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Projections, Products and Intersections Projections of Arbitrary Sets

Subsection 1

Projections of Arbitrary Sets
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Projections, Products and Intersections Projections of Arbitrary Sets

Projection of a Set Onto a Line

Let Lθ be the line through the origin of R2 that makes an angle θ

with the horizontal axis.

We denote orthogonal projection onto Lθ by

projθ.

If F is a subset of R2, then projθF is the projection of F onto Lθ.
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Projections, Products and Intersections Projections of Arbitrary Sets

Projection of a Set Onto a Line

We have, for all x , y ∈ R2,

|projθx − projθy | ≤ |x − y |.

I.e. projθ is a Lipschitz mapping.

Thus, by a previous corollary, for any F and θ,

dimH(projθF ) ≤ min {dimHF , 1}

(as projθF ⊆ Lθ, its dimension cannot be more than 1).

The interesting question is whether the opposite inequality is valid.
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Projections, Products and Intersections Projections of Arbitrary Sets

The Projection Theorem

Projection Theorem

Let F ⊆ R2 be a Borel set.

(a) If dimHF ≤ 1, then dimH(projθF ) = dimHF for almost all θ ∈ [0, π).

(b) If dimHF > 1, then projθF has positive length (as a subset of Lθ) and
so has dimension 1, for almost all θ ∈ [0, π).

We give a proof that uses the potential theoretic characterization of
Hausdorff dimension in a very effective way.

Suppose s < dimHF ≤ 1.
By a previous theorem, there exists a mass distribution µ on (a
compact subset of) F with:

0 < µ(F ) < ∞;
∫

F

∫

F

dµ(x)dµ(y)
|x−y|s < ∞.

For each θ, we “project” the mass distribution µ onto the line Lθ.

We get a mass distribution µθ on projθF .
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Projections, Products and Intersections Projections of Arbitrary Sets

The Projection Theorem (Cont’d)

Suppose:

θ is the unit vector in the direction θ;
x is identified with its position vector;
x · θ is the usual scalar product.

Then µθ is defined by the requirement that, for each interval [a, b],

µθ([a, b]) = µ{x : a ≤ x · θ ≤ b}.

Equivalently, for each non-negative function f ,

∫ ∞

−∞
f (t)dµθ(t) =

∫

F

f (x · θ)dµ(x).
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Projections, Products and Intersections Projections of Arbitrary Sets

The Projection Theorem (Cont’d)

Now we have

∫ π
0

[

∫∞
−∞

∫∞
−∞

dµθ(u)dµθ (v)
|u−v |s

]

dθ =
∫ π
0

[

∫

F

∫

F

dµ(x)dµ(y)

|x ·θ−y ·θ|s

]

dθ

=
∫ π
0

[

∫

F

∫

F

dµ(x)dµ(y)

|(x−y)·θ|s

]

dθ

=
∫ π
0

dθ
|τ ·θ|s

∫

F

∫

F

dµ(x)dµ(y)
|x−y |s ,

for any fixed unit vector τ (the integral of |(x − y) · θ|−s with respect
to θ depends only on |x − y |).
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Projections, Products and Intersections Projections of Arbitrary Sets

The Projection Theorem (Conclusion)

By hypothesis, the second factor is finite.

Moreover, if s < 1,
∫ π

0

dθ

|τ · θ|s =

∫ π

0

dθ

| cos (τ − θ)|s < ∞.

So the integral is finite.

Hence, for almost all θ ∈ [0, π),
∫

F

∫

F

dµθ(u)dµθ(v)

|u − v |s < ∞.

By a previous theorem, the existence of such a mass distribution µθ

on projθF implies that dimH(projθF ) ≥ s.

This is true for all s < dimHF .

So part (a) of the result follows.

The proof of (b) follows similar lines, though Fourier transforms need
to be introduced to show that the projections have positive length.
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Projections, Products and Intersections Projections of Arbitrary Sets

Higher-Dimensional Projections

Let Gn,k be the set of k-dimensional subspaces or “k-planes through
the origin” in Rn.

These subspaces are naturally parametrized by k(n − k) coordinates
(“generalized direction cosines”).

