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Techniques for Calculating Dimensions Basic Methods

Subsection 1

Basic Methods
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Techniques for Calculating Dimensions Basic Methods

Bounding Hausdorff Dimension Using Box Dimension

Proposition

Suppose F can be covered by nk sets of diameter at most δk , with δk → 0
as k → ∞. Then

dimHF ≤ dimBF ≤ lim
k→∞

log nk
− log δk

.

Moreover, if nkδ
s
k remains bounded as k → ∞, then Hs(F ) < ∞. If

δk → 0 but δk+1 ≥ cδk , for some 0 < c < 1, then

dimBF ≤ lim
k→∞

log nk
− log δk

.

The inequalities for the box-counting dimension are immediate from
the definitions and the remark regarding sequences δk .

That dimHF ≤ dimBF was shown previously.
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Techniques for Calculating Dimensions Basic Methods

Bounding Hausdorff Dimension (Cont’d)

Suppose nkδ
s
k is bounded. Then Hs

δk
(F ) ≤ nkδ

s
k .

So Hs
δk
(F ) tends to a finite limit Hs(F ) as k → ∞.

Example: Consider the middle third Cantor set.

We know that the natural coverings by 2k intervals of length 3−k give

dimHF ≤ dimBF ≤ dimBF ≤ log 2

log 3
.
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Techniques for Calculating Dimensions Basic Methods

Difficulties in Obtaining Lower Bounds

Surprisingly often, the “obvious” upper bound for the Hausdorff
dimension of a set turns out to be the actual value.

However, demonstrating this can be difficult.

To obtain an upper bound it is enough to evaluate sums of the form∑ |Ui |s for specific coverings {Ui} of F .

For a lower bound we must show that
∑ |Ui |s is greater than some

positive constant for all δ-coverings of F .

Clearly an enormous number of such coverings are available.

In particular, when working with Hausdorff dimension as opposed to
box dimension, consideration must be given to covers where some of
the Ui are very small and others have relatively large diameter.

This prohibits sweeping estimates for
∑ |Ui |s such as those available

for upper bounds.
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Techniques for Calculating Dimensions Basic Methods

Overcoming the Difficulties for Lower Bounds

One way of getting around these difficulties is to show that no
individual set U can cover too much of F compared with its size
measured as |U|s .
Then if {Ui} covers the whole of F , the sum

∑ |Ui |s cannot be too
small.

The usual way to do this is to:

Concentrate a suitable mass distribution µ on F ;
Compare the mass µ(U) covered by U with |U |s , for each U .

Recall that a mass distribution on F is a measure with support
contained in F such that 0 < µ(F ) < ∞.
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Techniques for Calculating Dimensions Basic Methods

Mass Distribution Principle

Mass Distribution Principle

Let µ be a mass distribution on F . Suppose that, for some s, there are
numbers c > 0 and ε > 0, such that µ(U) ≤ c |U|s , for all sets U with

|U| ≤ ε. Then Hs(F ) ≥ µ(F )
c

and

s ≤ dimHF ≤ dimBF ≤ dimBF .

If {Ui} is any cover of F then

0 < µ(F ) ≤ µ

(
⋃

i

Ui

)
≤
∑

i

µ(Ui) ≤ c
∑

i

|Ui |s .

Taking infima, Hs
δ(F ) ≥

µ(F )
c

, if δ is small enough.

So Hs(F ) ≥ µ(F )
c

.

Since µ(F ) > 0, we get dimHF ≥ s.
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Techniques for Calculating Dimensions Basic Methods

Example

The Mass Distribution Principle gives a quick lower estimate for the
Hausdorff dimension of the middle third Cantor set F .

Let µ be the natural mass distribution on F .

Each of the 2k k-th level intervals of length 3−k in Ek in the
construction of F carry a mass 2−k .
We imagine that:

We start with unit mass on E0;
Repeatedly divide the mass on each interval of Ek between its two
subintervals in Ek+1.

Let U be a set with |U| < 1.

Let k be the integer such that 3−(k+1) ≤ |U| < 3−k .

Then U can intersect at most one of the intervals of Ek .

µ(U) ≤ 2−k = (3log 2/ log 3)−k = (3−k)log 2/ log 3 ≤ (3|U|)log 2/ log 3.

