Introduction to Fractal Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Alternative Definitions of Dimension

- Introduction
- Box-Counting Dimensions
- Properties and Problems of Box-Counting Dimension

Subsection 1

Introduction

Measurements at Scale δ

- Most definitions of dimension use the fundamental idea of "measurement at scale δ ".
- For each δ, we measure a set in a way that ignores irregularities of size less than δ.
- Then we see how these measurements behave as $\delta \rightarrow 0$.

Example

- Suppose F is a plane curve.
- Our measurement, $M_{\delta}(F)$, might be the number of steps required by a pair of dividers set at length δ to traverse F.
- A dimension of F is then determined by the power law (if any) obeyed by $M_{\delta}(F)$ as $\delta \rightarrow 0$.
- Suppose that, for constants c and s,

$$
M_{\delta}(F) \sim c \delta^{-s} .
$$

- Then we might say that F has "divider dimension" s, with c regarded as the "s-dimensional length" of F.

Example (Cont'd)

- We assumed

$$
M_{\delta}(F) \sim c \delta^{-s}
$$

- Taking logarithms

$$
\log M_{\delta}(F) \simeq \log c-s \log \delta
$$

in the sense that the difference of the two sides tends to 0 with δ.

- So we get

$$
s=\lim _{\delta \rightarrow 0} \frac{\log M_{\delta}(F)}{-\log \delta}
$$

General Guidelines for "Dimensions"

- For the value of s given by $M_{\delta}(F) \sim c \delta^{-s}$ to behave like a dimension, the method of measurement needs to scale with the set.
So, doubling the size of F and at the same time doubling the scale at which measurement takes place does not affect the answer, i.e., we require

$$
M_{\delta}(\delta F)=M_{1}(F), \quad \text { for all } \delta
$$

- If we modify our example and redefine $M_{\delta}(F)$ to be the sum of the divider step lengths, then $M_{\delta}(F)$ is homogeneous of degree 1 .
That is, we have $M_{\delta}(\delta F)=\delta^{1} M_{1}(F)$ for $\delta>0$.
This must be taken into account when defining the dimension.
- In general, suppose $M_{\delta}(F)$ is homogeneous of degree d.

That is, we have $M_{\delta}(\delta F)=\delta^{d} M_{1}(F)$.
Then power law of the form $M_{\delta}(F) \sim c \delta^{d-s}$ corresponds to a dimension s.

Desirable Properties of "Dimension"

- Here are some desirable properties of a "dimension", possessed by the Hausdorff dimension:
- Monotonicity: If $E \subseteq F$, then $\operatorname{dim}_{H} E \leq \operatorname{dim}_{H} F$.
- Stability: $\operatorname{dim}_{H}(E \cup F)=\max \left(\operatorname{dim}_{H} E, \operatorname{dim}_{H} F\right)$.
- Countable Stability: $\operatorname{dim}_{\mathrm{H}}\left(\bigcup_{i=1}^{\infty} F_{i}\right)=\sup _{1 \leq i<\infty} \operatorname{dim}_{\mathrm{H}} F_{i}$.
- Geometric Invariance: $\operatorname{dim}_{H} f(F)=\operatorname{dim}_{H} F$, if f is a transformation of \mathbb{R}^{n}, such as a translation, rotation, similarity or affinity.
- Lipschitz Invariance: $\operatorname{dim}_{H} f(F)=\operatorname{dim}_{H} F$ if f is a bi-Lipschitz transformation.
- Countable Sets: $\operatorname{dim}_{H} F=0$ if F is finite or countable.
- Open Sets: If F is an open subset of \mathbb{R}^{n}, then $\operatorname{dim}_{H} F=n$.
- Smooth Manifolds: $\operatorname{dim}_{H} F=m$, if F is a smooth m-dimensional manifold (curve, surface, etc.).

Overview of "Dimension" Properties

- All definitions of dimension are monotonic.
- Most are stable.
- As we shall see, some common definitions fail to exhibit countable stability and may have countable sets of positive dimension.
- All the usual dimensions are Lipschitz invariant, and, therefore, geometrically invariant.
- The "open sets" and "smooth manifolds" properties ensure that the dimension is an extension of the classical definition.
- Finally, we note that different definitions of dimension can provide different information about which sets are Lipschitz equivalent.

