Introduction to Fractal Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Alternative Definitions of Dimension

- Introduction
- Box-Counting Dimensions
- Properties and Problems of Box-Counting Dimension

Subsection 1

Introduction

Measurements at Scale δ

- Most definitions of dimension use the fundamental idea of "measurement at scale δ ".
- For each δ, we measure a set in a way that ignores irregularities of size less than δ.
- Then we see how these measurements behave as $\delta \rightarrow 0$.

Example

- Suppose *F* is a plane curve.
- Our measurement, $M_{\delta}(F)$, might be the number of steps required by a pair of dividers set at length δ to traverse F.
- A dimension of F is then determined by the power law (if any) obeyed by M_δ(F) as δ → 0.
- Suppose that, for constants c and s,

$$M_{\delta}(F) \sim c \delta^{-s}.$$

• Then we might say that *F* has "divider dimension" *s*, with *c* regarded as the "*s*-dimensional length" of *F*.

Example (Cont'd)

• We assumed

$$M_{\delta}(F) \sim c \delta^{-s}.$$

• Taking logarithms

$$\log M_{\delta}(F) \simeq \log c - s \log \delta,$$

in the sense that the difference of the two sides tends to 0 with $\delta.$ $\bullet\,$ So we get

$$s = \lim_{\delta \to 0} rac{\log M_{\delta}(F)}{-\log \delta}.$$

General Guidelines for "Dimensions"

• For the value of s given by $M_{\delta}(F) \sim c \delta^{-s}$ to behave like a dimension, the method of measurement needs to scale with the set.

So, doubling the size of F and at the same time doubling the scale at which measurement takes place does not affect the answer, i.e., we require

$$M_{\delta}(\delta F) = M_1(F)$$
, for all δ .

- If we modify our example and redefine M_δ(F) to be the sum of the divider step lengths, then M_δ(F) is homogeneous of degree 1. That is, we have M_δ(δF) = δ¹M₁(F) for δ > 0. This must be taken into account when defining the dimension.
- In general, suppose $M_{\delta}(F)$ is homogeneous of degree d. That is, we have $M_{\delta}(\delta F) = \delta^d M_1(F)$. Then power law of the form $M_{\delta}(F) \sim c \delta^{d-s}$ corresponds to a

dimension s.

George Voutsadakis (LSSU)

Desirable Properties of "Dimension"

- Here are some desirable properties of a "dimension", possessed by the Hausdorff dimension:
 - **Monotonicity**: If $E \subseteq F$, then dim_H $E \leq \dim_H F$.
 - **Stability**: dim_H($E \cup F$) = max(dim_HE, dim_HF).
 - **Countable Stability**: $\dim_{\mathrm{H}}(\bigcup_{i=1}^{\infty} F_i) = \sup_{1 \le i \le \infty} \dim_{\mathrm{H}} F_i$.
 - **Geometric Invariance**: $\dim_{H} f(F) = \dim_{H} F$, if f is a transformation of \mathbb{R}^n , such as a translation, rotation, similarity or affinity.
 - **Lipschitz Invariance**: $\dim_{H} f(F) = \dim_{H} F$ if f is a bi-Lipschitz transformation.
 - **Countable Sets**: $\dim_{H} F = 0$ if F is finite or countable.
 - **Open Sets**: If *F* is an open subset of \mathbb{R}^n , then dim_H*F* = *n*.
 - **Smooth Manifolds**: dim_HF = m, if F is a smooth *m*-dimensional manifold (curve, surface, etc.).

Overview of "Dimension" Properties

- All definitions of dimension are monotonic.
- Most are stable.
- As we shall see, some common definitions fail to exhibit countable stability and may have countable sets of positive dimension.
- All the usual dimensions are Lipschitz invariant, and, therefore, geometrically invariant.
- The "open sets" and "smooth manifolds" properties ensure that the dimension is an extension of the classical definition.
- Finally, we note that different definitions of dimension can provide different information about which sets are Lipschitz equivalent.

Subsection 2

Box-Counting Dimensions

Box-Counting Dimension

- Let F be any non-empty bounded subset of \mathbb{R}^n .
- Let N_δ(F) be the smallest number of sets of diameter at most δ which can cover F.
- The **lower** and **upper box-counting dimensions** of *F*, respectively, are defined as

$$\underline{\dim}_B F = \underline{\lim}_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}, \quad \overline{\dim}_B F = \overline{\lim}_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}.$$

• If these are equal we refer to the common value as the **box-counting dimension** or **box dimension** of *F*,

$$\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}.$$

Remarks

• The box-counting dimension of F is given by

$$\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}.$$

- We always assume that $\delta > 0$ is sufficiently small to ensure that $-\log \delta$ and similar quantities are strictly positive.
- To avoid problems with "log 0" or "log ∞ " we generally consider box dimension only for non-empty bounded sets.

