Introduction to Fractal Geometry

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

(1) Projections, Products and Intersections

- Projections of Arbitrary Sets
- Projections of s-Sets of Integral Dimension
- Projections of Arbitrary Sets of Integral Dimension
- Product Formulae
- Intersection of Fractals

Subsection 1

Projections of Arbitrary Sets

Projection of a Set Onto a Line

- Let L_{θ} be the line through the origin of \mathbb{R}^{2} that makes an angle θ with the horizontal axis.

- We denote orthogonal projection onto L_{θ} by

$$
\operatorname{proj}_{\theta} .
$$

- If F is a subset of \mathbb{R}^{2}, then $\operatorname{proj}_{\theta} F$ is the projection of F onto L_{θ}.

Projection of a Set Onto a Line

- We have, for all $x, y \in \mathbb{R}^{2}$,

$$
\left|\operatorname{proj}_{\theta} x-\operatorname{proj}_{\theta} y\right| \leq|x-y|
$$

- I.e. $\operatorname{proj}_{\theta}$ is a Lipschitz mapping.
- Thus, by a previous corollary, for any F and θ,

$$
\operatorname{dim}_{H}\left(\operatorname{proj}_{\theta} F\right) \leq \min \left\{\operatorname{dim}_{H} F, 1\right\}
$$

(as $\operatorname{proj}_{\theta} F \subseteq L_{\theta}$, its dimension cannot be more than 1).

- The interesting question is whether the opposite inequality is valid.

The Projection Theorem

Projection Theorem

Let $F \subseteq \mathbb{R}^{2}$ be a Borel set.
(a) If $\operatorname{dim}_{H} F \leq 1$, then $\operatorname{dim}_{H}\left(\operatorname{proj}_{\theta} F\right)=\operatorname{dim}_{H} F$ for almost all $\theta \in[0, \pi)$.
(b) If $\operatorname{dim}_{H} F>1$, then $\operatorname{proj}_{\theta} F$ has positive length (as a subset of L_{θ}) and so has dimension 1 , for almost all $\theta \in[0, \pi)$.

- We give a proof that uses the potential theoretic characterization of Hausdorff dimension in a very effective way.
Suppose $s<\operatorname{dim}_{H} F \leq 1$.
By a previous theorem, there exists a mass distribution μ on (a compact subset of) F with:
- $0<\mu(F)<\infty$;
- $\int_{F} \int_{F} \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}<\infty$.

For each θ, we "project" the mass distribution μ onto the line L_{θ}.
We get a mass distribution μ_{θ} on $\operatorname{proj}_{\theta} F$.

The Projection Theorem (Cont'd)

- Suppose:
- $\boldsymbol{\theta}$ is the unit vector in the direction θ;
- x is identified with its position vector;
- $x \cdot \boldsymbol{\theta}$ is the usual scalar product.

Then μ_{θ} is defined by the requirement that, for each interval $[a, b]$,

$$
\mu_{\theta}([a, b])=\mu\{x: a \leq x \cdot \boldsymbol{\theta} \leq b\} .
$$

Equivalently, for each non-negative function f,

$$
\int_{-\infty}^{\infty} f(t) d \mu_{\theta}(t)=\int_{F} f(x \cdot \boldsymbol{\theta}) d \mu(x) .
$$

The Projection Theorem (Cont'd)

- Now we have

$$
\begin{aligned}
\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d \mu_{\theta}(u) d \mu_{\theta}(v)}{|u-v|^{s}}\right] d \theta & =\int_{0}^{\pi}\left[\int_{F} \int_{F} \frac{d \mu(x) d \mu(y)}{|x \cdot \boldsymbol{\theta}-y \cdot \boldsymbol{\theta}|^{s}}\right] d \theta \\
& =\int_{0}^{\pi}\left[\int_{F} \int_{F} \frac{d \mu(x) d \mu(y)}{|(x-y) \cdot \boldsymbol{\theta}|^{s}}\right] d \theta \\
& =\int_{0}^{\pi} \frac{d \theta}{|\boldsymbol{\tau} \cdot \boldsymbol{\theta}|^{s}} \int_{F} \int_{F} \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
\end{aligned}
$$

for any fixed unit vector $\boldsymbol{\tau}$ (the integral of $|(x-y) \cdot \boldsymbol{\theta}|^{-s}$ with respect to θ depends only on $|x-y|)$.

The Projection Theorem (Conclusion)

- By hypothesis, the second factor is finite.

Moreover, if $s<1$,

$$
\int_{0}^{\pi} \frac{d \theta}{|\boldsymbol{\tau} \cdot \boldsymbol{\theta}|^{s}}=\int_{0}^{\pi} \frac{d \theta}{|\cos (\tau-\theta)|^{s}}<\infty
$$

So the integral is finite.
Hence, for almost all $\theta \in[0, \pi)$,

$$
\int_{F} \int_{F} \frac{d \mu_{\theta}(u) d \mu_{\theta}(v)}{|u-v|^{s}}<\infty
$$

By a previous theorem, the existence of such a mass distribution μ_{θ} on $\operatorname{proj}_{\theta} F$ implies that $\operatorname{dim}_{H}\left(\operatorname{proj}_{\theta} F\right) \geq s$.
This is true for all $s<\operatorname{dim}_{H} F$.
So part (a) of the result follows.
The proof of (b) follows similar lines, though Fourier transforms need to be introduced to show that the projections have positive length.