Subsection 2

Box-Counting Dimensions

Box-Counting Dimension

- Let F be any non-empty bounded subset of \mathbb{R}^{n}.
- Let $N_{\delta}(F)$ be the smallest number of sets of diameter at most δ which can cover F.
- The lower and upper box-counting dimensions of F, respectively, are defined as

$$
\underline{\operatorname{dim}}_{B} F=\underline{\lim }_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}, \quad \overline{\operatorname{dim}}_{B} F=\overline{\lim }_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta} .
$$

- If these are equal we refer to the common value as the box-counting dimension or box dimension of F,

$$
\operatorname{dim}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}
$$

Remarks

- The box-counting dimension of F is given by

$$
\operatorname{dim}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta} .
$$

- We always assume that $\delta>0$ is sufficiently small to ensure that $-\log \delta$ and similar quantities are strictly positive.
- To avoid problems with " $\log 0$ " or " $\log \infty$ " we generally consider box dimension only for non-empty bounded sets.

An Equivalent Definition of Box Dimension

- Consider the collection of cubes in the δ-coordinate mesh of \mathbb{R}^{n}, i.e. cubes of the form $\left[m_{1} \delta,\left(m_{1}+1\right) \delta\right] \times \cdots \times\left[m_{n} \delta,\left(m_{n}+1\right) \delta\right]$, where m_{1}, \ldots, m_{n} are integers.
- Recall that a "cube" is an interval in \mathbb{R}^{1} and a square in \mathbb{R}^{2}.
- Let $N_{\delta}^{\prime}(F)$ be the number of δ-mesh cubes that intersect F.
- They provide a collection of $N_{\delta}^{\prime}(F)$ sets of diameter $\delta \sqrt{n}$ that cover F.
- So $N_{\delta \sqrt{n}}(F) \leq N_{\delta}^{\prime}(F)$.
- If $\delta \sqrt{n}<1$, then $\frac{\log N_{\delta \sqrt{n}}(F)}{-\log (\delta \sqrt{n})} \leq \frac{\log N_{\delta}^{\prime}(F)}{-\log \sqrt{n}-\log \delta}$.
- So taking limits as $\delta \rightarrow 0$,

$$
\underline{\operatorname{dim}}_{B} F \leq \varliminf_{\delta \rightarrow 0} \frac{\log N_{\delta}^{\prime}(F)}{-\log \delta}, \quad \overline{\operatorname{dim}}_{B} F \leq \varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}^{\prime}(F)}{-\log \delta} .
$$

Equivalent Definition of Box Dimension (Cont'd)

- On the other hand, consider any set of diameter at most δ.
- Choose a cube of side δ containing some point of the set together with its neighboring cubes of side δ.
- So the set is contained in 3^{n} mesh cubes of side δ.
- Thus,

$$
N_{\delta}^{\prime}(F) \leq 3^{n} N_{\delta}(F)
$$

- Taking logarithms and limits as $\delta \rightarrow 0$, leads to the inequalities

$$
\underline{\operatorname{dim}}_{B} F \geq \lim _{\delta \rightarrow 0} \frac{\log N_{\delta}^{\prime}(F)}{-\log \delta}, \quad \overline{\operatorname{dim}}_{B} F \geq \overline{\lim }_{\delta \rightarrow 0} \frac{\log N_{\delta}^{\prime}(F)}{-\log \delta} .
$$

- Hence to find the box dimensions, we can equally well take $N_{\delta}(F)$ to be the number of mesh cubes of side δ that intersect F.

Using Arbitrary Cubes or Closed Balls

- Another frequently used definition of box dimension is obtained by:
- Taking $N_{\delta}(F)$ to be the smallest number of arbitrary cubes of side δ required to cover F;
- Defining

$$
\operatorname{dim}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta},
$$

whenever the limit exists.

