Introduction to Fractal Geometry

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Techniques for Calculating Dimensions

- Basic Methods
- Subsets of Finite Measure
- Potential Theoretic Methods

Subsection 1

Basic Methods

Bounding Hausdorff Dimension Using Box Dimension

Proposition

Suppose *F* can be covered by n_k sets of diameter at most δ_k , with $\delta_k \to 0$ as $k \to \infty$. Then

$$\dim_{H} F \leq \underline{\dim}_{B} F \leq \underline{\lim}_{k \to \infty} \frac{\log n_{k}}{-\log \delta_{k}}$$

Moreover, if $n_k \delta_k^s$ remains bounded as $k \to \infty$, then $\mathcal{H}^s(F) < \infty$. If $\delta_k \to 0$ but $\delta_{k+1} \ge c \delta_k$, for some 0 < c < 1, then

$$\overline{\dim}_B F \leq \overline{\lim_{k \to \infty} \frac{\log n_k}{-\log \delta_k}}$$

 The inequalities for the box-counting dimension are immediate from the definitions and the remark regarding sequences δ_k.
 That dim_HF ≤ dim_BF was shown previously.

Bounding Hausdorff Dimension (Cont'd)

Suppose n_kδ^s_k is bounded. Then H^s_{δ_k}(F) ≤ n_kδ^s_k.
 So H^s_{δ_k}(F) tends to a finite limit H^s(F) as k → ∞.
 Example: Consider the middle third Cantor set.
 We know that the natural coverings by 2^k intervals of length 3^{-k} give

$$\dim_{H} F \leq \underline{\dim}_{B} F \leq \overline{\dim}_{B} F \leq \frac{\log 2}{\log 3}.$$

Difficulties in Obtaining Lower Bounds

- Surprisingly often, the "obvious" upper bound for the Hausdorff dimension of a set turns out to be the actual value.
- However, demonstrating this can be difficult.
- To obtain an upper bound it is enough to evaluate sums of the form $\sum |U_i|^s$ for specific coverings $\{U_i\}$ of *F*.
- For a lower bound we must show that $\sum |U_i|^s$ is greater than some positive constant for all δ -coverings of F.
- Clearly an enormous number of such coverings are available.
- In particular, when working with Hausdorff dimension as opposed to box dimension, consideration must be given to covers where some of the *U_i* are very small and others have relatively large diameter.
- This prohibits sweeping estimates for ∑ |U_i|^s such as those available for upper bounds.

Overcoming the Difficulties for Lower Bounds

- One way of getting around these difficulties is to show that no individual set U can cover too much of F compared with its size measured as |U|^s.
- Then if $\{U_i\}$ covers the whole of F, the sum $\sum |U_i|^s$ cannot be too small.
- The usual way to do this is to:
 - Concentrate a suitable mass distribution μ on F;
 - Compare the mass $\mu(U)$ covered by U with $|U|^s$, for each U.
- Recall that a mass distribution on F is a measure with support contained in F such that 0 < µ(F) < ∞.

Mass Distribution Principle

Mass Distribution Principle

Let μ be a mass distribution on F. Suppose that, for some s, there are numbers c > 0 and $\varepsilon > 0$, such that $\mu(U) \le c |U|^s$, for all sets U with $|U| \le \varepsilon$. Then $\mathcal{H}^s(F) \ge \frac{\mu(F)}{c}$ and

 $s \leq \dim_H F \leq \underline{\dim}_B F \leq \overline{\dim}_B F.$

• If $\{U_i\}$ is any cover of F then

$$0 < \mu(F) \leq \mu\left(\bigcup_{i} U_{i}\right) \leq \sum_{i} \mu(U_{i}) \leq c \sum_{i} |U_{i}|^{s}.$$

Taking infima, $\mathcal{H}_{\delta}^{s}(F) \geq \frac{\mu(F)}{c}$, if δ is small enough. So $\mathcal{H}^{s}(F) \geq \frac{\mu(F)}{c}$. Since $\mu(F) > 0$, we get dim_H $F \geq s$.

Example

- The Mass Distribution Principle gives a quick lower estimate for the Hausdorff dimension of the middle third Cantor set *F*. Let μ be the natural mass distribution on *F*. Each of the 2^k k-th level intervals of length 3^{-k} in E_k in the construction of *F* carry a mass 2^{-k}. We imagine that:
 - We start with unit mass on *E*₀;
 - Repeatedly divide the mass on each interval of E_k between its two subintervals in E_{k+1} .
 - Let U be a set with |U| < 1.
 - Let k be the integer such that $3^{-(k+1)} \leq |U| < 3^{-k}$.

Then U can intersect at most one of the intervals of E_k .

$$\mu(U) \le 2^{-k} = (3^{\log 2/\log 3})^{-k} = (3^{-k})^{\log 2/\log 3} \le (3|U|)^{\log 2/\log 3}$$

Hence, by the principle, $\mathcal{H}^{\log 2/\log 3}(F) \ge 3^{-\log 2/\log 3} = \frac{1}{2}$. This gives $\dim_H F \ge \frac{\log 2}{\log 3}$.

