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Hausdorff Measure and Dimension Hausdorff Measure

Subsection 1

Hausdorff Measure
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Hausdorff Measure and Dimension Hausdorff Measure

Covers

Recall that if U is any non-empty subset of n-dimensional Euclidean
space, Rn, the diameter of U is defined as

|U| = sup {|x − y | : x , y ∈ U},

i.e., as the greatest distance apart of any pair of points in U.

A δ-cover {Ui} of F is a countable (or finite) collection of sets of
diameter at most δ that cover F .

This means that

F ⊆
∞
⋃

i=1

Ui , with 0 ≤ |Ui | ≤ δ, for each i .
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Hausdorff Measure and Dimension Hausdorff Measure

Hausdorff Measure

Let F be a subset of Rn.

Let s be a non-negative number.

For any δ > 0, we define

Hs
δ(F ) = inf

{

∞
∑

i=1

|Ui |s : {Ui} is a δ-cover of F

}

.

So this process involves:

Looking at all covers of F by sets of diameter at most δ;
Seeking to minimize the sum of the s-th powers of the diameters.
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Hausdorff Measure and Dimension Hausdorff Measure

Hausdorff Measure (Cont’d)

As δ decreases, the class of permissible covers of F is reduced.

Therefore, the infimum Hs
δ(F ) increases.

So it approaches a limit as δ → 0.

We write
Hs(F ) = lim

δ→0
Hs

δ(F ).

This limit exists for any subset F of Rn.

The limiting value can be (and usually is) 0 or ∞.

We call Hs(F ) the s-dimensional Hausdorff measure of F .
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Hausdorff Measure and Dimension Hausdorff Measure

Hausdorff Measure is a Measure

With a certain amount of effort, Hs may be shown to be a measure.

It is straightforward to show that:

Hs(∅) = 0;
If E is contained in F then Hs(E ) ≤ Hs(F );
If {Fi} is any countable collection of sets, then

Hs

(

∞
⋃

i=1

Fi

)

≤
∞
∑

i=1

Hs(Fi ).

It is rather harder to show that there is equality in the last relation if
the {Fi} are disjoint Borel sets.
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Hausdorff Measure and Dimension Hausdorff Measure

Hausdorff Measure and Volume

Hausdorff measures generalize the familiar ideas of length, area,
volume, etc.

It may be shown that, for subsets of Rn, n-dimensional Hausdorff
measure is, to within a constant multiple, just n-dimensional
Lebesgue measure, i.e., the usual n-dimensional volume.

Let cn be the volume of an n-dimensional ball of diameter 1,

cn =

{

πn/2

2n (n2 )!, if n is even,

π(n−1)/2 ( n−1
2

)!

n! , if n is odd.

Then, if F is a Borel subset of Rn, then

Hn(F ) =
1

cn
voln(F ).
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Hausdorff Measure and Dimension Hausdorff Measure

Hausdorff Measure and Volume: Low Dimensions

Similarly, for “nice” lower-dimensional subsets of Rn, we have that:

H0(F ) is the number of points in F ;

H1(F ) gives the length of a smooth curve F ;

H2(F ) = 4
π
area(F ) if F is a smooth surface;

H3(F ) = 6
π
vol(F );

Hm(F ) = 1
cm
volm(F ) if F is a smooth m-dimensional submanifold of

R
n (i.e., an m-dimensional surface in the classical sense).
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Hausdorff Measure and Dimension Hausdorff Measure

Introducing the Scaling Property

On magnification by a factor λ:

The length of a curve is multiplied by λ;
The area of a plane region is multiplied by λ2;
The volume of a 3-dimensional object is multiplied by λ3.

The s-dimensional Hausdorff measure scales with a factor λs .
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The Scaling Property

Scaling Property

Let S be a similarity transformation of scale factor λ > 0. If F ⊆ Rn, then

Hs(S(F )) = λsHs(F ).

Suppose {Ui} is a δ-cover of F . Then we have:
{S(Ui)} is a λδ-cover of S(F );
∑ |S(Ui )|s = λs

∑ |Ui |s .
On taking the infimum,

Hs
λδ(S(F )) ≤ λsHs

δ(F ).

Letting δ → 0 gives that

Hs(S(F )) ≤ λsHs(F ).

Replacing S by S−1, and so λ by 1
λ , and F by S(F ) gives the

opposite inequality.
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More General Transformations and Hausdorff Measure

Proposition

Let F ⊆ Rn and f : F → R
m be a mapping such that

|f (x) − f (y)| ≤ c |x − y |α, x , y ∈ F ,

for constants c > 0 and α > 0. Then for each s,

Hs/α(f (F )) ≤ cs/αHs(F ).

Suppose {Ui} is a δ-cover of F .