- The equivalence of this definition follows as in the mesh cube case, noting that:
- Any cube of side δ has diameter $\delta \sqrt{n}$;
- Any set of diameter of at most δ is contained in a cube of side δ.
- Similarly, we get exactly the same values if we take $N_{\delta}(F)$ as the smallest number of closed balls of radius δ that cover F.

Another Formulation Using Disjoint Balls

- Let $N_{\delta}^{\prime}(F)$ be the largest number of disjoint balls of radius δ with centers in F.
- Let $B_{1}, \ldots, B_{N_{\delta}^{\prime}(F)}$ be disjoint balls centered in F and of radius δ.
- If x belongs to F then x must be within distance δ of one of the B_{i}.

Otherwise the ball of center x and radius δ can be added to form a larger collection of disjoint balls.

- Thus, the $N_{\delta}^{\prime}(F)$ balls concentric with the B_{i} but of radius 2δ (diameter 4δ) cover F.
- This gives $N_{4 \delta}(F) \leq N_{\delta}^{\prime}(F)$.

Another Formulation Using Disjoint Balls (Cont'd)

- Suppose also that $B_{1}, \ldots, B_{N_{\delta}^{\prime}(F)}$ are disjoint balls of radii δ with centers in F.
- Let U_{1}, \ldots, U_{k} be any collection of sets of diameter at most δ which cover F.
- The U_{j} must cover the centers of the B_{i}.
- So each B_{i} must contain at least one of the U_{j}.
- As the B_{i} are disjoint, there are at least as many U_{j} as B_{i}.
- Hence, $N_{\delta}^{\prime}(F) \leq N_{\delta}(F)$.
- Taking logarithms and limits of these inequalities shows that the value of the box dimension remains unaltered if $N_{\delta}(F)$ is replaced by this $N_{\delta}^{\prime}(F)$.

Summary of Equivalent Definitions

- The lower and upper box-counting dimensions of a subset F of \mathbb{R}^{n} are given by

$$
\underline{\operatorname{dim}}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}, \quad \overline{\operatorname{dim}}_{B} F=\varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta} .
$$

and the box-counting dimension of F by $\operatorname{dim}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}$ (if the limit exists), where $N_{\delta}(F)$ is any of the following:
(i) The smallest number of closed balls of radius δ that cover F;
(ii) The smallest number of cubes of side δ that cover F;
(iii) The number of δ-mesh cubes that intersect F;
(iv) The smallest number of sets of diameter at most δ that cover F;
(v) The largest number of disjoint balls of radius δ with centers in F.

The Way δ Approaches Zero

- In the limits defining the upper, lower and box dimension, it is enough to consider limits as δ tends to 0 through any decreasing sequence δ_{k}, such that $\delta_{k+1} \geq c \delta_{k}$, for some constant $0<c<1$; in particular for $\delta_{k}=c^{k}$.
Suppose $\delta_{k+1} \leq \delta<\delta_{k}$.
Then, with $N_{\delta}(F)$ the least number of sets in a δ-cover of F,

$$
\begin{aligned}
\frac{\log N_{\delta}(F)}{-\log \delta} & \leq \frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_{k}}=\frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_{k+1}+\log \frac{\delta_{k+1}}{\delta_{k}}} \\
& \leq \frac{\log N_{\delta_{k+1}}(F)}{-\log \delta_{k+1}+\log c}
\end{aligned}
$$

So we get

$$
\varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta} \leq \varlimsup_{k \rightarrow \infty} \frac{\log N_{\delta_{k}}(F)}{-\log \delta_{k}}
$$

The opposite inequality is trivial.
The case of lower limits may be dealt with in the same way.