Example

• Let $F_1 = F \times [0,1] \subseteq \mathbb{R}^2$ be the product of:

- The middle third Cantor set F;
- The unit interval.

For $s = 1 + \frac{\log 2}{\log 3}$, $\dim_B F_1 = \dim_H F_1 = s$, with $0 < \mathcal{H}^s(F_1) < \infty$. For each k, there is a covering of F by 2^k intervals of length 3^{-k} . A column of 3^k squares of side 3^{-k} (diameter $3^{-k}\sqrt{2}$) covers the part of F_1 above each such interval. So all together, F_1 may be covered by $2^k 3^k$ squares of side 3^{-k} .

So we get

$$\begin{aligned} \mathcal{H}^{s}_{3^{-k}\sqrt{2}}(F_{1}) &\leq 3^{k}2^{k}(3^{-k}\sqrt{2})^{s} \\ &= (3 \cdot 2 \cdot 3^{-1 - \log 2/\log 3})^{k}2^{s/2} \\ &= 2^{s/2}. \end{aligned}$$

So $\mathcal{H}^{s}(F_{1}) \leq 2^{s/2}$. Thus, $\dim_{H}F_{1} \leq \underline{\dim}_{B}F_{1} \leq \overline{\dim}_{B}F_{1} \leq s$.

Example (Cont'd)

• We define a mass distribution μ on F_1 by:

- Taking the natural mass distribution on F described above (each k-th level interval of F of side 3^{-k} having mass 2^{-k});
- "Spreading it" uniformly along the intervals above F.

So, if U is a rectangle, with sides parallel to the coordinate axes, of height $h \le 1$, above a k-th level interval of F, then $\mu(U) = h2^{-k}$. Any set U is contained in a square of side |U| with sides parallel to the coordinate axes.

If $3^{-(k+1)} \le |U| < 3^{-k}$, then U lies above at most one k-th level interval of F of side 3^{-k} .

Example (Cont'd)

It follows that

$$\begin{array}{rcl} \mu(U) & \leq & |U|2^{-k} \\ & \leq & |U|3^{-k\log 2/\log 3} \\ & \leq & |U|(3|U|)^{\log 2/\log 3} \\ & = & 3^{\log 2/\log 3}|U|^{s} \\ & = & 2|U|^{s}. \end{array}$$

By the Mass Distribution Principle, $\mathcal{H}^{s}(F_1) > \frac{1}{2}$.

Generalization of the Cantor Construction

- Let [0,1] = E₀ ⊇ E₁ ⊇ E₂ ⊇ ··· be a decreasing sequence of sets, with each E_k a union of a finite number of disjoint closed intervals, called k-th level basic intervals, such that:
 - Each interval of E_k contains at least two intervals of E_{k+1} ;
 - The maximum length of k-th level intervals tending to 0 as $k \to \infty$.
- Then the set $F = \bigcap_{k=0}^{\infty} E_k$ is a totally disconnected subset of [0, 1] which is generally a fractal.

Computing the Dimension of F

- Obvious upper bounds for the dimension of *F* are available by taking the intervals of *E_k* as covering intervals, for each *k*.
- As usual, lower bounds are harder to find.
- In the following examples:
 - The upper estimates for dim_HF depend on the number and size of the basic intervals;
 - The lower estimates depend on their spacing.

For these to be equal, the (k + 1)-th level intervals must be "nearly uniformly distributed" inside the *k*-th level intervals.

Example

- Let *s* be a number strictly between 0 and 1.
- We repeat the same general construction.
- We assume that, for each k-th level interval I, the (k + 1)-st level intervals I₁,..., I_m, m ≥ 2, contained in I are:
 - Of equal length and equally spaced;
 - The lengths are given by

$$|I_i|^s = rac{1}{m}|I|^s, \quad 1 \le i \le m;$$

- The left-hand ends of I_1 and I coincide;
- The right-hand ends of I_m and I coincide.
- Then dim_HF = s and $0 < \mathcal{H}^{s}(F) < \infty$.
- In general, *m* may be different for different intervals *I*.
- So the k-th level intervals may have different lengths.

Example (Upper Bound)

• Let *I*, *I_i* be as above. Then

$$|I|^s = \sum_{i=1}^m |I_i|^s.$$

Apply this inductively to the k-th level intervals for successive k. We obtain, for each k,

$$1=\sum |I_i|^s,$$

where the sum is over all the k-th level intervals I_i .

The k-th level intervals cover F.

The maximum interval length tends to 0 as $k \to \infty$. So we get

$$\mathcal{H}^{s}_{\delta}(F) \leq 1,$$

for sufficiently small δ . Thus, $\mathcal{H}^{s}(F) \leq 1$.

Example (Lower Bound)

- Distribute a mass µ on F in such a way that µ(I) = |I|^s whenever I is any level k interval.
 - Start with unit mass on [0, 1];
 - Divide this equally between each level 1 interval;
 - The mass on each level 1 interval is divided equally between each level 2 subinterval;

The equation $|I|^s = \sum_{i=1}^m |I_i|^s$ ensures that we get a mass distribution on F with $\mu(I) = |I|^s$, for every basic interval.