Hence, by the principle, Hlog 2/ log 3(F ) ≥ 3− log 2/ log 3 = 1
2 .

This gives dimHF ≥ log 2
log 3 .
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Techniques for Calculating Dimensions Basic Methods

Example

Let F1 = F × [0, 1] ⊆ R
2 be the product of:

The middle third Cantor set F ;
The unit interval.

For s = 1 + log 2
log 3 , dimBF1 = dimHF1 = s, with 0 < Hs(F1) < ∞.

For each k , there is a covering of F by 2k intervals of length 3−k .

A column of 3k squares of side 3−k (diameter 3−k
√
2) covers the part

of F1 above each such interval.

So all together, F1 may be covered by 2k3k squares of side 3−k .

So we get

Hs

3−k
√
2
(F1) ≤ 3k2k(3−k

√
2)s

= (3 · 2 · 3−1−log 2/ log 3)k2s/2

= 2s/2.

So Hs(F1) ≤ 2s/2. Thus, dimHF1 ≤ dimBF1 ≤ dimBF1 ≤ s.

George Voutsadakis (LSSU) Fractal Geometry April 2024 10 / 52



Techniques for Calculating Dimensions Basic Methods

Example (Cont’d)

We define a mass distribution µ on F1 by:

Taking the natural mass distribution on F described above (each k-th
level interval of F of side 3−k having mass 2−k);
“Spreading it” uniformly along the intervals above F .

So, if U is a rectangle, with sides parallel to the coordinate axes, of
height h ≤ 1, above a k-th level interval of F , then µ(U) = h2−k .

Any set U is contained in a square of side |U| with sides parallel to
the coordinate axes.

If 3−(k+1) ≤ |U| < 3−k , then U lies above at most one k-th level
interval of F of side 3−k .
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Techniques for Calculating Dimensions Basic Methods

Example (Cont’d)

It follows that

µ(U) ≤ |U|2−k

≤ |U|3−k log 2/ log 3

≤ |U|(3|U|)log 2/ log 3

= 3log 2/ log 3|U|s

= 2|U|s .

By the Mass Distribution Principle, Hs(F1) >
1
2 .
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Techniques for Calculating Dimensions Basic Methods

Generalization of the Cantor Construction

Let [0, 1] = E0 ⊇ E1 ⊇ E2 ⊇ · · · be a decreasing sequence of sets,
with each Ek a union of a finite number of disjoint closed intervals,
called k-th level basic intervals, such that:

Each interval of Ek contains at least two intervals of Ek+1;
The maximum length of k-th level intervals tending to 0 as k → ∞.

Then the set F =
⋂∞

k=0 Ek is a totally disconnected subset of [0, 1]
which is generally a fractal.
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Techniques for Calculating Dimensions Basic Methods

Computing the Dimension of F

Obvious upper bounds for the dimension of F are available by taking
the intervals of Ek as covering intervals, for each k .

As usual, lower bounds are harder to find.

In the following examples:

The upper estimates for dimHF depend on the number and size of the
basic intervals;
The lower estimates depend on their spacing.

For these to be equal, the (k + 1)-th level intervals must be “nearly
uniformly distributed” inside the k-th level intervals.
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Techniques for Calculating Dimensions Basic Methods

Example

Let s be a number strictly between 0 and 1.

We repeat the same general construction.

We assume that, for each k-th level interval I , the (k + 1)-st level
intervals I1, . . . , Im, m ≥ 2, contained in I are:

Of equal length and equally spaced;
The lengths are given by

|Ii |s =
1

m
|I |s , 1 ≤ i ≤ m;

The left-hand ends of I1 and I coincide;
The right-hand ends of Im and I coincide.

Then dimHF = s and 0 < Hs(F ) < ∞.

In general, m may be different for different intervals I .

So the k-th level intervals may have different lengths.
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Techniques for Calculating Dimensions Basic Methods

Example (Upper Bound)

Let I , Ii be as above.

Then

|I |s =
m∑

i=1

|Ii |s .

Apply this inductively to the k-th level intervals for successive k .

