)=1$;
- $\operatorname{dim}_{H} F_{i}=0$.

So by countable stability

$$
\operatorname{dim}_{H} \bigcup_{i=1}^{\infty} F_{i}=0
$$

## Hausdorff Dimension of Open Sets

- If $F \subseteq \mathbb{R}^{n}$ is open, then

$$
\operatorname{dim}_{H} F=n .
$$

Suppose $F \subseteq \mathbb{R}^{n}$ is open.
Clearly, $F$ contains a ball of positive $n$-dimensional volume.
Therefore, $\operatorname{dim}_{H} F \geq n$.
But $F$ is contained in countably many balls.
Therefore, by Monotonicity and Countable Stability,

$$
\operatorname{dim}_{H} F \leq n .
$$

We conclude that $\operatorname{dim}_{H} F=n$.

## Hausdorff Dimension of Smooth Sets

- If $F$ is a smooth (i.e., continuously differentiable) m-dimensional submanifold (i.e., m-dimensional surface) of $\mathbb{R}^{n}$ then

$$
\operatorname{dim}_{H} F=m .
$$

- In particular:
- Smooth curves have dimension 1;
- Smooth surfaces have dimension 2.
- Essentially, this may be deduced from the relationship between Hausdorff and Lebesgue measures.


## Transformations Satisfying a Hölder Condition

## Proposition

Let $F \subseteq \mathbb{R}^{n}$ and suppose that $f: F \rightarrow \mathbb{R}^{m}$ satisfies a Hölder condition

$$
|f(x)-f(y)| \leq c|x-y|^{\alpha}, \quad x, y \in F
$$

Then $\operatorname{dim}_{H} f(F) \leq \frac{1}{\alpha} \operatorname{dim}_{H} F$.

- If $s>\operatorname{dim}_{H} F$, then by the preceding proposition,

$$
\mathcal{H}^{s / \alpha}(f(F)) \leq c^{s / \alpha} \mathcal{H}^{s}(F)=0
$$

Thus, $\operatorname{dim}_{H} f(F) \leq \frac{s}{\alpha}$, for all $s>\operatorname{dim}_{H} F$.

## Lipschitz Transformations

## Corollary

(a) If $f: F \rightarrow \mathbb{R}^{m}$ is Lipschitz, then $\operatorname{dim}_{H} f(F) \leq \operatorname{dim}_{H} F$.
(b) If $f: F \rightarrow \mathbb{R}^{m}$ is a bi-Lipschitz transformation, i.e.,

$$
c_{1}|x-y| \leq|f(x)-f(y)| \leq c_{2}|x-y|, \quad x, y \in F
$$

where $0<c_{1} \leq c_{2}<\infty$, then $\operatorname{dim}_{H} f(F)=\operatorname{dim}_{H} F$.

- Part (a) follows from the preceding proposition taking $\alpha=1$. Applying this to $f^{-1}: f(F) \rightarrow F$ gives the other inequality for (b).
- Hausdorff dimension is invariant under bi-Lipschitz transformations.
- Thus, if two sets have different dimensions there cannot be a bi-Lipschitz mapping from one onto the other.


## Sets of Hausdorff Dimension Less Than 1

## Proposition

A set $F \subseteq \mathbb{R}^{n}$ with $\operatorname{dim}_{H} F<1$ is totally disconnected.

- Let $x$ and $y$ be distinct points of $F$. Define a mapping $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ by

$$
f(z)=|z-x|
$$

$f$ does not increase distances, since

By the preceding corollary,

$$
\operatorname{dim}_{H} f(F) \leq \operatorname{dim}_{H} F<1
$$

## Sets of Hausdorff Dimension Less Than 1 (Cont'd)

- Thus $f(F)$ is a subset of $\mathbb{R}$ of $\mathcal{H}^{1}$-measure or length zero.

So $f(F)$ has a dense complement.
Choose $r$ with $r \notin f(F)$ and $0<r<f(y)$.
Then we have

$$
F=\{z \in F:|z-x|<r\} \cup\{z \in F:|z-x|>r\} .
$$

Thus, $F$ is contained in two disjoint open sets with $x$ in one set and $y$ in the other.

So $x$ and $y$ lie in different connected components of $F$.

## Subsection 3

## Calculation of Hausdorff Dimension

## Example: The Cantor Dust

- Let $F$ be the Cantor dust constructed from the unit square.

At each stage of the construction:

- The squares are divided into 16 squares with a quarter of the side length;
- The same pattern of four squares is retained.

Then $1 \leq \mathcal{H}^{1}(F) \leq \sqrt{2}$. So $\operatorname{dim}_{H} F=1$.
Let $E_{k}$ be the $k$-th stage of the construction.
Observe that $E_{k}$ consists of $4^{k}$ squares of side $4^{-k}$.
Thus, each square is of diameter $4^{-k} \sqrt{2}$.
Take the squares of $E_{k}$ as a $\delta$-cover of $F$, where $\delta=4^{-k} \sqrt{2}$.
Then an estimate for the infimum in the definition is

$$
\mathcal{H}_{\delta}^{1}(F) \leq 4^{k} 4^{-k} \sqrt{2}
$$

As $k \rightarrow \infty, \delta \rightarrow 0$, giving $\mathcal{H}^{1}(F) \leq \sqrt{2}$.

## Example: The Cantor Dust (Cont'd)

- We turn to providing a lower estimate.