We estimate $\mu(U)$ for an interval U with endpoints in F.

Let I be the smallest basic interval that contains U.

Suppose it is a k-th level interval.

Let I_1, \ldots, I_m be the (k + 1)-st level intervals contained in I.

Then U intersects a number $j \ge 2$ of the I_i .

Otherwise, U would be contained in a smaller basic interval.

Example (Lower Bound Cont'd)

• The spacing between consecutive I_i is

$$\frac{|I|-m|I_i|}{m-1} = |I| \frac{1-m\frac{|I_i|}{m}}{m-1}$$
$$= |I| \frac{1-m^{1-|I_i|}}{m-1}$$
$$m \ge 2, 0 < s < 1$$
$$|I| \frac{1-m^{1-1/s}}{m-1}$$
$$= c_s \frac{|I|}{m},$$

111

where
$$c_s = 1 - 2^{1-1/s}$$
.
Thus, $i - 1$, \dots , i , \dots

$$|U| \geq rac{j-1}{m}c_s|I| \geq rac{j}{2m}c_s|I|.$$

Example (Lower Bound Cont'd)

• We know that
$$|I_i|^s = \frac{1}{m}|I|^s$$
.
So we have

μ

$$\begin{split} p(U) &\leq j\mu(I_{i}) \\ &= j|I_{i}|^{s} \\ &= \frac{j}{m}|I|^{s} \\ &\leq 2^{s}c_{s}^{-s}(\frac{j}{m})^{1-s}|U|^{s} \quad (|U| \geq \frac{j}{2m}c_{s}|I|) \\ &\leq 2^{s}c_{s}^{-s}|U|^{s}. \end{split}$$

This is true for any interval U with endpoints in F.

So it holds also for any set U (by applying the last inequality to the smallest interval containing $U \cap F$).

By the Mass Distribution Principle, $\mathcal{H}^{s}(F) > 0$.

Uniform Cantor Sets

• We call the sets obtained when *m* is kept constant throughout the construction of the preceding example **uniform Cantor sets**.

<u> </u>			 			 E_0
		<u> </u>	 	 		 E_1
	·		 	 		 E_2
			 	 		 E_3
	••••••		 	 ••••		 E_4
						1
	••••		 ••••	 •••••••	• • • • • • • • • • • •	 F

• They provide a natural generalization of the middle third Cantor set.

Example: Uniform Cantor Sets

- Let $m \ge 2$ be an integer and $0 < r < \frac{1}{m}$.
 - Let F be the set obtained by the construction in which:
 - Each basic interval *I* is replaced by *m* equally spaced subintervals of lengths *r*|*I*|;
 - The ends of *I* coinciding with the ends of the extreme subintervals.

Then dim_{*H*}
$$F = \dim_B F = \frac{\log m}{-\log r}$$
 and $0 < \mathcal{H}^{\log m/-\log r}(F) < \infty$.

The set F is obtained by taking in the preceding example:

• *m* constant;

•
$$s = \frac{\log m}{-\log r}$$
.

The equation $|I_i|^s = \frac{1}{m}|I|^s$ becomes $(r|I|)^s = \frac{1}{m}|I|^s$.

This equation is satisfied identically.

So dim_{*H*}F = s.

Example: Uniform Cantor Sets (Cont'd)

We now turn to the box dimension.
 For each k, F is covered by m^k k-th level intervals of length r^{-k}.
 This gives

$$\overline{\dim}_B F \leq \frac{\log m}{-\log r}.$$

The middle λ Cantor set is obtained by repeatedly removing a proportion 0 < λ < 1 from the middle of intervals, starting with [0, 1]. This is a special case of a uniform Cantor set, with:

•
$$m = 2;$$

• $r = \frac{1}{2}(1 - \lambda).$

Thus, it has Hausdorff and box dimensions

$$\frac{\log 2}{\log\left(2/(1-\lambda)\right)}.$$

Example

• Suppose in the general construction each (k - 1)-st level interval contains at least $m_k \ge 2$ k-th level intervals, k = 1, 2, ... which are separated by gaps of at least ε_k , where $0 < \varepsilon_{k+1} < \varepsilon_k$, for each k. Then

$$\dim_H F \geq \lim_{k \to \infty} rac{\log (m_1 \cdots m_{k-1})}{-\log (m_k \varepsilon_k)}.$$

We may assume that the right hand side of the inequality is positive, since otherwise the inequality is obvious.

We may also assume that each (k - 1)-st level interval contains exactly m_k k-th level intervals.

Otherwise, we may throw out excess intervals to get smaller sets E_k and F for which the condition holds.

Example (Cont'd)

- We define a mass distribution μ on F by assigning mass (m₁ · · · m_k)⁻¹ to each of the m₁ . . . m_k k-th level intervals. Let U be an interval with 0 < |U| < ε₁.
 We estimate μ(U).
 - Let k be the integer such that $\varepsilon_k \leq |U| < \varepsilon_{k-1}$.

The number of k-th level intervals that intersect U is:

(i) At most m_k, since U intersects at most one (k − 1)-st level interval;
(ii) At most |U|/ε_k + 1 ≤ 2|U|/ε_k, since the k-th level intervals have gaps of at least ε_k between them.