We obtain, for each k ,
1 =

∑
|Ii |s ,

where the sum is over all the k-th level intervals Ii .

The k-th level intervals cover F .

The maximum interval length tends to 0 as k → ∞.

So we get
Hs

δ(F ) ≤ 1,

for sufficiently small δ.

Thus, Hs(F ) ≤ 1.
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Techniques for Calculating Dimensions Basic Methods

Example (Lower Bound)

Distribute a mass µ on F in such a way that µ(I ) = |I |s whenever I is
any level k interval.

Start with unit mass on [0, 1];
Divide this equally between each level 1 interval;
The mass on each level 1 interval is divided equally between each level
2 subinterval;
...

The equation |I |s =∑m
i=1 |Ii |s ensures that we get a mass distribution

on F with µ(I ) = |I |s , for every basic interval.

We estimate µ(U) for an interval U with endpoints in F .

Let I be the smallest basic interval that contains U.

Suppose it is a k-th level interval.

Let I1, . . . , Im be the (k + 1)-st level intervals contained in I .

Then U intersects a number j ≥ 2 of the Ii .

Otherwise, U would be contained in a smaller basic interval.
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Techniques for Calculating Dimensions Basic Methods

Example (Lower Bound Cont’d)

The spacing between consecutive Ii is

|I |−m|Ii |
m−1 = |I |1−m

|Ii |

|I |

m−1

= |I |1−m1−1/s

m−1
m ≥ 2, 0 < s < 1

≥ |I |1−21−1/s

m

= cs
|I |
m
,

where cs = 1− 21−1/s .

Thus,

|U| ≥ j − 1

m
cs |I | ≥

j

2m
cs |I |.
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Techniques for Calculating Dimensions Basic Methods

Example (Lower Bound Cont’d)

We know that |Ii |s = 1
m
|I |s .

So we have

µ(U) ≤ jµ(Ii )

= j |Ii |s

= j
m
|I |s

≤ 2sc−s
s ( j

m
)1−s |U|s (|U| ≥ j

2mcs |I |)
≤ 2sc−s

s |U|s .

This is true for any interval U with endpoints in F .

So it holds also for any set U (by applying the last inequality to the
smallest interval containing U ∩ F ).

By the Mass Distribution Principle, Hs(F ) > 0.
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Techniques for Calculating Dimensions Basic Methods

Uniform Cantor Sets

We call the sets obtained when m is kept constant throughout the
construction of the preceding example uniform Cantor sets.

They provide a natural generalization of the middle third Cantor set.

George Voutsadakis (LSSU) Fractal Geometry April 2024 20 / 52



Techniques for Calculating Dimensions Basic Methods

Example: Uniform Cantor Sets

Let m ≥ 2 be an integer and 0 < r < 1
m
.

Let F be the set obtained by the construction in which:

Each basic interval I is replaced by m equally spaced subintervals of
lengths r |I |;
The ends of I coinciding with the ends of the extreme subintervals.

Then dimHF = dimBF = logm
− log r and 0 < Hlogm/−log r (F ) < ∞.

The set F is obtained by taking in the preceding example:

m constant;
s = logm

− log r .

The equation |Ii |s = 1
m
|I |s becomes (r |I |)s = 1

m
|I |s .

This equation is satisfied identically.

So dimHF = s.
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Techniques for Calculating Dimensions Basic Methods

Example: Uniform Cantor Sets (Cont’d)

We now turn to the box dimension.

For each k , F is covered by mk k-th level intervals of length r−k .

This gives

dimBF ≤ logm

− log r
.

The middle λ Cantor set is obtained by repeatedly removing a
proportion 0 < λ < 1 from the middle of intervals, starting with [0, 1].

This is a special case of a uniform Cantor set, with:

m = 2;
r = 1

2(1 − λ).

Thus, it has Hausdorff and box dimensions

log 2

log (2/(1 − λ))
.
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Techniques for Calculating Dimensions Basic Methods

Example

Suppose in the general construction each (k − 1)-st level interval
contains at least mk ≥ 2 k-th level intervals, k = 1, 2, . . . which are
separated by gaps of at least εk , where 0 < εk+1 < εk , for each k .
Then

dimHF ≥ lim
k→∞

log (m1 · · ·mk−1)

− log (mkεk)
.