We have
|f (F ∩ Ui)| ≤ c |F ∩ Ui |α ≤ c |Ui |α.

It follows that {f (F ∩ Ui)} is an ε-cover of f (F ), where ε = cδα.
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More General Transformations (Cont’d)

We got that {f (F ∩ Ui)} is an ε-cover of f (F ), where ε = cδα.

We also have

∑

i

|f (F ∩ Ui)|s/α ≤ cs/α
∑

i

|Ui |s .

So
Hs/α(f (F )) ≤ cs/αHs

δ(F ).

As δ → 0, we get ε → 0.

This shows that
Hs/α(f (F )) ≤ cs/αHs(F ).
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Hausdorff Measure and Dimension Hausdorff Measure

Hölder and Lipschitz Conditions

Condition
|f (x)− f (y)| ≤ c |x − y |α

is known as a Hölder condition of exponent α.

Such a condition implies that f is continuous.

Particularly important is the case α = 1, i.e.,

|f (x)− f (y)| ≤ c |x − y |, x , y ∈ F .

Then f is called a Lipschitz mapping.

Moreover, we get
Hs(f (F )) ≤ csHs(F ).
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Hausdorff Measure and Dimension Hausdorff Measure

Differentiable Functions With Bounded Derivative

Let f be a differentiable function with bounded derivative,

|f ′(x)| ≤ c , for all x .

The Mean Value Theorem asserts that,
for all a, b, there exists a < c < b, such
that

f ′(c) =
f (b)− f (a)

b − a
.

Hence, for all x , y , there exists x < z < y , such that

|f (x)− f (y)| = |f ′(z)||x − y | ≤ c |x − y |.

So f is a Lipschitz mapping.

George Voutsadakis (LSSU) Fractal Geometry April 2024 15 / 38



Hausdorff Measure and Dimension Hausdorff Measure

Translation and Rotation Invariance of Hausdorff Measure

Suppose f is an isometry, i.e.,

|f (x) − f (y)| = |x − y |.

In particular, both f and f −1 are Lipschitz.

Thus, Hs(f (F )) = Hs(F ).

It follows that Hausdorff measures are:

Translation invariant, i.e.,

Hs(F + z) = Hs(F ),

where F + z = {x + z : x ∈ F};
Rotation invariant.
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Subsection 2

Hausdorff Dimension
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Hausdorff Measure and Dimension Hausdorff Dimension

The Hausdorff Dimension

We defined

Hs
δ(F ) = inf

{

∞
∑

i=1

|Ui |s : {Ui} is a δ-cover of F

}

.

For any set F ⊆ Rn and δ < 1, Hs
δ(F ) is non-increasing with s.

So
Hs(F ) = lim

δ→0
Hs

δ(F )

is also non-increasing.

In fact, if t > s and {Ui} is a δ-cover of F , we have

∑

i

|Ui |t ≤
∑

i

|Ui |t−s |Ui |s ≤ δt−s
∑

i

|Ui |s .
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Hausdorff Measure and Dimension Hausdorff Dimension

The Hausdorff Dimension (Cont’d)

Taking infima,
Ht

δ(F ) ≤ δt−sHs
δ(F ).

Letting δ → 0 we see that, for t > s,

Hs(F ) < ∞ implies Ht(F ) = 0.

Thus, a graph of Hs(F ) against s shows that there is a critical value
of s at which Hs(F ) “jumps” from ∞ to 0.

This critical value is called the Hausdorff dimension of F , and
written

dimHF .
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Hausdorff Measure and Dimension Hausdorff Dimension

The Hausdorff Dimension and s-Sets

The Hausdorff dimension of a set F ⊆ Rn is defined formally by

dimHF = inf {s ≥ 0 : Hs(F ) = 0} = sup {s : Hs(F ) = ∞},

taking the supremum of the empty set to be 0.

We have

Hs(F ) =

{

∞, if 0 ≤ s < dimHF ,

0, if s > dimHF .

If s = dimHF , then Hs(F ) may be zero or infinite, or may satisfy
0 < Hs(F ) < ∞.

A Borel set F satisfying 0 < Hs(F ) < ∞ is called an s-set.
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Hausdorff Measure and Dimension Hausdorff Dimension

Example

Let F be a flat disc of unit radius in R3.

From familiar properties of length, area and volume, we have:

H1(F ) = length(F ) = ∞;

0 < H2(F ) = 4
π
× area(F ) = 4 < ∞;

H3(F ) = 6
π
× vol(F ) = 0.

Thus dimHF = 2 and we have:

Hs(F ) = ∞, if s < 2;
Hs(F ) = 0, if s > 2.
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Hausdorff Measure and Dimension Hausdorff Dimension

Monotonicity of Hausdorff Dimension

If E ⊆ F , then dimHE ≤ dimHF .