An Equivalent Definition of Box Dimension

- Consider the collection of cubes in the δ -coordinate mesh of \mathbb{R}^n , i.e. cubes of the form $[m_1\delta, (m_1+1)\delta] \times \cdots \times [m_n\delta, (m_n+1)\delta]$, where m_1, \ldots, m_n are integers.
- \bullet Recall that a "cube" is an interval in \mathbb{R}^1 and a square in $\mathbb{R}^2.$
- Let $N'_{\delta}(F)$ be the number of δ -mesh cubes that intersect F.
- They provide a collection of $N'_{\delta}(F)$ sets of diameter $\delta\sqrt{n}$ that cover F.
- So $N_{\delta\sqrt{n}}(F) \leq N_{\delta}'(F)$.
- If $\delta\sqrt{n} < 1$, then $\frac{\log N_{\delta\sqrt{n}}(F)}{-\log(\delta\sqrt{n})} \leq \frac{\log N'_{\delta}(F)}{-\log\sqrt{n}-\log\delta}$.
- So taking limits as $\delta \rightarrow 0$,

$$\underline{\dim}_B F \leq \underline{\lim}_{\delta \to 0} \frac{\log N'_{\delta}(F)}{-\log \delta}, \quad \overline{\dim}_B F \leq \overline{\underline{\lim}}_{\delta \to 0} \frac{\log N'_{\delta}(F)}{-\log \delta}.$$

Equivalent Definition of Box Dimension (Cont'd)

- On the other hand, consider any set of diameter at most δ .
- Choose a cube of side δ containing some point of the set together with its neighboring cubes of side δ .
- So the set is contained in 3^n mesh cubes of side δ .
- Thus,

$$N'_{\delta}(F) \leq 3^n N_{\delta}(F).$$

• Taking logarithms and limits as $\delta
ightarrow$ 0, leads to the inequalities

$$\underline{\dim}_B F \geq \underline{\lim}_{\delta \to 0} \frac{\log N'_{\delta}(F)}{-\log \delta}, \quad \overline{\dim}_B F \geq \overline{\lim}_{\delta \to 0} \frac{\log N'_{\delta}(F)}{-\log \delta}.$$

 Hence to find the box dimensions, we can equally well take N_δ(F) to be the number of mesh cubes of side δ that intersect F.

Using Arbitrary Cubes or Closed Balls

• Another frequently used definition of box dimension is obtained by:

- Taking $N_{\delta}(F)$ to be the smallest number of arbitrary cubes of side δ required to cover F;
- Defining

$$\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta},$$

whenever the limit exists.

- The equivalence of this definition follows as in the mesh cube case, noting that:
 - Any cube of side δ has diameter $\delta \sqrt{n}$;
 - Any set of diameter of at most δ is contained in a cube of side δ .
- Similarly, we get exactly the same values if we take $N_{\delta}(F)$ as the smallest number of closed balls of radius δ that cover F.

Another Formulation Using Disjoint Balls

- Let $N'_{\delta}(F)$ be the largest number of disjoint balls of radius δ with centers in F.
- Let $B_1, \ldots, B_{N'_{\delta}(F)}$ be disjoint balls centered in F and of radius δ .
- If x belongs to F then x must be within distance δ of one of the B_i.
 Otherwise the ball of center x and radius δ can be added to form a larger collection of disjoint balls.
- Thus, the N'_δ(F) balls concentric with the B_i but of radius 2δ (diameter 4δ) cover F.
- This gives $N_{4\delta}(F) \leq N'_{\delta}(F)$.

Another Formulation Using Disjoint Balls (Cont'd)

- Suppose also that $B_1, \ldots, B_{N'_{\delta}(F)}$ are disjoint balls of radii δ with centers in F.
- Let U₁,..., U_k be any collection of sets of diameter at most δ which cover F.
- The U_i must cover the centers of the B_i .
- So each B_i must contain at least one of the U_j .
- As the B_i are disjoint, there are at least as many U_j as B_i .
- Hence, $N'_{\delta}(F) \leq N_{\delta}(F)$.
- Taking logarithms and limits of these inequalities shows that the value of the box dimension remains unaltered if $N_{\delta}(F)$ is replaced by this $N'_{\delta}(F)$.