So we may refer to “almost all” subspaces in a consistent way in
terms of k(n − k)-dimensional Lebesgue measure.

We write projΠ for orthogonal projection onto the k-plane Π.
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Projections, Products and Intersections Projections of Arbitrary Sets

Higher-Dimensional Projection Theorem

Theorem (Higher-Dimensional Projection Theorem)

Let F ⊆ Rn be a Borel set.

(a) If dimHF ≤ k , then dimH(projΠF ) = dimHF , for almost all Π ∈ Gn,k ,

(b) If dimHF > k , then projΠF has positive k-dimensional measure and
so has dimension k , for almost all Π ∈ Gn,k .

The proof of the preceding theorem extends to higher dimensions
without difficulty.
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Projections, Products and Intersections Projections of Arbitrary Sets

Practical Applications

If F is a subset of R3, the plane projections of F are, in general, of
dimension min {2, dimHF}.
In practice we can estimate the dimension of an object in space by
estimating the dimension of a photograph taken from a random
direction.

Provided this is less than 2, it may be assumed to equal the
dimension of the object.

Such a reduction can make dimension estimates of spatial objects
tractable, since box-counting methods are difficult to apply in 3
dimensions but can be applied with reasonable success in the plane.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Subsection 2

Projections of s-Sets of Integral Dimension
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Introduction

If a subset F of R2 has Hausdorff dimension exactly 1, then we saw
that the projections of F onto almost every Lθ have dimension 1.

However, in this critical case, no information is given as to whether
these projections have zero or positive length.

In the special case where F is a 1-set, i.e., with 0 < H1(F ) < ∞, an
analysis is possible.

Recall from a previous theorem that a 1-set may be decomposed into
a regular curve-like part and an irregular dust-like part.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Regular 1-Sets

Theorem

Let F be a regular 1-set in R2. Then projθF has positive length except for
at most one θ ∈ [0, π).

Sketch of Proof: By a previous theorem, it is enough to prove the
result if F is a subset of positive length of a rectifiable curve C .

By the Lebesgue Density Theorem, we may approximate such an F by
short continuous subcurves of C .

So essentially all we need to consider is the case when F is itself a
rectifiable curve C1 joining distinct points x and y .

Clearly, the projection onto Lθ of such a curve is an interval of
positive length, except possibly for the one value of θ for which Lθ is
perpendicular to the straight line through x and y .
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Regular 1-Sets Comments

Suppose F is a regular 1-set in R2.

In general, projθF will have positive length for all θ

There is an exceptional value of θ only if F is contained in a set of
parallel line segments.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Irregular 1-Sets

Theorem

Let F be an irregular 1-set in R2. Then projθF has length zero for almost
all θ ∈ [0, π).

The proof is complicated, depending on the intricate density and
angular density structure of irregular sets.

Corollary

Let F be a 1-set in R2. If the regular part of F has H1-measure zero, then
projθF has length zero for almost all θ. Otherwise, it has positive length
for all but at most one value of θ.

Corollary

A 1-set in R2 is irregular if and only if it has projections of zero length in
at least two directions.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Example: Cantor Dust

Claim: The Cantor dust F is an irregular 1-set.

In a preceding example we showed that F is a 1-set.

It is easy to see that the projections of F onto lines Lθ with tan θ = 1
2

and tan θ = −2 have zero length (look at the first few iterations).

So F is irregular by the preceding corollary.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Widening the Application of the Theorems

Suppose F is a set that intersects some rectifiable curve in a set of
positive length.

Then F contains a regular subset.

It follows that projθF has positive length for almost all θ.

Suppose F is a σ-finite irregular set.

By definition, it may be expressed as a countable union of irregular
1-sets each of finite measure.

Then projθF has zero length for almost all θ.

This follows by taking countable unions of the projections of these
component 1-sets.
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Projections, Products and Intersections Projections of s-Sets of Integral Dimension

Higher-Dimensional Analogs

We state the higher-dimensional analog of the preceding theorems.

The proofs are even more complicated than in the plane case.

Theorem

Let F be a k-set in Rn, where k is an integer.

(a) If F is regular then projθF has positive k-dimensional measure for almost all
Π ∈ Gn,k .