Higher-Dimensional Projections

- Let $G_{n, k}$ be the set of k-dimensional subspaces or " k-planes through the origin" in \mathbb{R}^{n}.
- These subspaces are naturally parametrized by $k(n-k)$ coordinates ("generalized direction cosines").
- So we may refer to "almost all" subspaces in a consistent way in terms of $k(n-k)$-dimensional Lebesgue measure.
- We write $\operatorname{proj}_{\square}$ for orthogonal projection onto the k-plane Π.

Higher-Dimensional Projection Theorem

Theorem (Higher-Dimensional Projection Theorem)

Let $F \subseteq \mathbb{R}^{n}$ be a Borel set.
(a) If $\operatorname{dim}_{H} F \leq k$, then $\operatorname{dim}_{H}\left(\operatorname{proj}_{\Pi} F\right)=\operatorname{dim}_{H} F$, for almost all $\Pi \in G_{n, k}$,
(b) If $\operatorname{dim}_{H} F>k$, then $\operatorname{proj}_{\Pi} F$ has positive k-dimensional measure and so has dimension k, for almost all $\Pi \in G_{n, k}$.

- The proof of the preceding theorem extends to higher dimensions without difficulty.

Practical Applications

- If F is a subset of \mathbb{R}^{3}, the plane projections of F are, in general, of dimension $\min \left\{2, \operatorname{dim}_{H} F\right\}$.
- In practice we can estimate the dimension of an object in space by estimating the dimension of a photograph taken from a random direction.

Provided this is less than 2, it may be assumed to equal the dimension of the object.

- Such a reduction can make dimension estimates of spatial objects tractable, since box-counting methods are difficult to apply in 3 dimensions but can be applied with reasonable success in the plane.

Subsection 2

Projections of s-Sets of Integral Dimension

Introduction

- If a subset F of \mathbb{R}^{2} has Hausdorff dimension exactly 1 , then we saw that the projections of F onto almost every L_{θ} have dimension 1 .
- However, in this critical case, no information is given as to whether these projections have zero or positive length.
- In the special case where F is a 1 -set, i.e., with $0<\mathcal{H}^{1}(F)<\infty$, an analysis is possible.
- Recall from a previous theorem that a 1-set may be decomposed into a regular curve-like part and an irregular dust-like part.

Regular 1-Sets

Theorem

Let F be a regular 1-set in \mathbb{R}^{2}. Then $\operatorname{proj}_{\theta} F$ has positive length except for at most one $\theta \in[0, \pi)$.

Sketch of Proof: By a previous theorem, it is enough to prove the result if F is a subset of positive length of a rectifiable curve C.
By the Lebesgue Density Theorem, we may approximate such an F by short continuous subcurves of C.
So essentially all we need to consider is the case when F is itself a rectifiable curve C_{1} joining distinct points x and y.
Clearly, the projection onto L_{θ} of such a curve is an interval of positive length, except possibly for the one value of θ for which L_{θ} is perpendicular to the straight line through x and y.

Regular 1-Sets Comments

- Suppose F is a regular 1-set in \mathbb{R}^{2}.
- In general, $\operatorname{proj}_{\theta} F$ will have positive length for all θ
- There is an exceptional value of θ only if F is contained in a set of parallel line segments.

Irregular 1-Sets

Theorem

Let F be an irregular 1-set in \mathbb{R}^{2}. Then $\operatorname{proj}_{\theta} F$ has length zero for almost all $\theta \in[0, \pi)$.

- The proof is complicated, depending on the intricate density and angular density structure of irregular sets.

Corollary

Let F be a 1 -set in \mathbb{R}^{2}. If the regular part of F has \mathcal{H}^{1}-measure zero, then $\operatorname{proj}_{\theta} F$ has length zero for almost all θ. Otherwise, it has positive length for all but at most one value of θ.

Corollary

A 1-set in \mathbb{R}^{2} is irregular if and only if it has projections of zero length in at least two directions.

Example: Cantor Dust

Claim: The Cantor dust F is an irregular 1 -set.
In a preceding example we showed that F is a 1 -set.
It is easy to see that the projections of F onto lines L_{θ} with $\tan \theta=\frac{1}{2}$ and $\tan \theta=-2$ have zero length (look at the first few iterations).
So F is irregular by the preceding corollary.

Widening the Application of the Theorems

- Suppose F is a set that intersects some rectifiable curve in a set of positive length.
Then F contains a regular subset.
It follows that $\operatorname{proj}_{\theta} F$ has positive length for almost all θ.
- Suppose F is a σ-finite irregular set.

By definition, it may be expressed as a countable union of irregular 1 -sets each of finite measure.
Then $\operatorname{proj}_{\theta} F$ has zero length for almost all θ.
This follows by taking countable unions of the projections of these component 1 -sets.

Higher-Dimensional Analogs

- We state the higher-dimensional analog of the preceding theorems.
- The proofs are even more complicated than in the plane case.

Theorem

Let F be a k-set in \mathbb{R}^{n}, where k is an integer.
(a) If F is regular then $\operatorname{proj}_{\theta} F$ has positive k-dimensional measure for almost all $\Pi \in G_{n, k}$.
(b) If F is irregular then $\operatorname{proj}_{\theta} F$ has zero k-dimensional measure for almost all $\Pi \in G_{n, k}$.