We may assume that the right hand side of the inequality is positive,
since otherwise the inequality is obvious.

We may also assume that each (k − 1)-st level interval contains
exactly mk k-th level intervals.

Otherwise, we may throw out excess intervals to get smaller sets Ek

and F for which the condition holds.
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Techniques for Calculating Dimensions Basic Methods

Example (Cont’d)

We define a mass distribution µ on F by assigning mass
(m1 · · ·mk)

−1 to each of the m1 . . .mk k-th level intervals.

Let U be an interval with 0 < |U| < ε1.

We estimate µ(U).

Let k be the integer such that εk ≤ |U| < εk−1.

The number of k-th level intervals that intersect U is:

(i) At most mk , since U intersects at most one (k − 1)-st level interval;

(ii) At most |U|
εk

+ 1 ≤ 2|U|
εk

, since the k-th level intervals have gaps of at
least εk between them.
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Techniques for Calculating Dimensions Basic Methods

Example (Cont’d)

Each k-th level interval supports mass (m1 · · ·mk)
−1.

So, for all 0 ≤ s ≤ 1,

µ(U) ≤ (m1 · · ·mk)
−1 min

{
2|U|
εk

,mk

}

≤ (m1 · · ·mk)
−1
(
2|U|
εk

)s
m1−s

k .

Hence,
µ(U)

|U|s ≤ 2s

(m1 · · ·mk−1)m
s
k
εs
k

.

If s < limk→∞
log (m1···mk−1)
− log (mkεk)

, then, for large k ,

(m1 · · ·mk−1)m
s
kε

s
k > 1 ⇒ µ(U) ≤ 2s |U|s .

Thus, by the Mass Distribution Principle, dimHF ≥ s.
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Techniques for Calculating Dimensions Basic Methods

The Case of “Well-Spaced” Intervals

Suppose that in the preceding example:

The k-th level intervals are all of length εk ;
Each (k − 1)-st level interval contains exactly mk k-th level intervals,
which are “roughly equally spaced” in the sense that mkεk ≥ cδk−1,
where c > 0 is a constant.

Then dimHF ≥ limk→∞
log (m1···mk−1)
− log (mkεk)

becomes

dimHF ≥ lim
k→∞

log (m1 · · ·mk−1)

− log c − log δk−1
= lim

k→∞

log (m1 · · ·mk−1)

− log δk−1
.

But Ek−1 comprises m1 · · ·mk−1 intervals of length δk−1.

So this expression equals the upper bound for dimHF given by a
previous proposition.

Thus, in the situation where the intervals are well spaced, we get
equality instead of inequality.
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Techniques for Calculating Dimensions Basic Methods

Example

Fix 0 < s < 1 and let n0, n1, n2, . . . be a rapidly increasing sequence

of integers, say nk+1 ≥ max {nkk , 4n
1/s
k }, for each k .

For each k , let Hk ⊆ R consist of equally spaced equal intervals:

Each has length n
−1/s
k ;

The midpoints of consecutive intervals are at distance n−1
k apart.

Then writing F =
⋂∞

k=1 Hk , we have dimHF = s.

Since F ⊆ Hk for each k , the set F ∩ [0, 1] is contained in at most

nk + 1 intervals of length n
−1/s
k . By a previous proposition,

dimH(F ∩ [0, 1]) ≤ lim
k→∞

log (nk + 1)

− log n
−1/s
k

= s.

Similarly, dimH(F ∩ [n, n + 1]) ≤ s, for all n ∈ Z.

So dimHF ≤ s as a countable union of such sets.
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Techniques for Calculating Dimensions Basic Methods

Example (Cont’d)

Now let E0 = [0, 1] and, for k ≥ 1, let Ek consist of the intervals of
Hk that are completely contained in Ek−1.
Then each interval I of Ek−1 contains:

At least nk |I | − 2 ≥ nkn
−1/s
k−1 − 2 ≥ 2 intervals of Ek ;

For k large, they are separated by gaps of at least n−1
k − n

−1/s
k ≥ 1

2n
−1
k .