The Minkowski Content

- Recall that the δ-neighborhood F_{δ} of a subset F of \mathbb{R}^{n} is

$$
F_{\delta}=\left\{x \in \mathbb{R}^{n}:|x-y| \leq \delta, \text { for some } y \in F\right\}
$$

- This is the set of points within distance δ of F.
- We consider the rate at which the n-dimensional volume of F_{δ} shrinks as $\delta \rightarrow 0$.
Example: $\ln \mathbb{R}^{3}$, we have the following:
- If F is a single point then F_{δ} is a ball with $\operatorname{vol}\left(F_{\delta}\right)=\frac{4}{3} \pi \delta^{3}$;
- If F is a segment of length ℓ, then F_{δ} is "sausage-like" with $\operatorname{vol}\left(F_{\delta}\right) \sim \pi \ell \delta^{2}$;
- If F is a flat set of area a, then F_{δ} is essentially a thickening of F with $\operatorname{vol}\left(F_{\delta}\right) \sim 2 \mathrm{a} \delta$.
- In each case, $\operatorname{vol}\left(F_{\delta}\right) \sim c \delta^{3-s}$, where s is the dimension of F.
- So the exponent of δ is indicative of the dimension.
- The coefficient c of δ^{3-s}, known as the Minkowski content of F, is a measure of the length, area or volume of the set as appropriate.

The s-Dimensional Content

- Let F is a subset of \mathbb{R}^{n}.
- Denote by vol ${ }^{n}$ the n-dimensional volume.
- Suppose, for some $s, \frac{\mathrm{vol}^{n}\left(F_{\delta}\right)}{\delta^{n-s}}$ tends to a positive finite limit as $\delta \rightarrow 0$.
- Then it makes sense to regard F as s-dimensional.
- The limiting value is called the s-dimensional content of F.
- This concept is of slightly restricted use since it is not necessarily additive on disjoint subsets, i.e., is not a measure.
- Even if this limit does not exist, we may be able to extract the critical exponent of δ.
- This exponent turns out to be related to the box dimension.

Box Dimension and Volume of δ-Neighborhoods

Proposition

If F is a subset of \mathbb{R}^{n}, then

$$
\underline{\operatorname{dim}}_{B} F=n-\varlimsup_{\delta \rightarrow 0} \frac{\log \mathrm{vol}^{n}\left(F_{\delta}\right)}{\log \delta}, \quad \overline{\operatorname{dim}}_{B} F=n-\varliminf_{\delta \rightarrow 0} \frac{\log \mathrm{vol}^{n}\left(F_{\delta}\right)}{\log \delta},
$$

where F_{δ} is the δ-neighborhood of F.

- Suppose F can be covered by $N_{\delta}(F)$ balls of radius $\delta<1$. Then F_{δ} can be covered by the concentric balls of radius 2δ. Hence, $\operatorname{vol}^{n}\left(F_{\delta}\right) \leq N_{\delta}(F) c_{n}(2 \delta)^{n}$, where c_{n} is the volume of the unit ball in \mathbb{R}^{n}.
Taking logarithms,

$$
\frac{\log \operatorname{vol}^{n}\left(F_{\delta}\right)}{-\log \delta} \leq \frac{\log 2^{n} c_{n}+n \log \delta+\log N_{\delta}(F)}{-\log \delta}
$$

Box Dimension and Volume of δ-Neighborhoods (Cont'd)

- We obtained $\frac{\log \operatorname{vol}^{n}\left(F_{\delta}\right)}{-\log \delta} \leq \frac{\log 2^{n} c_{n}+n \log \delta+\log N_{\delta}(F)}{-\log \delta}$.

So

$$
\varliminf_{\delta \rightarrow 0} \frac{\log \operatorname{vol}^{n}\left(F_{\delta}\right)}{-\log \delta} \leq-n+\operatorname{dim}_{B} F
$$

A similar inequality holds for the upper limits.
Suppose there are $N_{\delta}(F)$ disjoint balls of radius δ with centers in F.
Then, by adding their volumes,

$$
N_{\delta}(F) c_{n} \delta^{n} \leq \operatorname{vol}^{n}\left(F_{\delta}\right)
$$

Taking logarithms and letting $\delta \rightarrow 0$ gives the opposite inequality.

- In this context, box dimension is sometimes referred to as Minkowski dimension or Minkowski-Bouligand dimension.