By the measure property, for all s,

Hs(E ) ≤ Hs(F ).

Therefore,

dimHE = inf {s ≥ 0 : Hs(E ) = 0}
≤ inf {s ≥ 0 : Hs(F ) = 0}
= dimHF .
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Hausdorff Measure and Dimension Hausdorff Dimension

Countable Stability of Hausdorff Dimension

If F1,F2, . . . is a (countable) sequence of sets then

dimH

∞
⋃

i=1

Fi = sup
1≤i<∞

{dimHFi}.

By Monotonicity, for every j , dimHFj ≤ dimH
⋃∞

i=1 Fi .

Therefore, sup1≤i<∞ {dimHFi} ≤ dimH
⋃∞

i=1 Fi .

Suppose, for all i ,
dimHFi ≤ s.

Then, for all i , Hs(Fi ) = 0. So Hs(
⋃∞

i=1 Fi) = 0.

We conclude

dimH
⋃∞

i=1 Fi = inf {s ≥ 0 : Hs(
⋃∞

i=1 Fi ) = 0}
≤ sup1≤i<∞ {dimHFi}.
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Hausdorff Measure and Dimension Hausdorff Dimension

Hausdorff Dimension of Countable Sets

If F is countable, then
dimHF = 0.

If Fi is a single point, we have:

H0(Fi ) = 1;
dimHFi = 0.

So by countable stability

dimH

∞
⋃

i=1

Fi = 0.
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Hausdorff Measure and Dimension Hausdorff Dimension

Hausdorff Dimension of Open Sets

If F ⊆ Rn is open, then
dimHF = n.

Suppose F ⊆ Rn is open.

Clearly, F contains a ball of positive n-dimensional volume.

Therefore, dimHF ≥ n.

But F is contained in countably many balls.

Therefore, by Monotonicity and Countable Stability,

dimHF ≤ n.

We conclude that dimHF = n.
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Hausdorff Measure and Dimension Hausdorff Dimension

Hausdorff Dimension of Smooth Sets

If F is a smooth (i.e., continuously differentiable) m-dimensional
submanifold (i.e., m-dimensional surface) of Rn then

dimHF = m.

In particular:

Smooth curves have dimension 1;
Smooth surfaces have dimension 2.

Essentially, this may be deduced from the relationship between
Hausdorff and Lebesgue measures.
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Hausdorff Measure and Dimension Hausdorff Dimension

Transformations Satisfying a Hölder Condition

Proposition

Let F ⊆ Rn and suppose that f : F → R
m satisfies a Hölder condition

|f (x) − f (y)| ≤ c |x − y |α, x , y ∈ F .

Then dimHf (F ) ≤ 1
αdimHF .

If s > dimHF , then by the preceding proposition,

Hs/α(f (F )) ≤ cs/αHs(F ) = 0.

Thus, dimHf (F ) ≤ s
α , for all s > dimHF .
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Hausdorff Measure and Dimension Hausdorff Dimension

Lipschitz Transformations

Corollary

(a) If f : F → R
m is Lipschitz, then dimHf (F ) ≤ dimHF .

(b) If f : F → R
m is a bi-Lipschitz transformation, i.e.,

c1|x − y | ≤ |f (x) − f (y)| ≤ c2|x − y |, x , y ∈ F ,

where 0 < c1 ≤ c2 < ∞, then dimHf (F ) = dimHF .

Part (a) follows from the preceding proposition taking α = 1.

Applying this to f −1 : f (F ) → F gives the other inequality for (b).

Hausdorff dimension is invariant under bi-Lipschitz transformations.

Thus, if two sets have different dimensions there cannot be a
bi-Lipschitz mapping from one onto the other.
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Hausdorff Measure and Dimension Hausdorff Dimension

Sets of Hausdorff Dimension Less Than 1

Proposition

A set F ⊆ Rn with dimHF < 1 is totally disconnected.

Let x and y be distinct points of F .

Define a mapping f : Rn → [0,∞) by

f (z) = |z − x |.
f does not increase distances, since

|f (z)− f (w)| = ||z − x | − |w − x ||
≤ |(z − x)− (w − x)|
= |z − w |.

By the preceding corollary,

dimHf (F ) ≤ dimHF < 1.
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Sets of Hausdorff Dimension Less Than 1 (Cont’d)

Thus f (F ) is a subset of R of H1-measure or length zero.

So f (F ) has a dense complement.

Choose r with r 6∈ f (F ) and 0 < r < f (y).

Then we have

F = {z ∈ F : |z − x | < r} ∪ {z ∈ F : |z − x | > r}.

Thus, F is contained in two disjoint open sets with x in one set and y

in the other.