Using the preceding example, and noting that setting mk = nkn
−1/s
k−1

rather than mk = nkn
−1/s
k−1 − 2 does not affect the limit,

dimH(F ∩ [0, 1]) ≥ dimH

⋂∞
k=1 Ek

≥ limk→∞
log ((n1···nk−2)

1−1/snk−1)

− log (nkn
−1/s
k−1

1
2
n−1
k

)

= limk→∞
log (n1···nk−2)

1−1/s+log nk−1

log 2+(log nk−1)/s
.

Provided that nk is sufficiently rapidly increasing, the terms in
log nk−1 in the numerator and denominator dominate.

So dimHF ≥ dimH(F ∩ [0, 1]) ≥ s, as required.
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Covering Lemma

Covering Lemma

Let C be a family of balls contained in some bounded region of Rn. Then
there is a (finite or countable) disjoint subcollection {Bi}, such that

⋃

B∈C
B ⊆

⋃

i

B̃i ,

where B̃i is the closed ball concentric with Bi and of four times the radius.

For simplicity, we give the proof when C is a finite family.

The basic idea is the same in the general case.

We select the {Bi} inductively.

Let B1 be a ball in C of maximum radius.

Suppose that B1, . . . ,Bk−1 have been chosen.

Take Bk to be a largest ball in C disjoint from B1, . . . ,Bk−1.

The process terminates when no such ball remains.
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Covering Lemma (Cont’d)

Clearly the balls selected are disjoint.

If B ∈ C, then one of the following holds:

B = Bi , for some i ;
B intersects one of the Bi , with |Bi | ≥ |B|.

If this were not the case, then B would have been chosen instead of
the first ball Bk with |Bk | < |B |.
Either way, B ⊆ B̃i .

So the required inclusion holds.

It is easy to see that the result remains true taking B̃i as the ball
concentric with Bi and of 3 + ε times the radius, for any ε > 0.

If C is finite we may actually take ε = 0.
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Hausdorff Bounds Using Balls

Proposition

Let µ be a mass distribution on R
n, let F ⊆ R

n be a Borel set and let
0 < c < ∞ be a constant.

(a) If limr→0
µ(B(x ,r))

r s
< c , for all x ∈ F , then Hs(F ) ≥ µ(F )

c
.

(b) If limr→0
µ(B(x ,r))

r s
> c , for all x ∈ F , then Hs(F ) ≤ 2sµ(Rn)

c
.

(a) For each δ > 0, let

Fδ = {x ∈ F : µ(B(x , r)) < cr s for all 0 < r ≤ δ}.

Let {Ui} be a δ-cover of F .

Then, by hypothesis, it is also a δ-cover of Fδ.

For each Ui containing a point x of Fδ, the ball B with center x and
radius |Ui | certainly contains Ui .
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Hausdorff Bounds Using Balls (Part (a) Cont’d)

By definition of Fδ,

µ(Ui) ≤ µ(B) < c |Ui |s .

So
µ(Fδ) ≤

∑

i

{µ(Ui) : Ui intersects Fδ} ≤ c
∑

i

|Ui |s .

{Ui} was an arbitrary δ-cover of F .

So
µ(Fδ) ≤ cHs

δ(F ) ≤ cHs(F ).

But Fδ increases to F as δ decreases to 0.

So µ(F ) ≤ cHs(F ).
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Hausdorff Bounds Using Balls (Part (b))

(b) We prove a weaker version of Part (b) with 2s replaced by 8s .

The basic idea of the proof is similar.

Suppose first that F is bounded.

Fix δ > 0 and let C be the collection of balls

{B(x , r) : x ∈ F , 0 < r ≤ δ and µ(B(x , r)) > cr s}.

Then, by hypothesis, F ⊆ ⋃B∈C B .

Applying the Covering Lemma to the collection C, there is a sequence
of disjoint balls B̃i ∈ C, such that

⋃

B∈C
B ⊆

⋃

i

B̃i ,

where B̃i is the ball concentric with Bi but of four times the radius.
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Hausdorff Bounds Using Balls (Part (b) Cont’d)

Thus {B̃i} is an 8δ-cover of F .

It follows that

Hs
8δ(F ) ≤

∑
i |B̃i |s

≤ 4s
∑

i |Bi |s

≤ 8sc−1
∑

i µ(Bi)

≤ 8sc−1µ(Rn).