(b) If F is irregular then projθF has zero k-dimensional measure for almost all
Π ∈ Gn,k .

George Voutsadakis (LSSU) Fractal Geometry April 2024 20 / 65



Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Subsection 3

Projections of Arbitrary Sets of Integral Dimension
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Introduction

The theorems of the last subsection do not provide a complete answer
to the question of whether projections of plane sets onto lines have
zero or positive length.

A subset F of R2 of Hausdorff dimension 1 need not be a 1-set or even
be of σ-finite H1-measure, i.e., a countable union of sets of finite
H1-measure.
Moreover there need not be any dimension function h, for which
0 < Hh(F ) < ∞, in which case mathematical analysis is extremely
difficult.
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Introduction (Cont’d)

We consider sets of Hausdorff dimension 1 but of non-σ-finite
H1-measure.

We can construct sets with projections more or less what we please.

E.g., there is a set F in R2, such that:

projθF contains an interval of length 1 for almost all θ with
0 ≤ θ < 1

2π;
projθF is of length zero for 1

2π ≤ θ < π.

George Voutsadakis (LSSU) Fractal Geometry April 2024 23 / 65



Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Existence of Sets with Prescribed Projections

Theorem

Let Gθ be a subset of Lθ for each θ ∈ [0, π) [such that the set
⋃

0≤θ<π Gθ

is plane Lebesgue measurable]. Then there exists a Borel set F ⊆ R2, such
that:

(a) projθF ⊇ Gθ, for all θ;

(b) length(projθF\Gθ) = 0, for almost all θ.

In particular, for almost all θ, the set of points of Lθ belonging to either Gθ

or projθF , but not both, has zero length.
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Existence of Sets with Prescribed Projections (Cont’d)

We discuss only the idea behind the proof.

The basic building block for such sets has been termed the “iterated
Venetian blind” construction.

Let E be a line segment of length λ.

Let ε be a small angle.

Let k be a large number.
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Existence of Sets with Prescribed Projections (Cont’d)

Replace E by k line segments of lengths roughly λ
k
, each at an angle

ε to E and with endpoints equally spaced along E to form E1.
Repeat this process with each segment of E1 to form a set E2, with:

k2 line segments all of lengths about λ
k2 ;

All of them at angle ε to E .

Continuing, Er consists of k r segments all of lengths about λ
kr

and at
angle rε to E .

We stop when r is such that rε is, say, about 1
4π.

George Voutsadakis (LSSU) Fractal Geometry April 2024 26 / 65



Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Existence of Sets with Prescribed Projections (Cont’d)

Comparing the projections of Er with that of E , we see that:

If 0 ≤ θ < 1
2π, then projθE and projθEr are nearly the same

(lines perpendicular to Lθ that cut E also cut Er ).
If − 1

4π < θ < 0, then projθEr will have very small length
(most lines perpendicular to Lθ will pass straight between appropriately
angled “slats” of the construction).

Thus the projections of Er are very similar to those of E in certain
directions, but are almost negligible in other directions.

This idea may be adapted to obtain sets with projections:

Very close to Gθ in a narrow band of directions;
Almost null in other directions.

Taking unions of such sets for various small bands of directions gives
a set with approximately the required property.

Taking a limit of a sequence of sets which give increasingly accurate
approximations leads to a set with the properties stated.
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Higher Dimensions

This construction may be extended to higher dimensions.

There exists a set F in Rn, such that almost all projections of F onto
k-dimensional subspaces differ from prescribed sets by zero
k-dimensional measure.

In particular, there exists a set in 3-dimensional space with almost all
of its plane shadows anything we care to prescribe to within zero area.
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Projections, Products and Intersections Projections of Arbitrary Sets of Integral Dimension

Digital Sundial

By specifying the shadows to be the thickened digits of the time when
the sun is shining from a perpendicular direction, we obtain, at least
in theory, a digital sundial.

As the sun moves across the sky we get different projections of the
2-dimensional set.

This notion was introduced to provide an intuitive view of the result.
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Projections, Products and Intersections Product Formulae

Subsection 4

Product Formulae
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Projections, Products and Intersections Product Formulae

Cartesian Products

Let E be a subset of Rn.