Let proj denote orthogonal projection onto the $x$-axis.
Orthogonal projection does not increase distances.
So, if $x, y \in \mathbb{R}^{2}$,

$$
\mid \text { proj } x-\operatorname{proj} y|\leq|x-y|
$$

So proj is a Lipschitz mapping.
By virtue of the construction of $F$, the projection or "shadow" of $F$ on the $x$-axis, proj $F$, is the unit interval $[0,1]$.
So we have,

$$
\begin{array}{rll}
1 & = & \text { length }[0,1] \\
& =\mathcal{H}^{1}([0,1]) \\
& =\mathcal{H}^{1}(\text { proj } F) \\
& \leq \mathcal{H}^{\text {Lipschitz }}(F) .
\end{array}
$$

## Remarks

- The same argument and result hold for a set obtained by:
- Repeated division of squares into $m^{2}$ squares of side length $\frac{1}{m}$;
- Retention of one square in each column.
- This trick of using orthogonal projection to get a lower estimate of Hausdorff measure only works in special circumstances and is not the basis of a more general method.


## Example: The Cantor Set

- Let $F$ be the middle third Cantor set. If $s=\frac{\log 2}{\log 3}=0.6309 \ldots$, then $\operatorname{dim}_{H} F=s$ and $\frac{1}{2} \leq \mathcal{H}^{s}(F) \leq 1$.
Heuristic Calculation: The Cantor set $F$ splits into a left part $F_{\mathrm{L}}=F \cap\left[0, \frac{1}{3}\right]$ and a right part $F_{\mathrm{R}}=F \cap\left[\frac{2}{3}, 1\right]$.
- Both parts are geometrically similar to $F$ but scaled by a ratio $\frac{1}{3}$;
- $F=F_{\mathrm{L}} \cup F_{\mathrm{R}}$, with this union disjoint.

Thus, for any s, using Scaling of Hausdorff measures,

$$
\mathcal{H}^{s}(F)=\mathcal{H}^{s}\left(F_{\mathrm{L}}\right)+\mathcal{H}^{s}\left(F_{\mathrm{R}}\right)=\left(\frac{1}{3}\right)^{s} \mathcal{H}^{s}(F)+\left(\frac{1}{3}\right)^{s} \mathcal{H}^{s}(F) .
$$

Suppose at the critical value $s=\operatorname{dim}_{H} F$ we have $0<\mathcal{H}^{s}(F)<\infty$.
Then, we may divide by $\mathcal{H}^{s}(F)$ to get $1=2\left(\frac{1}{3}\right)^{s}$.
Thus, $s=\frac{\log 2}{\log 3}$.

## Example: The Cantor Set (Cont'd)

- Rigorous Calculation: We call the intervals that make up the sets $E_{k}$ in the construction of $F$ level- $k$ intervals.
$E_{k}$ consists of $2^{k}$ level- $k$ intervals each of length $3^{-k}$.
Take the intervals of $E_{k}$ as a $3^{-k}$-cover of $F$.
Then, for $s=\frac{\log 2}{\log 3}$, we get

$$
\mathcal{H}_{3-k}^{s}(F) \leq 2^{k} 3^{-k s}=2^{k}\left(3^{\frac{\log 2}{\log 3}}\right)^{-k}=2^{k}\left(3^{\log _{3} 2}\right)^{-k}=2^{k} 2^{-k}=1
$$

Letting $k \rightarrow \infty$ gives $\mathcal{H}^{s}(F) \leq 1$.
To prove that $\mathcal{H}^{s}(F) \geq \frac{1}{2}$, we show that, for any cover $\left\{U_{i}\right\}$ of $F$,

$$
\sum\left|U_{i}\right|^{s} \geq \frac{1}{2}=3^{-s}
$$

It is enough to assume that the $\left\{U_{i}\right\}$ are intervals.
By expanding them slightly and using the compactness of $F$, we need only consider a finite collection $\left\{U_{i}\right\}$ of closed subintervals of $[0,1]$.

## Example: The Cantor Set (Conclusion)

- For each $U_{i}$, let $k$ be the integer such that

$$
3^{-(k+1)} \leq\left|U_{i}\right|<3^{-k}
$$

The separation of the level- $k$ intervals is at least $3^{-k}$.
So $U_{i}$ can intersect at most one level- $k$ interval.
If $j \geq k$, then, by construction, $U_{i}$ intersects at most $2^{j-k}=2^{j} 3^{-s k} \leq 2^{j} 3^{s}\left|U_{i}\right|^{s}$ level- $j$ intervals of $E_{j}$.
Choose $j$ large enough so that $3^{-(j+1)} \leq\left|U_{i}\right|$, for all $U_{i}$. The $\left\{U_{i}\right\}$ intersect all $2^{j}$ basic intervals of length $3^{-j}$.
So counting intervals gives

$$
2^{j} \leq \sum_{i} 2^{j} 3^{s}\left|U_{i}\right|^{s} .
$$

This reduces to the desired inequality.

## Remarks on the Heuristic Method

- The "heuristic" method of calculation used in the preceding example gives the right answer for the dimension of many self-similar sets.
Example: The von Koch curve is made up of four copies of itself scaled by a factor $\frac{1}{3}$. Hence it has dimension $\frac{\log 4}{\log 3}$.
- More generally, suppose

$$
F=\bigcup_{i=1}^{m} F_{i}
$$

where:

- Each $F_{i}$ is geometrically similar to $F$ but scaled by a factor $c_{i}$;
- The $F_{i}$ do not overlap "too much".

Then the heuristic argument gives $\operatorname{dim}_{H} F$ as the number $s$ satisfying

$$
\sum_{i=1}^{m} c_{i}^{s}=1
$$