Letting δ → 0, we get

Hs(F ) ≤ 8sc−1µ(Rn) < ∞.

Finally, suppose F is unbounded and Hs(F ) > 8sc−1µ(Rn).

Then the Hs-measure of some bounded subset of F will also exceed
this value. But this contradicts what was just shown.
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Consequences

It is immediate from the preceding proposition that if

lim
r→0

log µ(B(x , r))

log r
= s, for all x ∈ F ,

then dimHF = s.

Often the calculations involved can be used in conjunction with the
basic properties of dimensions discussed previously.

Example: The function f (x) = x2 is:

Lipschitz on [0, 1];
Bi-Lipschitz on [ 23 , 1].

It follows that, if C is the middle third Cantor set,

dimH{x2 : x ∈ C} = dimH f (C ) =
log 2

log 3
.
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Subsection 2

Subsets of Finite Measure
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Techniques for Calculating Dimensions Subsets of Finite Measure

Introducing Finitization

The following theorem guarantees that any (Borel) set F with
Hs(F ) = ∞ contains a subset E with 0 < Hs(E ) < ∞, i.e., with E

an s-set.

At first, this might seem obvious - just shave pieces off F until what
remains has positive finite measure.

Unfortunately it is not quite this simple, since it is possible to jump
from infinite measure to zero measure without passing through any
intermediate value.
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Techniques for Calculating Dimensions Subsets of Finite Measure

Introducing Finitization (Cont’d)

It is possible to have a decreasing sequence of sets

E1 ⊇ E2 ⊇ · · · .

such that:

Hs(Ek) = ∞, for all k ;
Hs(

⋂∞
k=1 Ek) = 0.

Example: Consider the sequence

Ek =

[
0,

1

k

]
⊆ R, k = 1, 2, . . . .

Clearly, E1 ⊃ E2 ⊃ E3 · · · and
⋂∞

k=1 Ek = {0}.
Take 0 < s < 1. Then we have:

Hs(Ek) = ∞, for all k ;
Hs(

⋂∞
k=1 Ek) = 0.

George Voutsadakis (LSSU) Fractal Geometry April 2024 38 / 52



Techniques for Calculating Dimensions Subsets of Finite Measure

Finitization

Theorem

Let F be a Borel subset of Rn, with 0 < Hs(F ) ≤ ∞. Then there is a
compact set E ⊆ F , such that 0 < Hs(E ) < ∞.

The complete proof of this is complicated.

We indicate the ideas involved in the case where:

F is a compact subset of [0, 1) ⊆ R;
0 < s < 1.

We work with the net measures Ms which are:

Defined using the binary intervals [r2−k , (r + 1)2−k);
Related to Hausdorff measure by Hs(F ) ≤ Ms(F ) ≤ 2s+1Hs(F ).

We define inductively a decreasing sequence E0 ⊇ E1 ⊇ E2 ⊇ · · · of
compact subsets of F .

Let E0 = F .
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Techniques for Calculating Dimensions Subsets of Finite Measure

Finitization (Cont’d)

For k ≥ 0 we define Ek+1 by specifying its intersection with each
binary interval I of length 2−k .

If Ms
2−(k+1)(Ek ∩ I ) ≤ 2−sk , we let Ek+1 ∩ I = Ek ∩ I .

Then, using I itself as a covering interval in calculating Ms
2−k , gives an

estimate at least as large as using shorter binary intervals.
So we have Ms

2−(k+1)(Ek+1 ∩ I ) = Ms
2−k (Ek ∩ I ).

If Ms
2−(k+1)(Ek+1 ∩ I ) > 2−sk , we take Ek+1 ∩ I to be a compact subset

of Ek ∩ I with Ms
2−(k+1)(Ek+1 ∩ I ) = 2−sk . Such a subset exists, since

Ms
2−(k+1)(Ek ∩ I ∩ [0, u]) is finite and continuous in u. (This is why we

need to work with the Ms
δ rather than Ms .)

Now we have Ms
2−k (Ek ∩ I ) = 2−sk .

So Ms
2−(k+1)(Ek+1 ∩ I ) = Ms

2−k (Ek ∩ I ) holds.