Summary of Equivalent Definitions

• The lower and upper box-counting dimensions of a subset F of \mathbb{R}^n are given by

$$\underline{\dim}_{B}F = \underline{\lim}_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}, \quad \overline{\dim}_{B}F = \overline{\lim}_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}.$$

and the box-counting dimension of F by $\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$ (if the limit exists), where $N_{\delta}(F)$ is any of the following:

- (i) The smallest number of closed balls of radius δ that cover F;
- (ii) The smallest number of cubes of side δ that cover *F*;
- (iii) The number of δ -mesh cubes that intersect F;
- (iv) The smallest number of sets of diameter at most δ that cover F;
- (v) The largest number of disjoint balls of radius δ with centers in F.

The Way δ Approaches Zero

- In the limits defining the upper, lower and box dimension, it is enough to consider limits as δ tends to 0 through any decreasing sequence δ_k , such that $\delta_{k+1} \ge c\delta_k$, for some constant 0 < c < 1; in particular for $\delta_k = c^k$.
 - Suppose $\delta_{k+1} \leq \delta < \delta_k$. Then, with $N_{\delta}(F)$ the least number of sets in a δ -cover of F,

$$\frac{\log N_{\delta}(F)}{-\log \delta} \leq \frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_k} = \frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_{k+1} + \log \frac{\delta_{k+1}}{\delta_k}} \\ \leq \frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_{k+1} + \log c}.$$

So we get

$$\overline{\lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}} \leq \overline{\lim_{k \to \infty} \frac{\log N_{\delta_k}(F)}{-\log \delta_k}}$$

The opposite inequality is trivial.

The case of lower limits may be dealt with in the same way.

The Minkowski Content

• Recall that the δ -**neighborhood** F_{δ} of a subset F of \mathbb{R}^n is

 $F_{\delta} = \{x \in \mathbb{R}^n : |x - y| \le \delta, \text{ for some } y \in F\},\$

- This is the set of points within distance δ of F.
- We consider the rate at which the *n*-dimensional volume of F_{δ} shrinks as $\delta \rightarrow 0$.
 - Example: In \mathbb{R}^3 , we have the following:
 - If F is a single point then F_{δ} is a ball with $vol(F_{\delta}) = \frac{4}{3}\pi\delta^3$;
 - If F is a segment of length ℓ , then F_{δ} is "sausage-like" with vol $(F_{\delta}) \sim \pi \ell \delta^2$;
 - If F is a flat set of area a, then F_{δ} is essentially a thickening of F with $vol(F_{\delta}) \sim 2a\delta$.
- In each case, $vol(F_{\delta}) \sim c\delta^{3-s}$, where s is the dimension of F.
- So the exponent of δ is indicative of the dimension.
- The coefficient c of δ^{3-s} , known as the **Minkowski content** of F, is a measure of the length, area or volume of the set as appropriate.

The s-Dimensional Content

- Let F is a subset of \mathbb{R}^n .
- Denote by volⁿ the *n*-dimensional volume.
- Suppose, for some s, $\frac{\operatorname{vol}^{n}(F_{\delta})}{\delta^{n-s}}$ tends to a positive finite limit as $\delta \to 0$.
- Then it makes sense to regard F as s-dimensional.
- The limiting value is called the *s*-dimensional content of *F*.
- This concept is of slightly restricted use since it is not necessarily additive on disjoint subsets, i.e., is not a measure.
- Even if this limit does not exist, we may be able to extract the critical exponent of δ .
- This exponent turns out to be related to the box dimension.

Box Dimension and Volume of δ -Neighborhoods

Proposition

If F is a subset of \mathbb{R}^n , then

$$\underline{\dim}_B F = n - \overline{\lim_{\delta \to 0}} \frac{\log \operatorname{vol}^n(F_{\delta})}{\log \delta}, \quad \overline{\dim}_B F = n - \underline{\lim_{\delta \to 0}} \frac{\log \operatorname{vol}^n(F_{\delta})}{\log \delta},$$

where F_{δ} is the δ -neighborhood of F.

• Suppose F can be covered by $N_{\delta}(F)$ balls of radius $\delta < 1$. Then F_{δ} can be covered by the concentric balls of radius 2δ . Hence, $\operatorname{vol}^{n}(F_{\delta}) \leq N_{\delta}(F)c_{n}(2\delta)^{n}$, where c_{n} is the volume of the unit ball in \mathbb{R}^{n} .