Box-Counting Dimension and Hausdorff Dimension

- Suppose F can be covered by $N_{\delta}(F)$ sets of diameter δ.
- Then, by the definition of $\mathcal{H}_{\delta}^{s}(F)$,

$$
\mathcal{H}_{\delta}^{s}(F) \leq N_{\delta}(F) \delta^{s}
$$

- Suppose $1<\mathcal{H}^{s}(F)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)$.
- Then $\log N_{\delta}(F)+s \log \delta>0$, if δ is sufficiently small.
- Thus, $s \leq \underline{\lim }_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}$.
- So, for every $F \subseteq \mathbb{R}^{n}$,

$$
\operatorname{dim}_{H} F \leq \underline{\operatorname{dim}}_{B} F \leq \overline{\operatorname{dim}}_{B} F .
$$

- We do not in general get equality here.

Box Dimension and Hausdorff Dimension (Cont'd)

- Roughly speaking

$$
\operatorname{dim}_{B} F=\lim _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}
$$

says that $N_{\delta}(F) \simeq \delta^{-s}$, for small δ, where $s=\operatorname{dim}_{B} F$.

- More precisely, it says that

$$
\begin{array}{ll}
N_{\delta}(F) \delta^{s} \rightarrow \infty, & \text { if } s<\operatorname{dim}_{B} F, \\
N_{\delta}(F) \delta^{s} \rightarrow 0, & \text { if } s>\operatorname{dim}_{B} F .
\end{array}
$$

Box Dimension and Hausdorff Dimension (Cont'd)

- Now consider

$$
\begin{aligned}
N_{\delta}(F) \delta^{s} & =\inf \left\{\sum_{i} \delta^{s}:\left\{U_{i}\right\} \text { is a (finite) } \delta \text {-cover of } F\right\} ; \\
\mathcal{H}_{\delta}^{s}(F) & =\inf \left\{\sum_{i}\left|U_{i}\right|^{s}:\left\{U_{i}\right\} \text { is a } \delta \text {-cover of } F\right\} .
\end{aligned}
$$

- In calculating:
- Hausdorff dimension, we assign different weights $\left|U_{i}\right|^{s}$ to the covering sets U_{i};
- Box dimension, we use the same weight δ^{s} for each covering set.
- This difference implies the following:
- Box dimensions indicate the efficiency with which a set may be covered by small sets of equal size;
- Hausdorff dimension involves coverings by sets of small but perhaps widely varying size.

Example: Middle Third Cantor Set

- Let F be the middle third Cantor set. Then $\underline{\operatorname{dim}}_{B} F=\overline{\operatorname{dim}}_{B} F=\frac{\log 2}{\log 3}$.

We have a covering by the 2^{k} level $-k$ intervals of E_{k} of length 3^{-k}. This gives that, for $3^{-k}<\delta \leq 3^{-k+1}, N_{\delta}(F) \leq 2^{k}$.
Thus, we get

$$
\overline{\operatorname{dim}}_{B} F=\overline{\lim }_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta} \leq \overline{\lim }_{k \rightarrow \infty} \frac{\log 2^{k}}{\log 3^{k-1}}=\frac{\log 2}{\log 3}
$$

On the other hand, any interval of length δ with $3^{-k-1} \leq \delta<3^{-k}$ intersects at most one of the level- k intervals of length 3^{-k} used in the construction of F. There are 2^{k} such intervals. So at least 2^{k} intervals of length δ are required to cover F. Hence $N_{\delta}(F) \geq 2^{k}$.
So $\operatorname{dim}_{B} F \geq \frac{\log 2}{\log 3}$.
Thus, at least for the Cantor set, $\operatorname{dim}_{H} F=\operatorname{dim}_{B} F$.

Subsection 3

Properties and Problems of Box-Counting Dimension

Properties of Box-Counting Dimension

- The following elementary properties of box dimension mirror those of Hausdorff dimension, and may be verified in much the same way.
(i) A smooth m-dimensional submanifold of \mathbb{R}^{n} has $\operatorname{dim}_{B} F=m$.
(ii) dim_{B} and $\overline{\operatorname{dim}}_{B}$ are monotonic.
(iii) dim_{B} is finitely stable, i.e.,

$$
\overline{\operatorname{dim}}_{B}(E \cup F)=\max \left\{\overline{\operatorname{dim}}_{B} E, \overline{\operatorname{dim}}_{B} F\right\}
$$

The corresponding identity does not hold for dim_{B}.
(iv) dim_{B} and $\overline{\operatorname{dim}}_{B}$ are bi-Lipschitz invariant. Suppose that:

- $|f(x)-f(y)| \leq c|x-y| ;$
- F can be covered by $N_{\delta}(F)$ sets of diameter at most δ.