So x and y lie in different connected components of F .
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Subsection 3

Calculation of Hausdorff Dimension
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Example: The Cantor Dust

Let F be the Cantor dust constructed from the unit square.

At each stage of the construction:

The squares are divided into 16 squares with a quarter of the side
length;
The same pattern of four squares is retained.

Then 1 ≤ H1(F ) ≤
√
2. So dimHF = 1.

Let Ek be the k-th stage of the construction.

Observe that Ek consists of 4k squares of side 4−k .

Thus, each square is of diameter 4−k
√
2.

Take the squares of Ek as a δ-cover of F , where δ = 4−k
√
2.

Then an estimate for the infimum in the definition is

H1
δ(F ) ≤ 4k4−k

√
2.

As k → ∞, δ → 0, giving H1(F ) ≤
√
2.
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Example: The Cantor Dust (Cont’d)

We turn to providing a lower estimate.

Let proj denote orthogonal projection onto the x-axis.

Orthogonal projection does not increase distances.

So, if x , y ∈ R2,
|projx − projy | ≤ |x − y |.

So proj is a Lipschitz mapping.

By virtue of the construction of F , the projection or “shadow” of F
on the x-axis, projF , is the unit interval [0, 1].

So we have,
1 = length[0, 1]

= H1([0, 1])

= H1(projF )
Lipschitz

≤ H1(F ).
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Hausdorff Measure and Dimension Calculation of Hausdorff Dimension

Remarks

The same argument and result hold for a set obtained by:

Repeated division of squares into m2 squares of side length 1
m
;

Retention of one square in each column.

This trick of using orthogonal projection to get a lower estimate of
Hausdorff measure only works in special circumstances and is not the
basis of a more general method.
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Example: The Cantor Set

Let F be the middle third Cantor set. If s = log 2
log 3 = 0.6309 . . ., then

dimHF = s and 1
2 ≤ Hs(F ) ≤ 1.

Heuristic Calculation: The Cantor set F splits into a left part
FL = F ∩ [0, 13 ] and a right part FR = F ∩ [23 , 1].

Both parts are geometrically similar to F but scaled by a ratio 1
3 ;

F = FL ∪ FR, with this union disjoint.

Thus, for any s, using Scaling of Hausdorff measures,

Hs(F ) = Hs(FL) +Hs(FR) =

(

1

3

)s

Hs(F ) +

(

1

3

)s

Hs(F ).

Suppose at the critical value s = dimHF we have 0 < Hs(F ) < ∞.

Then, we may divide by Hs(F ) to get 1 = 2
(

1
3

)s
.

Thus, s = log 2
log 3 .
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Example: The Cantor Set (Cont’d)

Rigorous Calculation: We call the intervals that make up the sets
Ek in the construction of F level-k intervals.

Ek consists of 2k level-k intervals each of length 3−k .

Take the intervals of Ek as a 3−k -cover of F .

Then, for s = log 2
log 3 , we get

Hs
3−k (F ) ≤ 2k3−ks = 2k

(

3
log 2
log 3

)−k

= 2k(3log3 2)−k = 2k2−k = 1.

Letting k → ∞ gives Hs(F ) ≤ 1.

To prove that Hs(F ) ≥ 1
2 , we show that, for any cover {Ui} of F ,

∑

|Ui |s ≥
1

2
= 3−s .

It is enough to assume that the {Ui} are intervals.

By expanding them slightly and using the compactness of F , we need
only consider a finite collection {Ui} of closed subintervals of [0, 1].
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Example: The Cantor Set (Conclusion)

For each Ui , let k be the integer such that

3−(k+1) ≤ |Ui | < 3−k .

The separation of the level-k intervals is at least 3−k .

So Ui can intersect at most one level-k interval.

If j ≥ k , then, by construction, Ui intersects at most
2j−k = 2j3−sk ≤ 2j3s |Ui |s level-j intervals of Ej .

Choose j large enough so that 3−(j+1) ≤ |Ui |, for all Ui .

The {Ui} intersect all 2j basic intervals of length 3−j .

So counting intervals gives

2j ≤
∑

i

2j3s |Ui |s .

This reduces to the desired inequality.
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Remarks on the Heuristic Method

The “heuristic” method of calculation used in the preceding example
gives the right answer for the dimension of many self-similar sets.

Example: The von Koch curve is made up of four copies of itself
scaled by a factor 1

3 . Hence it has dimension log 4
log 3 .

More generally, suppose

F =
m
⋃

i=1

Fi ,

where:
Each Fi is geometrically similar to F but scaled by a factor ci ;
The Fi do not overlap “too much”.

Then the heuristic argument gives dimHF as the number s satisfying

m
∑

i=1

csi = 1.
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