Example (Cont'd)

Each k-th level interval supports mass (m₁ ··· m_k)⁻¹.
 So, for all 0 ≤ s ≤ 1,

$$\mu(U) \leq (m_1 \cdots m_k)^{-1} \min\left\{\frac{2|U|}{\varepsilon_k}, m_k\right\}$$

$$\leq (m_1 \cdots m_k)^{-1} \left(\frac{2|U|}{\varepsilon_k}\right)^s m_k^{1-s}.$$

Hence,

$$\frac{\mu(U)}{|U|^s} \leq \frac{2^s}{(m_1 \cdots m_{k-1})m_k^s \varepsilon_k^s}.$$

If $s < \underline{\lim}_{k \to \infty} \frac{\log (m_1 \cdots m_{k-1})}{-\log (m_k \varepsilon_k)}$, then, for large k, $(m_1 \cdots m_{k-1}) m_k^s \varepsilon_k^s > 1 \implies \mu(U) \le 2^s |U|^s$.

Thus, by the Mass Distribution Principle, $\dim_H F \ge s$.

The Case of "Well-Spaced" Intervals

• Suppose that in the preceding example:

- The k-th level intervals are all of length ε_k ;
- Each (k-1)-st level interval contains exactly m_k k-th level intervals, which are "roughly equally spaced" in the sense that $m_k \varepsilon_k \ge c \delta_{k-1}$, where c > 0 is a constant.

Then $\dim_H F \geq \underline{\lim}_{k \to \infty} \frac{\log (m_1 \cdots m_{k-1})}{-\log (m_k \varepsilon_k)}$ becomes

$$\dim_{H} F \geq \underline{\lim}_{k \to \infty} \frac{\log (m_{1} \cdots m_{k-1})}{-\log c - \log \delta_{k-1}} = \underline{\lim}_{k \to \infty} \frac{\log (m_{1} \cdots m_{k-1})}{-\log \delta_{k-1}}.$$

But E_{k-1} comprises $m_1 \cdots m_{k-1}$ intervals of length δ_{k-1} .

So this expression equals the upper bound for $\dim_H F$ given by a previous proposition.

Thus, in the situation where the intervals are well spaced, we get equality instead of inequality.

Example

Fix 0 < s < 1 and let n₀, n₁, n₂,... be a rapidly increasing sequence of integers, say n_{k+1} ≥ max {n_k^k, 4n_k^{1/s}}, for each k.

For each k, let $H_k \subseteq \mathbb{R}$ consist of equally spaced equal intervals:

- Each has length $n_k^{-1/s}$;
- The midpoints of consecutive intervals are at distance n_k^{-1} apart. Then writing $F = \bigcap_{k=1}^{\infty} H_k$, we have $\dim_H F = s$. Since $F \subseteq H_k$ for each k, the set $F \cap [0, 1]$ is contained in at most $n_k + 1$ intervals of length $n_k^{-1/s}$. By a previous proposition,

$$\dim_{H}(F \cap [0,1]) \leq \lim_{k \to \infty} \frac{\log(n_{k}+1)}{-\log n_{k}^{-1/s}} = s.$$

Similarly, dim_H($F \cap [n, n+1]$) $\leq s$, for all $n \in \mathbb{Z}$. So dim_H $F \leq s$ as a countable union of such sets.

Example (Cont'd)

- Now let $E_0 = [0, 1]$ and, for $k \ge 1$, let E_k consist of the intervals of H_k that are completely contained in E_{k-1} . Then each interval I of E_{k-1} contains:
 - At least $n_k|I| 2 \ge n_k n_{k-1}^{-1/s} 2 \ge 2$ intervals of E_k ;

• For k large, they are separated by gaps of at least $n_k^{-1} - n_k^{-1/s} \ge \frac{1}{2}n_k^{-1}$. Using the preceding example, and noting that setting $m_k = n_k n_{k-1}^{-1/s}$ rather than $m_k = n_k n_{k-1}^{-1/s} - 2$ does not affect the limit,

$$\begin{aligned} \dim_{H}(F \cap [0,1]) &\geq \dim_{H} \bigcap_{k=1}^{\infty} E_{k} \\ &\geq \underbrace{\lim_{k \to \infty} \frac{\log((n_{1} \cdots n_{k-2})^{1-1/s} n_{k-1})}{-\log(n_{k} n_{k-1}^{-1/s} \frac{1}{2} n_{k}^{-1})}}_{\log 2 + (\log n_{k-1})/s}. \end{aligned}$$

Provided that n_k is sufficiently rapidly increasing, the terms in $\log n_{k-1}$ in the numerator and denominator dominate. So $\dim_H F \ge \dim_H (F \cap [0, 1]) \ge s$, as required.

Covering Lemma

Covering Lemma

Let C be a family of balls contained in some bounded region of \mathbb{R}^n . Then there is a (finite or countable) disjoint subcollection $\{B_i\}$, such that

$$\bigcup_{B\in\mathcal{C}}B\subseteq\bigcup_{i}\widetilde{B}_{i},$$

where B_i is the closed ball concentric with B_i and of four times the radius.