Let F be a subset of Rm.

The Cartesian product, or just product, E × F is defined as the set
of points with first coordinate in E and second coordinate in F .

That is,
E × F = {(x , y) ∈ Rn+m : x ∈ E , y ∈ F}.
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Projections, Products and Intersections Product Formulae

Example

Let E be a unit interval in R.

Let F be a unit interval in R2.

Then E × F is a unit square in R3.
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Projections, Products and Intersections Product Formulae

Example

Let F be the middle third Cantor set.

Then F × F is the “Cantor product”, consisting of those points in the
plane with both coordinates in F .

George Voutsadakis (LSSU) Fractal Geometry April 2024 33 / 65



Projections, Products and Intersections Product Formulae

Dimension of a Product

In the example involving the unit intervals above, it is obvious that

dim(E × F ) = dimE + dimF ,

using the classical definition of dimension.

This holds more generally, in the “smooth” situation, where E and F

are smooth curves, surfaces or higher-dimensional manifolds.

Unfortunately, this is not always valid for “fractal” dimensions.

For Hausdorff dimensions the best general result possible is an
inequality

dimH(E × F ) ≥ dimHE + dimHF .

Nevertheless, in many situations equality does hold.
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Projections, Products and Intersections Product Formulae

Dimension and Hausdorff Measure

Proposition

If E ⊆ Rn, F ⊆ Rm are Borel sets with Hs(E ),Ht(F ) < ∞, then

Hs+t(E × F ) ≥ cHs(E )Ht(F ),

where c > 0 depends only on s and t.

For simplicity we assume that E ,F ⊆ R, so that E × F ⊆ R2.

The general proof is almost identical.

If either Hs(E ) or Ht(F ) is zero, then the result is trivial.

Let 0 < Hs(E ),Ht(F ) < ∞, i.e., E is an s-set and F is a t-set.

We may define a mass distribution µ on E × F by utilizing the
“product measure” of Hs and Ht .
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Projections, Products and Intersections Product Formulae

Dimension and Hausdorff Measure (Cont’d)

If I , J ⊆ R, we define µ on the “rectangle” I × J by

µ(I × J) = Hs(E ∩ I )Ht(F ∩ J).

It may be shown that this defines a mass distribution µ on E × F with

µ(R2) = Hs(E )Ht(F ).

Here, we are concerned with subsets of R.

So the “ball” B(x , r) is just the interval of length 2r with midpoint x .

By the density estimate proposition, we have:

For Hs -almost all x ∈ E , limr→0
Hs (E∩B(x,r))

(2r)s ≤ 1;

For Ht-almost all y ∈ F , limr→0
Ht(F∩B(y,r))

(2r)t ≤ 1.

From the definition of µ, both inequalities hold for µ-almost all (x , y)
in E × F .

George Voutsadakis (LSSU) Fractal Geometry April 2024 36 / 65



Projections, Products and Intersections Product Formulae

Dimension and Hausdorff Measure (Cont’d)

The disc B((x , y), r) is contained in the square B(x , r)× B(y , r).

We have that

µ(B((x , y), r)) ≤ µ(B(x , r)× B(y , r))

= Hs(E ∩ B(x , r))Ht(F ∩ B(y , r)).

So
µ(B((x , y), r))

(2r)s+t
≤ Hs(E ∩ B(x , r))

(2r)s
Ht(F ∩ B(y , r))

(2r)t
.

It follows, using the inequalities above, that, for µ-almost all
(x , y) ∈ E × F ,

limr→0
µ(B((x , y), r))

(2r)s+t
≤ 1.

By a previous proposition,

Hs(E × F ) ≥ 2−(s+t)µ(E × F ) = 2−(s+t)Hs(E )Ht(F ).
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Projections, Products and Intersections Product Formulae

Product Formula

Product Formula

If E ⊆ Rn, F ⊆ Rm are Borel sets then

dimH(E × F ) ≥ dimHE + dimHF .

Let s, t be any numbers with s < dimHE and t < dimHF .

Then Hs(E ) = Ht(F ) = ∞.

By a previous theorem, there are Borel sets E0 ⊆ E and F0 ⊆ F , with
0 < Hs(E0),Ht(F0) < ∞.