Subsection 3

Projections of Arbitrary Sets of Integral Dimension

Introduction

- The theorems of the last subsection do not provide a complete answer to the question of whether projections of plane sets onto lines have zero or positive length.
- A subset F of \mathbb{R}^{2} of Hausdorff dimension 1 need not be a 1 -set or even be of σ-finite \mathcal{H}^{1}-measure, i.e., a countable union of sets of finite \mathcal{H}^{1}-measure.
- Moreover there need not be any dimension function h, for which $0<\mathcal{H}^{h}(F)<\infty$, in which case mathematical analysis is extremely difficult.

Introduction (Cont'd)

- We consider sets of Hausdorff dimension 1 but of non- σ-finite \mathcal{H}^{1}-measure.
- We can construct sets with projections more or less what we please.
- E.g., there is a set F in \mathbb{R}^{2}, such that:
- $\operatorname{proj}_{\theta} F$ contains an interval of length 1 for almost all θ with $0 \leq \theta<\frac{1}{2} \pi$;
- $\operatorname{proj}_{\theta} F$ is of length zero for $\frac{1}{2} \pi \leq \theta<\pi$.

Existence of Sets with Prescribed Projections

Theorem

Let G_{θ} be a subset of L_{θ} for each $\theta \in[0, \pi)$ [such that the set $\bigcup_{0 \leq \theta<\pi} G_{\theta}$ is plane Lebesgue measurable]. Then there exists a Borel set $F \subseteq \mathbb{R}^{2}$, such that:
(a) $\operatorname{proj}_{\theta} F \supseteq G_{\theta}$, for all θ;
(b) length $\left(\operatorname{proj}_{\theta} F \backslash G_{\theta}\right)=0$, for almost all θ.

In particular, for almost all θ, the set of points of L_{θ} belonging to either G_{θ} or $\operatorname{proj}_{\theta} F$, but not both, has zero length.

Existence of Sets with Prescribed Projections (Cont'd)

- We discuss only the idea behind the proof.

The basic building block for such sets has been termed the "iterated Venetian blind" construction.

Let E be a line segment of length λ.
Let ε be a small angle.
Let k be a large number.

Existence of Sets with Prescribed Projections (Cont'd)

- Replace E by k line segments of lengths roughly $\frac{\lambda}{k}$, each at an angle ε to E and with endpoints equally spaced along E to form E_{1}.
- Repeat this process with each segment of E_{1} to form a set E_{2}, with:
- k^{2} line segments all of lengths about $\frac{\lambda}{k^{2}}$;
- All of them at angle ε to E.
- Continuing, E_{r} consists of k^{r} segments all of lengths about $\frac{\lambda}{k^{r}}$ and at angle $r \varepsilon$ to E.
- We stop when r is such that $r \varepsilon$ is, say, about $\frac{1}{4} \pi$.

Existence of Sets with Prescribed Projections (Cont'd)

- Comparing the projections of E_{r} with that of E, we see that:
- If $0 \leq \theta<\frac{1}{2} \pi$, then $\operatorname{proj}_{\theta} E$ and $\operatorname{proj}_{\theta} E_{r}$ are nearly the same (lines perpendicular to L_{θ} that cut E also cut E_{r}).
- If $-\frac{1}{4} \pi<\theta<0$, then $\operatorname{proj}_{\theta} E_{r}$ will have very small length
(most lines perpendicular to L_{θ} will pass straight between appropriately angled "slats" of the construction).
Thus the projections of E_{r} are very similar to those of E in certain directions, but are almost negligible in other directions.
This idea may be adapted to obtain sets with projections:
- Very close to G_{θ} in a narrow band of directions;
- Almost null in other directions.

Taking unions of such sets for various small bands of directions gives a set with approximately the required property.
Taking a limit of a sequence of sets which give increasingly accurate approximations leads to a set with the properties stated.

Higher Dimensions

- This construction may be extended to higher dimensions.
- There exists a set F in \mathbb{R}^{n}, such that almost all projections of F onto k-dimensional subspaces differ from prescribed sets by zero k-dimensional measure.
- In particular, there exists a set in 3-dimensional space with almost all of its plane shadows anything we care to prescribe to within zero area.

Digital Sundial

- By specifying the shadows to be the thickened digits of the time when the sun is shining from a perpendicular direction, we obtain, at least in theory, a digital sundial.

- As the sun moves across the sky we get different projections of the 2-dimensional set.
- This notion was introduced to provide an intuitive view of the result.

Subsection 4

Product Formulae

Cartesian Products

- Let E be a subset of \mathbb{R}^{n}.
- Let F be a subset of \mathbb{R}^{m}.
- The Cartesian product, or just product, $E \times F$ is defined as the set of points with first coordinate in E and second coordinate in F.
- That is,

$$
E \times F=\left\{(x, y) \in \mathbb{R}^{n+m}: x \in E, y \in F\right\}
$$

Example

- Let E be a unit interval in \mathbb{R}.
- Let F be a unit interval in \mathbb{R}^{2}.

- Then $E \times F$ is a unit square in \mathbb{R}^{3}.

Example

- Let F be the middle third Cantor set.

- Then $F \times F$ is the "Cantor product", consisting of those points in the plane with both coordinates in F.

Dimension of a Product

- In the example involving the unit intervals above, it is obvious that

$$
\operatorname{dim}(E \times F)=\operatorname{dim} E+\operatorname{dim} F
$$

using the classical definition of dimension.