For simplicity, we give the proof when C is a finite family. The basic idea is the same in the general case. We select the {B_i} inductively. Let B₁ be a ball in C of maximum radius. Suppose that B₁,..., B_{k-1} have been chosen. Take B_k to be a largest ball in C disjoint from B₁,..., B_{k-1}. The process terminates when no such ball remains.

Covering Lemma (Cont'd)

• Clearly the balls selected are disjoint.

If $B \in C$, then one of the following holds:

- $B = B_i$, for some *i*;
- *B* intersects one of the B_i , with $|B_i| \ge |B|$.

If this were not the case, then *B* would have been chosen instead of the first ball B_k with $|B_k| < |B|$.

Either way,
$$B\subseteq B_i$$
.

So the required inclusion holds.

- It is easy to see that the result remains true taking B_i as the ball concentric with B_i and of 3 + ε times the radius, for any ε > 0.
- If C is finite we may actually take $\varepsilon = 0$.

Hausdorff Bounds Using Balls

Proposition

Let μ be a mass distribution on \mathbb{R}^n , let $F \subseteq \mathbb{R}^n$ be a Borel set and let $0 < c < \infty$ be a constant. (a) If $\overline{\lim_{r \to 0} \frac{\mu(B(x,r))}{r^s}} < c$, for all $x \in F$, then $\mathcal{H}^s(F) \ge \frac{\mu(F)}{c}$. (b) If $\overline{\lim_{r \to 0} \frac{\mu(B(x,r))}{r^s}} > c$, for all $x \in F$, then $\mathcal{H}^s(F) \le \frac{2^{s}\mu(\mathbb{R}^n)}{c}$.

(a) For each $\delta > 0$, let

$$F_{\delta} = \{ x \in F : \mu(B(x, r)) < cr^{s} \text{ for all } 0 < r \leq \delta \}.$$

Let $\{U_i\}$ be a δ -cover of F.

Then, by hypothesis, it is also a δ -cover of F_{δ} .

For each U_i containing a point x of F_{δ} , the ball B with center x and radius $|U_i|$ certainly contains U_i .

Hausdorff Bounds Using Balls (Part (a) Cont'd)

• By definition of F_{δ} ,

$$\mu(U_i) \leq \mu(B) < c |U_i|^s.$$

So

$$\mu(F_{\delta}) \leq \sum_{i} \{\mu(U_{i}) : U_{i} \text{ intersects } F_{\delta}\} \leq c \sum_{i} |U_{i}|^{s}.$$
$$\{U_{i}\} \text{ was an arbitrary } \delta\text{-cover of } F.$$
So

$$\mu(F_{\delta}) \leq c\mathcal{H}^{s}_{\delta}(F) \leq c\mathcal{H}^{s}(F).$$

But F_{δ} increases to F as δ decreases to 0. So $\mu(F) \leq c\mathcal{H}^{s}(F)$.

Hausdorff Bounds Using Balls (Part (b))

(b) We prove a weaker version of Part (b) with 2^s replaced by 8^s. The basic idea of the proof is similar. Suppose first that *F* is bounded.
Fix δ > 0 and let C be the collection of balls

 $\{B(x, r) : x \in F, 0 < r \le \delta \text{ and } \mu(B(x, r)) > cr^{s}\}.$

Then, by hypothesis, $F \subseteq \bigcup_{B \in \mathcal{C}} B$.

Applying the Covering Lemma to the collection C, there is a sequence of disjoint balls $\widetilde{B}_i \in C$, such that

$$\bigcup_{B\in\mathcal{C}}B\subseteq\bigcup_{i}\widetilde{B}_{i},$$

where \widetilde{B}_i is the ball concentric with B_i but of four times the radius.

Hausdorff Bounds Using Balls (Part (b) Cont'd)

• Thus $\{\widetilde{B}_i\}$ is an 8δ -cover of F. It follows that

$$\mathcal{H}^{s}_{8\delta}(F) \leq \sum_{i} |\widetilde{B}_{i}|^{s} \ \leq 4^{s} \sum_{i} |B_{i}|^{s} \ \leq 8^{s} c^{-1} \sum_{i} \mu(B_{i}) \ \leq 8^{s} c^{-1} \mu(\mathbb{R}^{n}).$$

Letting $\delta \rightarrow$ 0, we get

$$\mathcal{H}^{s}(F) \leq 8^{s}c^{-1}\mu(\mathbb{R}^{n}) < \infty.$$

Finally, suppose F is unbounded and $\mathcal{H}^{s}(F) > 8^{s}c^{-1}\mu(\mathbb{R}^{n})$. Then the \mathcal{H}^{s} -measure of some bounded subset of F will also exceed this value. But this contradicts what was just shown.

Fractal Geometry

Consequences

• It is immediate from the preceding proposition that if

$$\lim_{r o 0} rac{\log \mu(B(x,r))}{\log r} = s, \quad ext{for all } x \in F,$$

then $\dim_H F = s$.