By the preceding proposition,

Hs+t(E × F ) ≥ Hs+t(E0 × F0) ≥ cHs(E0)Ht(F0) > 0.

Hence, dimH(E × F ) ≥ s + t. By choosing s and t arbitrarily close to
dimHE and dimHF , we get the conclusion.
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Projections, Products and Intersections Product Formulae

A Partial Reverse

In general, the product inequality cannot be reversed.

If either E or F is “reasonably regular”, in the sense of having equal
Hausdorff and upper box dimensions, then we do get equality.

Product Formula

For any sets E ⊆ Rn and F ⊆ Rm,

dimH(E × F ) ≤ dimHE + dimBF .

For simplicity take E ⊆ R and F ⊆ R.
Choose numbers s > dimHE and t > dimBF .

Then there is a number δ0 > 0, such that F may be covered by
Nδ(F ) ≤ δ−t intervals of length δ, for all δ ≤ δ0.

Let {Ui} be any δ-cover of E by intervals with
∑

i |Ui |s < 1.
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Projections, Products and Intersections Product Formulae

A Partial Reverse (Cont’d)

For each i , let Ui ,j be a cover of F by N|Ui |(F ) intervals of length |Ui |.
Then Ui × F is covered by N|Ui |(F ) squares {Ui × Ui ,j} of side |Ui |.
It follows that

E × F ⊆
⋃

i

⋃

j

(Ui × Ui ,j).

Now we have

Hs+t

δ
√
2
(E × F ) ≤ ∑

i

∑

j |Ui × Ui ,j |s+t

≤ ∑

i N|Ui |(F )2
(s+t)/2|Ui |s+t

≤ 2(s+t)/2
∑

i |Ui |−t |Ui |s+t

< 2(s+t)/2.

Letting δ → 0 gives, for all s > dimHE and t > dimBF ,

Hs+t(E × F ) < ∞.

So dimH(E × F ) ≤ s + t.
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Projections, Products and Intersections Product Formulae

A Case when Equality is Attained

Corollary

If dimHF = dimBF , then

dimH(E × F ) = dimHE + dimHF .

Combining the preceding product formulas gives

dimHE + dimHF ≤ dimH(E × F ) ≤ dimHE + dimBF .
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Projections, Products and Intersections Product Formulae

Product Formula for Box Dimension

It is worth noting that the basic product inequality for upper box
dimensions is opposite to that for Hausdorff dimensions.

Product Formula for Box Dimension

For any sets E ⊆ Rn and F ⊆ Rm,

dimB(E × F ) ≤ dimBE + dimBF .

The idea is as in the first inequality above.

Suppose that:

E can be covered by Nδ(E ) intervals of side δ;
F can be covered by Nδ(F ) intervals of side δ.

Then E × F is covered by the Nδ(E )Nδ(F ) squares formed by
products of these intervals.
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Projections, Products and Intersections Product Formulae

Examples

Let E ,F be subsets of R with F a uniform Cantor set.

Then
dimH(E × F ) = dimHE + dimHF .

A previous example showed that uniform Cantor sets have equal
Hausdorff and upper box dimensions.

So the result follows from the preceding corollary.

The “Cantor product” of the middle third Cantor set with itself has
Hausdorff and box dimensions exactly 2 log 2

log 3 .

If E is a subset of R and F is a straight line segment, then

dimH(E × F ) = dimHE + 1.
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Projections, Products and Intersections Product Formulae

Example: The Cantor Target

The “Cantor target” is the plane set given in
polar coordinates by

F ′ = {(r , θ) : r ∈ F , 0 ≤ θ ≤ 2π},

where F is the middle third Cantor set.
Then dimHF

′ = 1 + log 2
log 3 .

Let f : R2 → R
2 be given by f (x , y) = (x cos y , x sin y).

Then f is a Lipschitz mapping and F ′ = f (F × [0, 2π]).

dimHF
′ = dimH f (F × [0, 2π])

≤ dimH(F × [0, 2π])

= dimHF + dimH [0, 2π]

= log 2
log 3 + 1,

by a previous corollary and the preceding example.
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Projections, Products and Intersections Product Formulae

Example: The Cantor Target (Cont’d)

Suppose we restrict f to [23 , 1] × [0, π],

f :

[

2

3
, 1

]

× [0, π] → R
2; f (x , y) = (x cos y , x sin y).