Taking logarithms,

$$\frac{\log \operatorname{vol}^n(F_{\delta})}{-\log \delta} \leq \frac{\log 2^n c_n + n \log \delta + \log N_{\delta}(F)}{-\log \delta}$$

Box Dimension and Volume of δ -Neighborhoods (Cont'd)

• We obtained
$$\frac{\log \operatorname{vol}^n(F_{\delta})}{-\log \delta} \leq \frac{\log 2^n c_n + n \log \delta + \log N_{\delta}(F)}{-\log \delta}$$
.
So
 $\lim_{\delta \to 0} \frac{\log \operatorname{vol}^n(F_{\delta})}{-\log \delta} \leq -n + \underline{\dim}_B F.$

A similar inequality holds for the upper limits.

Suppose there are $N_{\delta}(F)$ disjoint balls of radius δ with centers in F. Then, by adding their volumes,

$$N_{\delta}(F)c_n\delta^n \leq \operatorname{vol}^n(F_{\delta}).$$

Taking logarithms and letting $\delta \rightarrow 0$ gives the opposite inequality.

• In this context, box dimension is sometimes referred to as **Minkowski** dimension or **Minkowski-Bouligand dimension**.

Box-Counting Dimension and Hausdorff Dimension

- Suppose *F* can be covered by $N_{\delta}(F)$ sets of diameter δ .
- Then, by the definition of $\mathcal{H}^{s}_{\delta}(F)$,

 $\mathcal{H}^{\boldsymbol{s}}_{\delta}(F) \leq N_{\delta}(F)\delta^{\boldsymbol{s}}.$

• Suppose
$$1 < \mathcal{H}^{s}(F) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(F)$$
.

• Then $\log N_{\delta}(F) + s \log \delta > 0$, if δ is sufficiently small.

• Thus,
$$s \leq \underline{\lim}_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$$
.

• So, for every $F \subseteq \mathbb{R}^n$,

$$\dim_{\mathsf{H}} F \leq \underline{\dim}_{B} F \leq \overline{\dim}_{B} F.$$

• We do not in general get equality here.

Box Dimension and Hausdorff Dimension (Cont'd)

Roughly speaking

$$\dim_B F = \lim_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$$

says that $N_{\delta}(F) \simeq \delta^{-s}$, for small δ , where $s = \dim_B F$.

More precisely, it says that

$$\begin{array}{ll} N_{\delta}(F)\delta^{s} \to \infty, & \text{if } s < \dim_{B} F, \\ N_{\delta}(F)\delta^{s} \to 0, & \text{if } s > \dim_{B} F. \end{array}$$

Box Dimension and Hausdorff Dimension (Cont'd)

Now consider

$$\begin{array}{rcl} \mathcal{N}_{\delta}(F)\delta^{s} &=& \inf \left\{ \sum_{i} \delta^{s} : \{U_{i}\} \text{ is a (finite) } \delta\text{-cover of } F \right\}; \\ \mathcal{H}_{\delta}^{s}(F) &=& \inf \left\{ \sum_{i} |U_{i}|^{s} : \{U_{i}\} \text{ is a } \delta\text{-cover of } F \right\}. \end{array}$$

In calculating:

- Hausdorff dimension, we assign different weights $|U_i|^s$ to the covering sets U_i ;
- ${\scriptstyle \bullet}\,$ Box dimension, we use the same weight δ^s for each covering set.
- This difference implies the following:
 - Box dimensions indicate the efficiency with which a set may be covered by small sets of equal size;
 - Hausdorff dimension involves coverings by sets of small but perhaps widely varying size.

Example: Middle Third Cantor Set

• Let F be the middle third Cantor set. Then $\underline{\dim}_B F = \overline{\dim}_B F = \frac{\log 2}{\log 3}$. We have a covering by the 2^k level-k intervals of E_k of length 3^{-k} . This gives that, for $3^{-k} < \delta \le 3^{-k+1}$, $N_{\delta}(F) \le 2^k$. Thus, we get

$$\overline{\dim}_B F = \overline{\lim_{\delta \to 0}} \frac{\log N_{\delta}(F)}{-\log \delta} \le \overline{\lim_{k \to \infty}} \frac{\log 2^k}{\log 3^{k-1}} = \frac{\log 2}{\log 3}.$$

On the other hand, any interval of length δ with $3^{-k-1} \leq \delta < 3^{-k}$ intersects at most one of the level-k intervals of length 3^{-k} used in the construction of F. There are 2^k such intervals. So at least 2^k intervals of length δ are required to cover F. Hence $N_{\delta}(F) \geq 2^k$. So $\underline{\dim}_B F \geq \frac{\log 2}{\log 3}$. Thus, at least for the Cantor set, $\dim_H F = \dim_B F$.