- Often the calculations involved can be used in conjunction with the basic properties of dimensions discussed previously.
 Example: The function f(x) = x² is:
 - Lipschitz on [0, 1];
 - Bi-Lipschitz on $\left[\frac{2}{3}, 1\right]$.

It follows that, if C is the middle third Cantor set,

$$\dim_H \{x^2 : x \in C\} = \dim_H f(C) = \frac{\log 2}{\log 3}.$$

Subsection 2

Subsets of Finite Measure

Introducing Finitization

- The following theorem guarantees that any (Borel) set F with $\mathcal{H}^{s}(F) = \infty$ contains a subset E with $0 < \mathcal{H}^{s}(E) < \infty$, i.e., with E an *s*-set.
- At first, this might seem obvious just shave pieces off *F* until what remains has positive finite measure.
- Unfortunately it is not quite this simple, since it is possible to jump from infinite measure to zero measure without passing through any intermediate value.

Introducing Finitization (Cont'd)

It is possible to have a decreasing sequence of sets

 $E_1 \supseteq E_2 \supseteq \cdots$.

such that:

- $\mathcal{H}^{s}(E_{k}) = \infty$, for all k;
- $\mathcal{H}^{s}(\bigcap_{k=1}^{\infty} E_k) = 0.$

Example: Consider the sequence

$$E_k = \left[0, \frac{1}{k}\right] \subseteq \mathbb{R}, \quad k = 1, 2, \dots$$

Clearly, $E_1 \supset E_2 \supset E_3 \cdots$ and $\bigcap_{k=1}^{\infty} E_k = \{0\}$. Take 0 < s < 1. Then we have:

- $\mathcal{H}^{s}(E_{k}) = \infty$, for all k;
- $\mathcal{H}^{s}(\bigcap_{k=1}^{\infty} E_k) = 0.$

Finitization

Theorem

Let F be a Borel subset of \mathbb{R}^n , with $0 < \mathcal{H}^s(F) \le \infty$. Then there is a compact set $E \subseteq F$, such that $0 < \mathcal{H}^s(E) < \infty$.

- The complete proof of this is complicated.
 We indicate the ideas involved in the case where:
 - F is a compact subset of $[0,1) \subseteq \mathbb{R}$;
 - 0 < s < 1.

We work with the net measures \mathcal{M}^s which are:

- Defined using the binary intervals $[r2^{-k}, (r+1)2^{-k});$
- Related to Hausdorff measure by $\mathcal{H}^{s}(F) \leq \mathcal{M}^{s}(F) \leq 2^{s+1}\mathcal{H}^{s}(F)$.

We define inductively a decreasing sequence $E_0 \supseteq E_1 \supseteq E_2 \supseteq \cdots$ of compact subsets of F.

Let $E_0 = F$.

Finitization (Cont'd)

- For k ≥ 0 we define E_{k+1} by specifying its intersection with each binary interval I of length 2^{-k}.
 - If M^s_{2-(k+1)}(E_k ∩ I) ≤ 2^{-sk}, we let E_{k+1} ∩ I = E_k ∩ I. Then, using I itself as a covering interval in calculating M^s_{2-k}, gives an estimate at least as large as using shorter binary intervals. So we have M^s_{2-(k+1)}(E_{k+1} ∩ I) = M^s_{2-k}(E_k ∩ I).
 - If M^s_{2-(k+1)}(E_{k+1} ∩ I) > 2^{-sk}, we take E_{k+1} ∩ I to be a compact subset of E_k ∩ I with M^s_{2-(k+1)}(E_{k+1} ∩ I) = 2^{-sk}. Such a subset exists, since M^s_{2-(k+1)}(E_k ∩ I ∩ [0, u]) is finite and continuous in u. (This is why we need to work with the M^s_δ rather than M^s.) Now we have M^s_{2-k}(E_k ∩ I) = 2^{-sk}. So M^s_{2-(k+1)}(E_{k+1} ∩ I) = M^s_{2-k}(E_k ∩ I) holds.

Summing this relation over all binary intervals of length 2^{-k} we get

$$\mathcal{M}_{2^{-(k+1)}}^{s}(E_{k+1}) = \mathcal{M}_{2^{-k}}^{s}(E_{k}).$$

Finitization (Cont'd)

• We obtained $\mathcal{M}_{2^{-(k+1)}}^{s}(E_{k+1}) = \mathcal{M}_{2^{-k}}^{s}(E_{k}).$ Repeated application of this gives $\mathcal{M}_{2-k}^{s}(E_k) = \mathcal{M}_{1}^{s}(E_0)$, for all k. Let *E* be the compact set $\bigcap_{k=0}^{\infty} E_k$. Taking the limit as $k \to \infty$ gives $\mathcal{M}^{s}(E) = \mathcal{M}_{1}^{s}(E_{0})$. $E_0 = F$ is covered by the single interval [0, 1). So we have $\mathcal{M}^{s}(E) = \mathcal{M}^{s}_{1}(E_{0}) < 1$. Now $\mathcal{M}^{s}(E_0) \geq \mathcal{H}^{s}(E_0) > 0$. So, for k large enough, we have $\mathcal{M}_{2-k}^{s}(E_0) > 0$ Thus, one of the following holds: • $\mathcal{M}^{s}(E) = \mathcal{M}^{s}_{1}(E_{0}) > 2^{-ks};$ • $\mathcal{M}_1^s(E_0) < 2^{-ks}$. So $\mathcal{M}^{s}(E) = \mathcal{M}^{s}_{1}(E_{0}) = \mathcal{M}^{s}_{2-k}(E_{0}) > 0.$ Thus, $0 < \mathcal{M}^{s}(E) < \infty$. The theorem follows from $\mathcal{H}^{s}(F) \leq \mathcal{M}^{s}(F) \leq 2^{s+1}\mathcal{H}^{s}(F)$.