Then f is a bi-Lipschitz function on this domain.

But F ′ ⊇ f ((F ∩ [23 , 1]) × [0, π]). So we have

dimHF
′ ≥ dimH f ((F ∩ [23 , 1])× [0, π])

= dimH((F ∩ [23 , 1]) × [0, π])

= dimH(F ∩ [23 , 1]) + dimH [0, π]

= log 2
log 3 + 1,

by a previous corollary and the preceding example.

It can be similarly shown that F ′ is an s-set for s = 1 + log 2
log 3 .
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Projections, Products and Intersections Product Formulae

Equality Does Not Hold in General

Claim: There exist sets E ,F ⊆ R with dimHE = dimHF = 0 and
dimH(E × F ) ≥ 1.

Let 0 = m0 < m1 < · · · be a rapidly increasing sequence of integers
satisfying a condition to be specified below.

Let E consist of those numbers in [0, 1], with a zero in the r -th decimal
place whenever mk + 1 ≤ r ≤ mk+1 and k is even.
Let F consist of those numbers in [0, 1], with zero in the r -th decimal
place if mk + 1 ≤ r ≤ mk+1 and k is odd.

Look at the first mk+1 decimal places for even k .

There is an obvious cover of E by 10jk intervals of length 10−mk+1 ,
where jk = (m2 −m1) + (m4 −m3) + · · ·+ (mk −mk−1).

Then we have log 10jk

− log 10−mk+1
= jk

mk+1
.

Provided that the mk increase sufficiently rapidly, jk
mk+1

k→∞−→ 0.

By a previous proposition, dimHE ≤ dimBE = 0.

George Voutsadakis (LSSU) Fractal Geometry April 2024 46 / 65



Projections, Products and Intersections Product Formulae

Equality Does Not Hold in General (Cont’d)

We showed dimHE ≤ dimBE = 0.

Similarly, dimHF = 0.

If 0 < w < 1, then we can write

w = x + y ,

where x ∈ E and y ∈ F .

Just take the r -th decimal digit of w :

From E , if mk + 1 ≤ r ≤ mk+1 and k is odd;
From F , if mk + 1 ≤ r ≤ mk+1 and k is even.

The mapping f : R2 → R given by f (x , y) = x + y is Lipschitz.

So, by a previous corollary,

dimH(E × F ) ≥ dimH f (E × F ) ≥ dimH(0, 1) = 1.
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Intersection with a Vertical Line

We work in the (x , y)-plane.

Let Lx be the line parallel to the y -axis through the point (x , 0).

Proposition

Let F be a Borel subset of R2. If 1 ≤ s ≤ 2, then

∫ ∞

−∞
Hs−1(F ∩ Lx)dx ≤ Hs(F ).

Given ε > 0, let {Ui} be a δ-cover of F , with
∑

i |Ui |s ≤ Hs
δ(F ) + ε.

Each Ui is contained in a square Si of side |Ui | with sides parallel to
the coordinate axes. Let χi be the indicator function of Si , i.e.,

χi (x , y) =

{

1, if (x , y) ∈ Si ,

0, if (x , y) 6∈ Si .

For each x , the sets {Si ∩ Lx} form a δ-cover of F ∩ Lx .
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Intersection with a Vertical Line (Cont’d)

For each x , the sets {Si ∩ Lx} form a δ-cover of F ∩ Lx .

So we get

Hs−1
δ (F ∩ Lx) ≤

∑

i |Si ∩ Lx |s−1

=
∑

i |Ui |s−2|Si ∩ Lx |
=

∑

i |Ui |s−2
∫

χi (x , y)dy .

Hence,
∫

Hs−1
δ (F ∩ Lx)dx ≤ ∑

i |Ui |s−2
∫∫

χi(x , y)dxdy

=
∑

i |Ui |s

≤ Hs
δ(F ) + ε.