Summing this relation over all binary intervals of length 2−k we get

Ms
2−(k+1)(Ek+1) = Ms

2−k (Ek).

George Voutsadakis (LSSU) Fractal Geometry April 2024 40 / 52



Techniques for Calculating Dimensions Subsets of Finite Measure

Finitization (Cont’d)

We obtained Ms
2−(k+1)(Ek+1) = Ms

2−k (Ek).

Repeated application of this gives Ms
2−k (Ek) = Ms

1(E0), for all k .

Let E be the compact set
⋂∞

k=0 Ek .

Taking the limit as k → ∞ gives Ms(E ) = Ms
1(E0).

E0 = F is covered by the single interval [0, 1).

So we have Ms(E ) = Ms
1(E0) ≤ 1.

Now Ms(E0) ≥ Hs(E0) > 0.

So, for k large enough, we have Ms
2−k (E0) > 0

Thus, one of the following holds:

Ms(E ) = Ms
1(E0) ≥ 2−ks ;

Ms
1(E0) < 2−ks .

So Ms(E ) = Ms
1(E0) = Ms

2−k (E0) > 0.

Thus, 0 < Ms(E ) < ∞.

The theorem follows from Hs(F ) ≤ Ms(F ) ≤ 2s+1Hs(F ).
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Compact Subset with Nice Hausdorff Measures

Proposition

Let F be a Borel set satisfying 0 < Hs(F ) < ∞. There is a constant b
and a compact set E ⊆ F , with Hs(E ) > 0, such that

Hs(E ∩ B(x , r)) ≤ br s ,

for all x ∈ R
n and r > 0.

In a previous proposition, it was shown that, for a mass distribution µ
on R

n, a Borel set F ⊆ R
n and a constant 0 < c < ∞, if

limr→0
µ(B(x ,r))

r s
> c , for all x ∈ F , then Hs(F ) ≤ 2sµ(Rn)

c
.

Take µ as the restriction of Hs to F , i.e., µ(A) = Hs(F ∩ A).

Let

F1 =

{
x ∈ R

n : limr→0
Hs(F ∩ B(x , r))

r s
> 21+s

}
.
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Techniques for Calculating Dimensions Subsets of Finite Measure

Compact Subset with Nice Hausdorff Measures (Cont’d)

Then, we have

Hs(F1) ≤ 2s2−(1+s)µ(F ) =
1

2
Hs(F ).

Thus, Hs(F\F1) ≤ 1
2Hs(F ) > 0.

So, if E1 = F\F1, then:
Hs(E1) > 0;

limr→0
Hs(F∩B(x,r))

r s
≤ 21+s for x ∈ E1.

By Egoroff’s theorem, there is a compact set E ⊆ E1 with Hs(E ) > 0
and a number r0 > 0, such that

Hs(F ∩ B(x , r))

r s
≤ 22+s ,

for all x ∈ E and all 0 < r ≤ r0.

But, if r ≥ r0, we have Hs (F∩B(x ,r))
r s

≤ Hs(F )
r s0

.

So the inequality in the statement holds for all r > 0.
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Frostman’s Lemma

Corollary (Frostman’s Lemma)

Let F be a Borel subset of Rn with 0 < Hs(F ) ≤ ∞. Then there is a
compact set E ⊆ F , such that 0 < Hs(E ) < ∞ and a constant b, such
that

Hs(E ∩ B(x , r)) ≤ br s ,

for all x ∈ R
n and r > 0.

The preceding theorem gives F1 ⊆ F of positive finite measure.

Applying the preceding proposition to F1 gives the result.

This corollary may be regarded as a converse of the Mass Distribution
Principle.
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Subsection 3

Potential Theoretic Methods
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Potential and Energy Due to Mass Distribution

For s ≥ 0, the s-potential at a point x of Rn due to the mass
distribution µ on R

n is defined as

φs(x) =

∫
dµ(y)

|x − y |s .

If we are working in R
3 and s = 1, then this is essentially the familiar

Newtonian gravitational potential.