Compact Subset with Nice Hausdorff Measures

Proposition

Let F be a Borel set satisfying $0 < \mathcal{H}^{s}(F) < \infty$. There is a constant b and a compact set $E \subseteq F$, with $\mathcal{H}^{s}(E) > 0$, such that

 $\mathcal{H}^{s}(E \cap B(x,r)) \leq br^{s},$

for all $x \in \mathbb{R}^n$ and r > 0.

• In a previous proposition, it was shown that, for a mass distribution μ on \mathbb{R}^n , a Borel set $F \subseteq \mathbb{R}^n$ and a constant $0 < c < \infty$, if $\overline{\lim_{r \to 0} \frac{\mu(B(x,r))}{r^s}} > c$, for all $x \in F$, then $\mathcal{H}^s(F) \leq \frac{2^s \mu(\mathbb{R}^n)}{c}$. Take μ as the restriction of \mathcal{H}^s to F, i.e., $\mu(A) = \mathcal{H}^s(F \cap A)$. Let

$$F_1 = \left\{ x \in \mathbb{R}^n : \overline{\lim}_{r \to 0} \frac{\mathcal{H}^s(F \cap B(x, r))}{r^s} > 2^{1+s} \right\}.$$

Compact Subset with Nice Hausdorff Measures (Cont'd)

Then, we have

$$\mathcal{H}^{s}(F_{1}) \leq 2^{s}2^{-(1+s)}\mu(F) = \frac{1}{2}\mathcal{H}^{s}(F).$$

Thus,
$$\mathcal{H}^{s}(F \setminus F_{1}) \leq \frac{1}{2} \mathcal{H}^{s}(F) > 0$$
.
So, if $E_{1} = F \setminus F_{1}$, then:
• $\mathcal{H}^{s}(E_{1}) > 0$;
• $\overline{\lim}_{r \to 0} \frac{\mathcal{H}^{s}(F \cap B(x,r))}{r^{s}} \leq 2^{1+s}$ for $x \in E_{1}$.
By Egoroff's theorem, there is a compact set $E \subseteq E_{1}$ with $\mathcal{H}^{s}(E) > 0$
and a number $r_{0} > 0$, such that

$$\frac{\mathcal{H}^{s}(F \cap B(x,r))}{r^{s}} \leq 2^{2+s},$$

for all $x \in E$ and all $0 < r \le r_0$. But, if $r \ge r_0$, we have $\frac{\mathcal{H}^s(F \cap B(x,r))}{r^s} \le \frac{\mathcal{H}^s(F)}{r_0^s}$. So the inequality in the statement holds for all r > 0.

George Voutsadakis (LSSU)

Frostman's Lemma

Corollary (Frostman's Lemma)

Let F be a Borel subset of \mathbb{R}^n with $0 < \mathcal{H}^s(F) \le \infty$. Then there is a compact set $E \subseteq F$, such that $0 < \mathcal{H}^s(E) < \infty$ and a constant b, such that

 $\mathcal{H}^{s}(E \cap B(x,r)) \leq br^{s},$

for all $x \in \mathbb{R}^n$ and r > 0.

- The preceding theorem gives F₁ ⊆ F of positive finite measure.
 Applying the preceding proposition to F₁ gives the result.
- This corollary may be regarded as a converse of the Mass Distribution Principle.

Subsection 3

Potential Theoretic Methods

Potential and Energy Due to Mass Distribution

For s ≥ 0, the s-potential at a point x of ℝⁿ due to the mass distribution µ on ℝⁿ is defined as

$$\phi_s(x) = \int \frac{d\mu(y)}{|x-y|^s}.$$

- If we are working in \mathbb{R}^3 and s = 1, then this is essentially the familiar Newtonian gravitational potential.
- The *s*-energy of μ is

$$I_{s}(\mu) = \int \phi_{s}(x) d\mu(x) = \iint \frac{d\mu(x) d\mu(y)}{|x-y|^{s}}.$$

Energy of Mass Distributions and Hausdorff Measure

Theorem

- Let *F* be a subset of \mathbb{R}^n .
- (a) If there is a mass distribution μ on F with $I_s(\mu) < \infty$, then $\mathcal{H}^s(F) = \infty$ and $\dim_H F \ge s$.
- (b) If F is a Borel set with $\mathcal{H}^{s}(F) > 0$, then there exists a mass distribution μ on F with $I_{t}(\mu) < \infty$, for all 0 < t < s.
- (a) Suppose that $I_s(\mu) < \infty$ for some mass distribution μ with support contained in F.