Subsection 3

Properties and Problems of Box-Counting Dimension

Properties of Box-Counting Dimension

- The following elementary properties of box dimension mirror those of Hausdorff dimension, and may be verified in much the same way.
 - (i) A smooth *m*-dimensional submanifold of \mathbb{R}^n has dim_BF = m.
 - (ii) $\underline{\dim}_B$ and $\overline{\dim}_B$ are monotonic.
 - (iii) $\overline{\dim}_B$ is finitely stable, i.e.,

$$\overline{\dim}_B(E \cup F) = \max{\{\overline{\dim}_B E, \overline{\dim}_B F\}}.$$

The corresponding identity does not hold for $\underline{\dim}_B$.

(iv) $\underline{\dim}_B$ and $\overline{\dim}_B$ are bi-Lipschitz invariant. Suppose that:

• $|f(x) - f(y)| \le c|x - y|;$

• *F* can be covered by $N_{\delta}(F)$ sets of diameter at most δ .

Then the $N_{\delta}(F)$ images of these sets under f form a cover of f(F) by sets of diameter at most $c\delta$.

This shows that $\dim_B f(F) \leq \dim_B F$.

Similarly, box dimensions behave just like Hausdorff dimensions under bi-Lipschitz and Hölder transformations.

Box Dimension and Closures

Proposition

Let \overline{F} denote the closure of F, i.e., the smallest closed subset of \mathbb{R}^n containing F. Then

$$\underline{\dim}_B \overline{F} = \underline{\dim}_B F$$
 and $\overline{\dim}_B \overline{F} = \overline{\dim}_B F$.

 Let B₁,..., B_k be a finite collection of closed balls of radii δ. If the closed set ∪_{i=1}^k B_i contains F, it also contains F. Hence the smallest number of closed balls of radius δ that cover F equals the smallest number required to cover the larger set F. This yields the result.

Negative Consequences

- An immediate consequence of the proposition is that if F is a dense subset of an open region of Rⁿ then dim_BF = dim_BF = n. Example: Let F be the (countable) set of rational numbers in (0,1). Then F is the entire interval [0,1]. So dim_BF = dim_BF = 1.
- Thus, countable sets can have non-zero box dimension.
 Example (Cont'd): The box-counting dimension of each rational number regarded as a one-point set is clearly zero
 However, the countable union of these singleton sets has dimension 1.
- Consequently, it is not generally true that

$$\dim_B \bigcup_{i=1}^{\infty} F_i = \sup_i \dim_B F_i.$$

• This severely limits the usefulness of box dimension, since introducing a small, i.e., countable, set of points can change the dimension.

Example

• $F = \{0, 1, \frac{1}{2}, \frac{1}{3}, ...\}$ is a compact set with dim_B $F = \frac{1}{2}$. Let $0 < \delta < \frac{1}{2}$ and let k be the integer satisfying $\frac{1}{k(k-1)} > \delta \ge \frac{1}{k(k+1)}$. Note that $\frac{1}{k-1} - \frac{1}{k} = \frac{1}{k(k-1)} > \delta$. So, if $|U| \leq \delta$, then U can cover at most one of $1, \frac{1}{2}, \ldots, \frac{1}{k}$. Thus, at least k sets of diameter δ are required to cover F. So $N_{\delta}(F) \geq k$. This gives $\frac{\log N_{\delta}(F)}{-\log \delta} \geq \frac{\log k}{\log k(k+1)}$. Letting $\delta \to 0$, so $k \to \infty$, gives $\underline{\dim}_B F \geq \frac{1}{2}$. Conversely, if $\frac{1}{2} > \delta > 0$, take k such that $\frac{1}{k(k-1)} > \delta \ge \frac{1}{k(k+1)}$. Then k + 1 intervals of length δ cover $[0, \frac{1}{k}]$. This remining k - 1 points can be covered by another k - 1 intervals. Thus $N_{\delta}(F) \leq 2k$. So $\frac{\log N_{\delta}(F)}{-\log \delta} \leq \frac{\log (2k)}{\log k(k-1)}$. This gives $\overline{\dim}_B F \leq \frac{1}{2}$.