- This holds more generally, in the "smooth" situation, where E and F are smooth curves, surfaces or higher-dimensional manifolds.
- Unfortunately, this is not always valid for "fractal" dimensions.
- For Hausdorff dimensions the best general result possible is an inequality

$$
\operatorname{dim}_{H}(E \times F) \geq \operatorname{dim}_{H} E+\operatorname{dim}_{H} F .
$$

- Nevertheless, in many situations equality does hold.

Dimension and Hausdorff Measure

Proposition

If $E \subseteq \mathbb{R}^{n}, F \subseteq \mathbb{R}^{m}$ are Borel sets with $\mathcal{H}^{s}(E), \mathcal{H}^{t}(F)<\infty$, then

$$
\mathcal{H}^{s+t}(E \times F) \geq c \mathcal{H}^{s}(E) \mathcal{H}^{t}(F)
$$

where $c>0$ depends only on s and t.

- For simplicity we assume that $E, F \subseteq \mathbb{R}$, so that $E \times F \subseteq \mathbb{R}^{2}$.

The general proof is almost identical.
If either $\mathcal{H}^{s}(E)$ or $\mathcal{H}^{t}(F)$ is zero, then the result is trivial.
Let $0<\mathcal{H}^{s}(E), \mathcal{H}^{t}(F)<\infty$, i.e., E is an s-set and F is a t-set.
We may define a mass distribution μ on $E \times F$ by utilizing the "product measure" of \mathcal{H}^{s} and \mathcal{H}^{t}.

Dimension and Hausdorff Measure (Cont'd)

- If $I, J \subseteq \mathbb{R}$, we define μ on the "rectangle" $I \times J$ by

$$
\mu(I \times J)=\mathcal{H}^{s}(E \cap I) \mathcal{H}^{t}(F \cap J) .
$$

It may be shown that this defines a mass distribution μ on $E \times F$ with

$$
\mu\left(\mathbb{R}^{2}\right)=\mathcal{H}^{s}(E) \mathcal{H}^{t}(F)
$$

Here, we are concerned with subsets of \mathbb{R}.
So the "ball" $B(x, r)$ is just the interval of length $2 r$ with midpoint x. By the density estimate proposition, we have:

- For \mathcal{H}^{s}-almost all $x \in E, \overline{\lim }_{r \rightarrow 0} \frac{\mathcal{H}^{s}(E \cap B(x, r))}{(2 r)^{s}} \leq 1$;
- For \mathcal{H}^{t}-almost all $y \in F, \overline{\lim }_{r \rightarrow 0} \frac{\mathcal{H}^{t}(F \cap B(y, r))}{(2 r)^{t}} \leq 1$.

From the definition of μ, both inequalities hold for μ-almost all (x, y) in $E \times F$.

Dimension and Hausdorff Measure (Cont'd)

- The disc $B((x, y), r)$ is contained in the square $B(x, r) \times B(y, r)$. We have that

$$
\begin{aligned}
\mu(B((x, y), r)) & \leq \mu(B(x, r) \times B(y, r)) \\
& =\mathcal{H}^{s}(E \cap B(x, r)) \mathcal{H}^{t}(F \cap B(y, r))
\end{aligned}
$$

So

$$
\frac{\mu(B((x, y), r))}{(2 r)^{s+t}} \leq \frac{\mathcal{H}^{s}(E \cap B(x, r))}{(2 r)^{s}} \frac{\mathcal{H}^{t}(F \cap B(y, r))}{(2 r)^{t}} .
$$

It follows, using the inequalities above, that, for μ-almost all $(x, y) \in E \times F$,

$$
\overline{\lim }_{r \rightarrow 0} \frac{\mu(B((x, y), r))}{(2 r)^{s+t}} \leq 1
$$

By a previous proposition,

$$
\mathcal{H}^{s}(E \times F) \geq 2^{-(s+t)} \mu(E \times F)=2^{-(s+t)} \mathcal{H}^{s}(E) \mathcal{H}^{t}(F)
$$

Product Formula

Product Formula

If $E \subseteq \mathbb{R}^{n}, F \subseteq \mathbb{R}^{m}$ are Borel sets then

$$
\operatorname{dim}_{H}(E \times F) \geq \operatorname{dim}_{H} E+\operatorname{dim}_{H} F .
$$

- Let s, t be any numbers with $s<\operatorname{dim}_{H} E$ and $t<\operatorname{dim}_{H} F$. Then $\mathcal{H}^{s}(E)=\mathcal{H}^{t}(F)=\infty$.
By a previous theorem, there are Borel sets $E_{0} \subseteq E$ and $F_{0} \subseteq F$, with $0<\mathcal{H}^{s}\left(E_{0}\right), \mathcal{H}^{t}\left(F_{0}\right)<\infty$.
By the preceding proposition,

$$
\mathcal{H}^{s+t}(E \times F) \geq \mathcal{H}^{s+t}\left(E_{0} \times F_{0}\right) \geq c \mathcal{H}^{s}\left(E_{0}\right) \mathcal{H}^{t}\left(F_{0}\right)>0
$$

Hence, $\operatorname{dim}_{H}(E \times F) \geq s+t$. By choosing s and t arbitrarily close to $\operatorname{dim}_{H} E$ and $\operatorname{dim}_{H} F$, we get the conclusion.

A Partial Reverse

- In general, the product inequality cannot be reversed.
- If either E or F is "reasonably regular", in the sense of having equal Hausdorff and upper box dimensions, then we do get equality.