Define

$$F_1 = \left\{ x \in F : \overline{\lim_{r \to 0}} \frac{\mu(B(x,r))}{r^s} > 0 \right\}.$$

Energy and Hausdorff Measure (Part (a) Cont'd)

• Suppose $x \in F_1$.

Then we may find $\varepsilon > 0$ and a sequence of numbers $\{r_i\}$ decreasing to 0, such that

$$\mu(B(x,r_i))\geq \varepsilon r_i^s.$$

Note that $\mu({x}) = 0$, since, otherwise, $I_s(\mu) = \infty$.

By the continuity of μ , taking q_i , $0 < q_i < r_i$, small enough, we get

$$\mu(A_i) \geq \frac{1}{4} \varepsilon r_i^s, \quad i=1,2,\ldots,$$

where A_i is the annulus $B(x, r_i) \setminus B(x, q_i)$.

Taking subsequences if necessary, assume that $r_{i+1} < q_i$, for all *i*. Then the A_i are disjoint annuli centered on x.

Energy and Hausdorff Measure (Part (a) Cont'd)

• Now we have, for all $x \in F_1$,

$$\phi_{s}(x) = \int \frac{d\mu(y)}{|x-y|^{s}} \ge \sum_{i=1}^{\infty} \int_{A_{i}} \frac{d\mu(y)}{|x-y|^{s}} \ge \sum_{i=1}^{\infty} \frac{1}{4} \varepsilon r_{i}^{s} r_{i}^{-s} = \infty,$$

since $|x-y|^{-s} \ge r_{i}^{-s}$ on A_{i} .
But $I_{s}(\mu) = \int \phi_{s}(x) d\mu(x) < \infty.$
So $\phi_{s}(x) < \infty$ for μ -almost all x .
We conclude that $\mu(F_{1}) = 0$.
Now, if $x \in F \setminus F_{1}$, $\overline{\lim_{r \to 0} \frac{\mu(B(x,r))}{r^{s}}} = 0$.
So by a previous proposition, for all $c \ge 0$, we have

$$\mathcal{H}^{s}(F) \geq \mathcal{H}^{s}(F \setminus F_{1}) \geq rac{\mu(F \setminus F_{1})}{c} \geq rac{\mu(F) - \mu(F_{1})}{c} = rac{\mu(F)}{c}$$

Hence, $\mathcal{H}^{s}(F) = \infty$.

S

Energy and Hausdorff Measure (Part (b))

(b) Suppose that $\mathcal{H}^{s}(F) > 0$. We use \mathcal{H}^{s} to construct a mass distribution μ on F with $I_{t}(\mu) < \infty$, for every t < s.

By the preceding corollary, there exist a compact set $E \subseteq F$, with $0 < \mathcal{H}^s(E) < \infty$ and a constant *b*, such that

 $\mathcal{H}^{s}(E \cap B(x,r)) \leq br^{s},$

for all $x \in \mathbb{R}^n$ and r > 0.

Let μ be the restriction of \mathcal{H}^{s} to E, $\mu(A) = \mathcal{H}^{s}(E \cap A)$.

Then μ is a mass distribution on *F*.

Fix $x \in \mathbb{R}^n$ and write

$$m(r) = \mu(B(x,r)) = \mathcal{H}^{s}(E \cap B(x,r)) \leq br^{s}.$$

Energy and Hausdorff Measure (Part (b) Cont'd)

• Then, if 0 < t < s,

$$\begin{split} \phi_t(x) &= \int_{|x-y| \le 1} \frac{d\mu(y)}{|x-y|^t} + \int_{|x-y| > 1} \frac{d\mu(y)}{|x-y|^t} \\ &\le \int_0^1 r^{-t} dm(r) + \mu(\mathbb{R}^n) \\ &= [r^{-t}m(r)]_0^1 + t \int_0^1 r^{-(t+1)}m(r) dr + \mu(\mathbb{R}^n) \\ &\le b + bt \int_0^1 r^{s-t-1} dr + \mu(\mathbb{R}^n) \\ &= b(1 + \frac{t}{s-t}) + \mathcal{H}^s(F) = c, \end{split}$$

after integrating by parts and using the definition of m(r). Thus, $\phi_t(x) \leq c$, for all $x \in \mathbb{R}^n$.

$$I_t(\mu) = \int \phi_t(x) d\mu(x) \leq c\mu(\mathbb{R}^n) < \infty.$$

Using the Energy Theorem

- The theorem is often used to find the dimension of fractals F_{θ} which depend on a parameter θ .
- There may be a natural way to define a mass distribution μ_{θ} on F_{θ} , for each θ .
- Suppose we can show that, for some *s*,

$$\int I_{s}(\mu_{\theta})d\theta = \iiint \frac{d\mu_{\theta}(x)d\mu_{\theta}(y)d\theta}{|x-y|^{s}} < \infty.$$

- Then $I_s(\mu_{\theta}) < \infty$, for almost all θ .
- So we may conclude that

$$\dim_H F_{\theta} \geq s$$
, for almost all θ .