Then the $N_{\delta}(F)$ images of these sets under f form a cover of $f(F)$ by sets of diameter at most $c \delta$.
This shows that $\operatorname{dim}_{B} f(F) \leq \operatorname{dim}_{B} F$.
Similarly, box dimensions behave just like Hausdorff dimensions under bi-Lipschitz and Hölder transformations.

Box Dimension and Closures

Proposition

Let \bar{F} denote the closure of F, i.e., the smallest closed subset of \mathbb{R}^{n} containing F. Then

$$
\underline{\operatorname{dim}}_{B} \bar{F}=\underline{\operatorname{dim}}_{B} F \quad \text { and } \quad \overline{\operatorname{dim}}_{B} \bar{F}=\overline{\operatorname{dim}}_{B} F .
$$

- Let B_{1}, \ldots, B_{k} be a finite collection of closed balls of radii δ. If the closed set $\bigcup_{i=1}^{k} B_{i}$ contains F, it also contains \bar{F}. Hence the smallest number of closed balls of radius δ that cover F equals the smallest number required to cover the larger set \bar{F}. This yields the result.

Negative Consequences

- An immediate consequence of the proposition is that if F is a dense subset of an open region of \mathbb{R}^{n} then $\operatorname{dim}_{B} F=\overline{\operatorname{dim}}_{B} F=n$.
Example: Let F be the (countable) set of rational numbers in $(0,1)$. Then \bar{F} is the entire interval $[0,1]$. So $\operatorname{dim}_{B} F=\overline{\operatorname{dim}}_{B} F=1$.
- Thus, countable sets can have non-zero box dimension.

Example (Cont'd): The box-counting dimension of each rational number regarded as a one-point set is clearly zero However, the countable union of these singleton sets has dimension 1.

- Consequently, it is not generally true that

$$
\operatorname{dim}_{B} \bigcup_{i=1}^{\infty} F_{i}=\sup _{i} \operatorname{dim}_{B} F_{i} .
$$

- This severely limits the usefulness of box dimension, since introducing a small, i.e., countable, set of points can change the dimension.

Example

- $F=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ is a compact set with $\operatorname{dim}_{B} F=\frac{1}{2}$.

Let $0<\delta<\frac{1}{2}$ and let k be the integer satisfying $\frac{1}{k(k-1)}>\delta \geq \frac{1}{k(k+1)}$.
Note that $\frac{1}{k-1}-\frac{1}{k}=\frac{1}{k(k-1)}>\delta$.
So, if $|U| \leq \delta$, then U can cover at most one of $1, \frac{1}{2}, \ldots, \frac{1}{k}$.
Thus, at least k sets of diameter δ are required to cover F.
So $N_{\delta}(F) \geq k$. This gives $\frac{\log N_{\delta}(F)}{-\log \delta} \geq \frac{\log k}{\log k(k+1)}$.
Letting $\delta \rightarrow 0$, so $k \rightarrow \infty$, gives $\operatorname{dim}_{B} F \geq \frac{1}{2}$.
Conversely, if $\frac{1}{2}>\delta>0$, take k such that $\frac{1}{k(k-1)}>\delta \geq \frac{1}{k(k+1)}$.
Then $k+1$ intervals of length δ cover $\left[0, \frac{1}{k}\right]$.
This remining $k-1$ points can be covered by another $k-1$ intervals.
Thus $N_{\delta}(F) \leq 2 k$. So $\frac{\log N_{\delta}(F)}{-\log \delta} \leq \frac{\log (2 k)}{\log k(k-1)}$.
This gives $\overline{\operatorname{dim}}_{B} F \leq \frac{1}{2}$.