Product Formula

For any sets $E \subseteq \mathbb{R}^{n}$ and $F \subseteq \mathbb{R}^{m}$,

$$
\operatorname{dim}_{H}(E \times F) \leq \operatorname{dim}_{H} E+\overline{\operatorname{dim}}_{B} F .
$$

- For simplicity take $E \subseteq \mathbb{R}$ and $F \subseteq \mathbb{R}$.

Choose numbers $s>\operatorname{dim}_{H} E$ and $t>\operatorname{dim}_{B} F$.
Then there is a number $\delta_{0}>0$, such that F may be covered by $N_{\delta}(F) \leq \delta^{-t}$ intervals of length δ, for all $\delta \leq \delta_{0}$.
Let $\left\{U_{i}\right\}$ be any δ-cover of E by intervals with $\sum_{i}\left|U_{i}\right|^{s}<1$.

A Partial Reverse (Cont'd)

- For each i, let $U_{i, j}$ be a cover of F by $N_{\left|U_{i}\right|}(F)$ intervals of length $\left|U_{i}\right|$. Then $U_{i} \times F$ is covered by $N_{\left|U_{i}\right|}(F)$ squares $\left\{U_{i} \times U_{i, j}\right\}$ of side $\left|U_{i}\right|$. It follows that

$$
E \times F \subseteq \bigcup_{i} \bigcup_{j}\left(U_{i} \times U_{i, j}\right)
$$

Now we have

$$
\begin{aligned}
\mathcal{H}_{\delta \sqrt{2}}^{s+t}(E \times F) & \leq \sum_{i} \sum_{j}\left|U_{i} \times U_{i, j}\right|^{s+t} \\
& \leq \sum_{i} N_{\left|U_{i}\right|}(F) 2^{(s+t) / 2}\left|U_{i}\right|^{s+t} \\
& \leq 2^{(s+t) / 2} \sum_{i}\left|U_{i}\right|^{-t}\left|U_{i}\right|^{s+t} \\
& <2^{(s+t) / 2}
\end{aligned}
$$

Letting $\delta \rightarrow 0$ gives, for all $s>\operatorname{dim}_{H} E$ and $t>\overline{\operatorname{dim}}_{B} F$,

$$
\mathcal{H}^{s+t}(E \times F)<\infty
$$

So $\operatorname{dim}_{H}(E \times F) \leq s+t$.

A Case when Equality is Attained

Corollary

If $\operatorname{dim}_{H} F=\overline{\operatorname{dim}}_{B} F$, then

$$
\operatorname{dim}_{H}(E \times F)=\operatorname{dim}_{H} E+\operatorname{dim}_{H} F .
$$

- Combining the preceding product formulas gives

$$
\operatorname{dim}_{H} E+\operatorname{dim}_{H} F \leq \operatorname{dim}_{H}(E \times F) \leq \operatorname{dim}_{H} E+\overline{\operatorname{dim}}_{B} F .
$$

Product Formula for Box Dimension

- It is worth noting that the basic product inequality for upper box dimensions is opposite to that for Hausdorff dimensions.

Product Formula for Box Dimension

For any sets $E \subseteq \mathbb{R}^{n}$ and $F \subseteq \mathbb{R}^{m}$,

$$
\overline{\operatorname{dim}}_{B}(E \times F) \leq \overline{\operatorname{dim}}_{B} E+\overline{\operatorname{dim}}_{B} F .
$$

- The idea is as in the first inequality above. Suppose that:
- E can be covered by $N_{\delta}(E)$ intervals of side δ;
- F can be covered by $N_{\delta}(F)$ intervals of side δ.

Then $E \times F$ is covered by the $N_{\delta}(E) N_{\delta}(F)$ squares formed by products of these intervals.

Examples

- Let E, F be subsets of \mathbb{R} with F a uniform Cantor set.

Then

$$
\operatorname{dim}_{H}(E \times F)=\operatorname{dim}_{H} E+\operatorname{dim}_{H} F .
$$

A previous example showed that uniform Cantor sets have equal Hausdorff and upper box dimensions.
So the result follows from the preceding corollary.

- The "Cantor product" of the middle third Cantor set with itself has Hausdorff and box dimensions exactly $2 \frac{\log 2}{\log 3}$.
- If E is a subset of \mathbb{R} and F is a straight line segment, then

$$
\operatorname{dim}_{H}(E \times F)=\operatorname{dim}_{H} E+1
$$

Example: The Cantor Target

- The "Cantor target" is the plane set given in polar coordinates by

$$
F^{\prime}=\{(r, \theta): r \in F, 0 \leq \theta \leq 2 \pi\}
$$

where F is the middle third Cantor set.
Then $\operatorname{dim}_{H} F^{\prime}=1+\frac{\log 2}{\log 3}$.

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=(x \cos y, x \sin y)$.
Then f is a Lipschitz mapping and $F^{\prime}=f(F \times[0,2 \pi])$.

$$
\begin{aligned}
\operatorname{dim}_{H} F^{\prime} & =\operatorname{dim}_{H} f(F \times[0,2 \pi]) \\
& \leq \operatorname{dim}_{H}(F \times[0,2 \pi]) \\
& =\operatorname{dim}_{H} F+\operatorname{dim}_{H}[0,2 \pi] \\
& =\frac{\log 2}{\log 3}+1,
\end{aligned}
$$

by a previous corollary and the preceding example.