The s-energy of µ is

Is(µ) =

∫
φs(x)dµ(x) =

∫∫
dµ(x)dµ(y)

|x − y |s .
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Energy of Mass Distributions and Hausdorff Measure

Theorem

Let F be a subset of Rn.

(a) If there is a mass distribution µ on F with Is(µ) < ∞, then
Hs(F ) = ∞ and dimHF ≥ s.

(b) If F is a Borel set with Hs(F ) > 0, then there exists a mass
distribution µ on F with It(µ) < ∞, for all 0 < t < s.

(a) Suppose that Is(µ) < ∞ for some mass distribution µ with support
contained in F .

Define

F1 =

{
x ∈ F : lim

r→0

µ(B(x , r))

r s
> 0

}
.
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Energy and Hausdorff Measure (Part (a) Cont’d)

Suppose x ∈ F1.

Then we may find ε > 0 and a sequence of numbers {ri} decreasing
to 0, such that

µ(B(x , ri )) ≥ εr si .

Note that µ({x}) = 0, since, otherwise, Is(µ) = ∞.

By the continuity of µ, taking qi , 0 < qi < ri , small enough, we get

µ(Ai) ≥
1

4
εr si , i = 1, 2, . . . ,

where Ai is the annulus B(x , ri )\B(x , qi ).

Taking subsequences if necessary, assume that ri+1 < qi , for all i .

Then the Ai are disjoint annuli centered on x .
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Energy and Hausdorff Measure (Part (a) Cont’d)

Now we have, for all x ∈ F1,

φs(x) =

∫
dµ(y)

|x − y |s ≥
∞∑

i=1

∫

Ai

dµ(y)

|x − y |s ≥
∞∑

i=1

1

4
εr si r

−s
i = ∞,

since |x − y |−s ≥ r−s
i on Ai .

But Is(µ) =
∫
φs(x)dµ(x) < ∞.

So φs(x) < ∞ for µ-almost all x .

We conclude that µ(F1) = 0.

Now, if x ∈ F\F1, limr→0
µ(B(x ,r))

r s
= 0.

So by a previous proposition, for all c ≥ 0, we have

Hs(F ) ≥ Hs(F\F1) ≥
µ(F\F1)

c
≥ µ(F )− µ(F1)

c
=

µ(F )

c
.

Hence, Hs(F ) = ∞.
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Energy and Hausdorff Measure (Part (b))

(b) Suppose that Hs(F ) > 0. We use Hs to construct a mass distribution
µ on F with It(µ) < ∞, for every t < s.

By the preceding corollary, there exist a compact set E ⊆ F , with
0 < Hs(E ) < ∞ and a constant b, such that

Hs(E ∩ B(x , r)) ≤ br s ,

for all x ∈ R
n and r > 0.

Let µ be the restriction of Hs to E , µ(A) = Hs(E ∩ A).

Then µ is a mass distribution on F .

Fix x ∈ R
n and write

m(r) = µ(B(x , r)) = Hs(E ∩ B(x , r)) ≤ br s .
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Energy and Hausdorff Measure (Part (b) Cont’d)

Then, if 0 < t < s,

φt(x) =
∫
|x−y |≤1

dµ(y)
|x−y |t +

∫
|x−y |>1

dµ(y)
|x−y |t

≤
∫ 1
0 r−tdm(r) + µ(Rn)

= [r−tm(r)]10 + t
∫ 1
0 r−(t+1)m(r)dr + µ(Rn)

≤ b + bt
∫ 1
0 r s−t−1dr + µ(Rn)

= b(1 + t
s−t

) +Hs(F ) = c ,

after integrating by parts and using the definition of m(r).

Thus, φt(x) ≤ c , for all x ∈ R
n.

It(µ) =

∫
φt(x)dµ(x) ≤ cµ(Rn) < ∞.
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Using the Energy Theorem

The theorem is often used to find the dimension of fractals Fθ which
depend on a parameter θ.

There may be a natural way to define a mass distribution µθ on Fθ,
for each θ.

Suppose we can show that, for some s,

∫
Is(µθ)dθ =

∫∫∫
dµθ(x)dµθ(y)dθ

|x − y |s < ∞.

Then Is(µθ) < ∞, for almost all θ.

So we may conclude that

dimHFθ ≥ s, for almost all θ.
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