Example: The Cantor Target (Cont'd)

- Suppose we restrict f to $\left[\frac{2}{3}, 1\right] \times[0, \pi]$,

$$
f:\left[\frac{2}{3}, 1\right] \times[0, \pi] \rightarrow \mathbb{R}^{2} ; \quad f(x, y)=(x \cos y, x \sin y)
$$

Then f is a bi-Lipschitz function on this domain.
But $F^{\prime} \supseteq f\left(\left(F \cap\left[\frac{2}{3}, 1\right]\right) \times[0, \pi]\right)$. So we have

$$
\begin{aligned}
\operatorname{dim}_{H} F^{\prime} & \geq \operatorname{dim}_{H} f\left(\left(F \cap\left[\frac{2}{3}, 1\right]\right) \times[0, \pi]\right) \\
& =\operatorname{dim}_{H}\left(\left(F \cap\left[\frac{2}{3}, 1\right]\right) \times[0, \pi]\right) \\
& =\operatorname{dim}_{H}\left(F \cap\left[\frac{2}{3}, 1\right]\right)+\operatorname{dim}_{H}[0, \pi] \\
& =\frac{\log 2}{\log 3}+1,
\end{aligned}
$$

by a previous corollary and the preceding example.
It can be similarly shown that F^{\prime} is an s-set for $s=1+\frac{\log 2}{\log 3}$.

Equality Does Not Hold in General

Claim: There exist sets $E, F \subseteq \mathbb{R}$ with $\operatorname{dim}_{H} E=\operatorname{dim}_{H} F=0$ and $\operatorname{dim}_{H}(E \times F) \geq 1$.
Let $0=m_{0}<m_{1}<\cdots$ be a rapidly increasing sequence of integers satisfying a condition to be specified below.

- Let E consist of those numbers in $[0,1]$, with a zero in the r-th decimal place whenever $m_{k}+1 \leq r \leq m_{k+1}$ and k is even.
- Let F consist of those numbers in $[0,1]$, with zero in the r-th decimal place if $m_{k}+1 \leq r \leq m_{k+1}$ and k is odd.
Look at the first m_{k+1} decimal places for even k.
There is an obvious cover of E by $10^{j_{k}}$ intervals of length $10^{-m_{k+1}}$, where $j_{k}=\left(m_{2}-m_{1}\right)+\left(m_{4}-m_{3}\right)+\cdots+\left(m_{k}-m_{k-1}\right)$.
Then we have $\frac{\log 10^{j_{k}}}{-\log 10^{-m_{k+1}}}=\frac{j_{k}}{m_{k+1}}$.
Provided that the m_{k} increase sufficiently rapidly, $\frac{j_{k}}{m_{k+1}} \xrightarrow{k \rightarrow \infty} 0$.
By a previous proposition, $\operatorname{dim}_{H} E \leq \operatorname{dim}_{B} E=0$.

Equality Does Not Hold in General (Cont'd)

- We showed $\operatorname{dim}_{H} E \leq \operatorname{dim}_{B} E=0$.

Similarly, $\operatorname{dim}_{H} F=0$.
If $0<w<1$, then we can write

$$
w=x+y
$$

where $x \in E$ and $y \in F$.
Just take the r-th decimal digit of w :

- From E, if $m_{k}+1 \leq r \leq m_{k+1}$ and k is odd;
- From F, if $m_{k}+1 \leq r \leq m_{k+1}$ and k is even.

The mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x+y$ is Lipschitz.
So, by a previous corollary,

$$
\operatorname{dim}_{H}(E \times F) \geq \operatorname{dim}_{H} f(E \times F) \geq \operatorname{dim}_{H}(0,1)=1
$$

Intersection with a Vertical Line

- We work in the (x, y)-plane.
- Let L_{x} be the line parallel to the y-axis through the point $(x, 0)$.

Proposition

Let F be a Borel subset of \mathbb{R}^{2}. If $1 \leq s \leq 2$, then

$$
\int_{-\infty}^{\infty} \mathcal{H}^{s-1}\left(F \cap L_{x}\right) d x \leq \mathcal{H}^{s}(F)
$$

- Given $\varepsilon>0$, let $\left\{U_{i}\right\}$ be a δ-cover of F, with $\sum_{i}\left|U_{i}\right|^{s} \leq \mathcal{H}_{\delta}^{s}(F)+\varepsilon$. Each U_{i} is contained in a square S_{i} of side $\left|U_{i}\right|$ with sides parallel to the coordinate axes. Let χ_{i} be the indicator function of S_{i}, i.e.,

$$
\chi_{i}(x, y)= \begin{cases}1, & \text { if }(x, y) \in S_{i} \\ 0, & \text { if }(x, y) \notin S_{i}\end{cases}
$$

For each x, the sets $\left\{S_{i} \cap L_{x}\right\}$ form a δ-cover of $F \cap L_{x}$.

Intersection with a Vertical Line (Cont'd)

- For each x, the sets $\left\{S_{i} \cap L_{x}\right\}$ form a δ-cover of $F \cap L_{x}$. So we get

$$
\begin{aligned}
\mathcal{H}_{\delta}^{s-1}\left(F \cap L_{x}\right) & \leq \sum_{i}\left|S_{i} \cap L_{x}\right|^{s-1} \\
& =\sum_{i}\left|U_{i}\right|^{s-2}\left|S_{i} \cap L_{x}\right| \\
& =\sum_{i}\left|U_{i}\right|^{s-2} \int \chi_{i}(x, y) d y .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int \mathcal{H}_{\delta}^{s-1}\left(F \cap L_{x}\right) d x & \leq \sum_{i}\left|U_{i}\right|^{s-2} \iint \chi_{i}(x, y) d x d y \\
& =\sum_{i}\left|U_{i}\right|^{s} \\
& \leq \mathcal{H}_{\delta}^{s}(F)+\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary,

$$
\int \mathcal{H}_{\delta}^{s-1}\left(F \cap L_{x}\right) d x \leq \mathcal{H}_{\delta}^{s}(F)
$$

Letting $\delta \rightarrow 0$ gives the conclusion.

Implication for Hausdorff Dimensions

Corollary

Let F be a Borel subset of \mathbb{R}^{2}. Then, for almost all x (in the sense of 1-dimensional Lebesgue measure),

$$
\operatorname{dim}_{H}\left(F \cap L_{X}\right) \leq \max \left\{0, \operatorname{dim}_{H} F-1\right\} .
$$

- Take $s>\operatorname{dim}_{H} F$, so that $\mathcal{H}^{s}(F)=0$.

If $s>1$, the proposition gives $\mathcal{H}^{s-1}\left(F \cap L_{x}\right)=0$.
So $\operatorname{dim}_{H}\left(F \cap L_{x}\right) \leq s-1$, for almost all x.

A Generalization

Proposition

Let F be any subset of \mathbb{R}^{2}, and let E be any subset of the x-axis. Suppose that there is a constant c, such that $\mathcal{H}^{t}\left(F \cap L_{x}\right) \geq c$, for all $x \in E$. Then

$$
\mathcal{H}^{s+t}(F) \geq b c \mathcal{H}^{s}(E)
$$

where $b>0$ depends only on s and t.

- We omit the proof.

Corollary

Let F be any subset of \mathbb{R}^{2}, and let E be a subset of the x-axis. If $\operatorname{dim}_{H}\left(F \cap L_{x}\right) \geq t$, for all $x \in E$, then

$$
\operatorname{dim}_{H} F \geq t+\operatorname{dim}_{H} E .
$$

- The obvious higher-dimensional analogs of these results are all valid.

Example: A Self-Affine Set

- Let F be the set with iterated construction indicated in the figure.

At the k-th stage each rectangle of E_{k} is replaced with an affine copy of the rectangles in E_{1}.
The contraction is greater in the " y " than in the " x " direction.
The width to height ratio of the rectangles in E_{k} tends to infinity. In this case,

$$
\operatorname{dim}_{H} F=\operatorname{dim}_{B} F=\frac{3}{2} .
$$

Example: A Self-Affine Set (Cont'd)

E_{0}

- E_{k} consists of 6^{k} rectangles of size $3^{-k} \times 4^{-k}$.

Each of these rectangles may be covered by at most $\left(\frac{4}{3}\right)^{k}+1$ squares of side 4^{-k}, by dividing the rectangles using a series of vertical cuts. Hence E_{k} may be covered by:

- $6^{k} \times 2 \times 4^{k} \times 3^{-k}=2 \times 8^{k}$ squares;
- Each of diameter $4^{-k} \sqrt{2}$.

In the usual way, this gives $\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{B} F \leq \frac{3}{2}$.

Example: A Self-Affine Set (Cont'd)

- Except for x of the form $j 3^{-k}$, where j and k are integers, we have that $E_{k} \cap L_{x}$ consists of:
- 2^{k} intervals;
- Each of length 4^{-k}.

A standard application of the mass distribution method shows that, for each such x,

$$
\mathcal{H}^{1 / 2}\left(E_{k} \cap L_{x}\right) \geq \frac{1}{2}
$$

By a previous proposition,

$$
\mathcal{H}^{3 / 2}(F) \geq \frac{1}{2}
$$

Hence $\operatorname{dim}_{H} F=\operatorname{dim}_{B} F=\frac{3}{2}$.

Subsection 5

Intersection of Fractals

Introducing Intersection

- The intersection of two fractals is often a fractal.
- In general, the dimension of the intersection is not related to that of the original sets.
Example: Suppose F is bounded.
There is a congruent copy F_{1} of F, such that

$$
\operatorname{dim}_{H}\left(F \cap F_{1}\right)=\operatorname{dim}_{H} F
$$

We may take $F_{1}=F$.
There is another congruent copy with

$$
\operatorname{dim}_{H}\left(F \cap F_{1}\right)=0
$$

We may take F and F_{1} disjoint.

More on Intersection

- We can say more provided we consider the intersection of F and a congruent copy in a "typical" relative position.
Example: Let F and F_{1} be unit line segments in the plane.
Then $F \cap F_{1}$ can be a line segment, but only in the exceptional situation when F and F_{1} are collinear.
If F and F_{1} cross at an angle, then $F \cap F_{1}$ is a single point.
Now $F \cap F_{1}$ remains a single point if F_{1} is replaced by a nearby congruent copy.
Thus, whilst "in general" $F \cap F_{1}$ contains at most one point, this situation occurs "frequently".

Measuring Sets of Transformations

- Recall that a rigid motion or direct congruence σ of the plane transforms any set E to a congruent copy $\sigma(E)$ without reflection.
- The rigid motions may be parametrized by three coordinates (x, y, θ) :
- The origin is transformed to (x, y);
- θ is the angle of rotation.
- This provides a natural measure on the space of rigid motions.
- The measure of a set A of rigid motions is given by the 3-dimensional Lebesgue measure of the (x, y, θ) parametrizing the motions in A.

Examples

- Consider the set of all rigid motions which map the origin to a point of the rectangle $[1,2] \times[0,3]$.
This set has measure $1 \times 3 \times 2 \pi$.
- Let F be unit line segment.
- Consider the set of transformations σ for which $F \cap \sigma(F)$ is a line segment.
This has measure 0 .
- Consider the set of transformations σ for which $F \cap \sigma(F)$ is a single point.
This is a set of transformations of measure 4.

Higher Dimensions

- $\operatorname{In} \mathbb{R}^{3}$, "typically":
- Two surfaces intersect in a curve;
- A surface and a curve intersect in a point;
- Two curves are disjoint.
- In \mathbb{R}^{n}, if smooth manifolds E and F intersect at all, then "in general" they intersect in a submanifold of dimension

$$
\max \{0, \operatorname{dim} E+\operatorname{dim} F-n\} .
$$

- Suppose $\operatorname{dim} E+\operatorname{dim} F-n>0$.
- For a set of rigid motions σ of positive measure,

$$
\operatorname{dim}(E \cap \sigma(F))=\operatorname{dim} E+\operatorname{dim} F-n ;
$$

- For almost all other $\sigma, \operatorname{dim}(E \cap \sigma(F))=0$.
- Note that σ is measured using the $\frac{1}{2} n(n+1)$ parameters required to specify a rigid transformation of \mathbb{R}^{n}.

Goal of Investigation

- We would like to find out whether it is true that, as σ ranges over a group G of transformations, such as translations, congruences or similarities:
- "In general", i.e., "for almost all σ ",

$$
\operatorname{dim}_{H}(E \cap \sigma(F)) \leq \max \left\{0, \operatorname{dim}_{H} E+\operatorname{dim}_{H} F-n\right\} ;
$$

- "Often", i.e., "for a set of σ of positive measure",

$$
\operatorname{dim}_{H}(E \cap \sigma(F)) \geq \operatorname{dim}_{H} E+\operatorname{dim}_{H} F-n .
$$

- The measurements are supposed to be with respect to a natural measure on the transformations in G.
- Generally, G can be parametrized by m coordinates in a straightforward way for some integer m;
- We can use Lebesgue measure on the parameter space \mathbb{R}^{m}.

Upper Bound for Translations

- Recall that

$$
F+x=\{x+y: y \in F\}
$$

denotes the translation of F by the vector x.

Theorem

If E, F are Borel subsets of \mathbb{R}^{n}, then

$$
\operatorname{dim}_{H}(E \cap(F+x)) \leq \max \left\{0, \operatorname{dim}_{H}(E \times F)-n\right\},
$$

for almost all $x \in \mathbb{R}^{n}$.

- We prove this when $n=1$.

The proof for $n>1$ is similar.
Denote by L_{c} be the line in the (x, y)-plane with equation

$$
x=y+c
$$

Upper Bound for Translations (Cont'd)

- Suppose that $\operatorname{dim}_{H}(E \times F)>1$.

By a previous corollary (rotating the lines through 45° and changing notation slightly), for almost all $c \in \mathbb{R}$,

$$
\operatorname{dim}_{H}\left((E \times F) \cap L_{C}\right) \leq \operatorname{dim}_{H}(E \times F)-1
$$

But a point $(x, x-c) \in(E \times F) \cap L_{c}$ if and only if $x \in E \cap(F+c)$. Thus, for each c, the projection onto the x-axis of $(E \times F) \cap L_{c}$ is the set $E \cap(F+c)$.
In particular,

$$
\operatorname{dim}_{H}(E \cap(F+c))=\operatorname{dim}_{H}\left((E \times F) \cap L_{c}\right) .
$$

So the result follows from the inequality above.

Lower Bounds

Theorem

Let $E, F \subseteq \mathbb{R}^{n}$ be Borel sets, and let G be a group of transformations on \mathbb{R}^{n}. Then $\operatorname{dim}_{H}(E \cap \sigma(F)) \geq \operatorname{dim}_{H} E+\operatorname{dim}_{H} F-n$ for a set of motions $\sigma \in G$ of positive measure in the following cases:
(a) G is the group of similarities and E and F are arbitrary sets;
(b) G is the group of rigid motions, E is arbitrary and F is a rectifiable curve, surface, or manifold;
(c) G is the group of rigid motions and E and F are arbitrary, with either $\operatorname{dim}_{H} E>\frac{1}{2}(n+1)$ or $\operatorname{dim}_{H} F>\frac{1}{2}(n+1)$.

- The proof, which uses potential theoretic methods, is omitted.

Example

- Let $F \subseteq \mathbb{R}$ be the middle third Cantor set.

For $\lambda, x \in \mathbb{R}$, write

$$
\lambda F+x=\{\lambda y+x: y \in F\} .
$$

- For almost all $x \in \mathbb{R}$,

$$
\operatorname{dim}_{H}(F \cap(F+x)) \leq 2 \frac{\log 2}{\log 3}-1 ;
$$

- For a set of $(x, \lambda) \in \mathbb{R}^{2}$ of positive plane Lebesgue measure,

$$
\operatorname{dim}_{H}(F \cap(\lambda F+x))=2 \frac{\log 2}{\log 3}-1 .
$$

We showed in a previous example that $\operatorname{dim}_{H}(F \times F)=2 \frac{\log 2}{\log 3}$.
So the stated dimensions follow from the two preceding theorems.