Since ε > 0 is arbitrary,
∫

Hs−1
δ (F ∩ Lx)dx ≤ Hs

δ(F ).

Letting δ → 0 gives the conclusion.
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Implication for Hausdorff Dimensions

Corollary

Let F be a Borel subset of R2. Then, for almost all x (in the sense of
1-dimensional Lebesgue measure),

dimH(F ∩ Lx) ≤ max {0, dimHF − 1}.

Take s > dimHF , so that Hs(F ) = 0.

If s > 1, the proposition gives Hs−1(F ∩ Lx) = 0.

So dimH(F ∩ Lx) ≤ s − 1, for almost all x .
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A Generalization

Proposition

Let F be any subset of R2, and let E be any subset of the x-axis. Suppose
that there is a constant c , such that Ht(F ∩ Lx) ≥ c , for all x ∈ E . Then

Hs+t(F ) ≥ bcHs(E ),

where b > 0 depends only on s and t.

We omit the proof.

Corollary

Let F be any subset of R2, and let E be a subset of the x-axis. If
dimH(F ∩ Lx) ≥ t, for all x ∈ E , then

dimHF ≥ t + dimHE .

The obvious higher-dimensional analogs of these results are all valid.
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Example: A Self-Affine Set

Let F be the set with iterated construction indicated in the figure.

At the k-th stage each rectangle of Ek is replaced with an affine copy
of the rectangles in E1.

The contraction is greater in the “y” than in the “x” direction.

The width to height ratio of the rectangles in Ek tends to infinity.

In this case,

dimHF = dimBF =
3

2
.
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Example: A Self-Affine Set (Cont’d)

Ek consists of 6k rectangles of size 3−k × 4−k .

Each of these rectangles may be covered by at most (43)
k + 1 squares

of side 4−k , by dividing the rectangles using a series of vertical cuts.

Hence Ek may be covered by:

6k × 2× 4k × 3−k = 2× 8k squares;
Each of diameter 4−k

√
2.

In the usual way, this gives dimHF ≤ dimBF ≤ 3
2 .
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Example: A Self-Affine Set (Cont’d)

Except for x of the form j3−k , where
j and k are integers, we have that
Ek ∩ Lx consists of:

2k intervals;
Each of length 4−k .

A standard application of the mass distribution method shows that,
for each such x ,

H1/2(Ek ∩ Lx) ≥
1

2
.

By a previous proposition,

H3/2(F ) ≥ 1

2
.

Hence dimHF = dimBF = 3
2 .
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Subsection 5

Intersection of Fractals
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Introducing Intersection

The intersection of two fractals is often a fractal.

In general, the dimension of the intersection is not related to that of
the original sets.

Example: Suppose F is bounded.

There is a congruent copy F1 of F , such that

dimH(F ∩ F1) = dimHF .

We may take F1 = F .

There is another congruent copy with

dimH(F ∩ F1) = 0.

We may take F and F1 disjoint.
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More on Intersection

We can say more provided we consider the intersection of F and a
congruent copy in a “typical” relative position.

Example: Let F and F1 be unit line segments in the plane.

Then F ∩ F1 can be a line segment, but only in the exceptional
situation when F and F1 are collinear.

If F and F1 cross at an angle, then F ∩ F1 is a single point.

Now F ∩ F1 remains a single point if F1 is replaced by a nearby
congruent copy.

Thus, whilst “in general” F ∩ F1 contains at most one point, this
situation occurs “frequently”.
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Measuring Sets of Transformations

Recall that a rigid motion or direct congruence σ of the plane
transforms any set E to a congruent copy σ(E ) without reflection.

The rigid motions may be parametrized by three coordinates (x , y , θ):

The origin is transformed to (x , y);
θ is the angle of rotation.

This provides a natural measure on the space of rigid motions.

The measure of a set A of rigid motions is given by the 3-dimensional
Lebesgue measure of the (x , y , θ) parametrizing the motions in A.
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Examples

Consider the set of all rigid motions which map the origin to a point
of the rectangle [1, 2] × [0, 3].

This set has measure 1× 3× 2π.

Let F be unit line segment.

Consider the set of transformations σ for which F ∩ σ(F ) is a line
segment.
This has measure 0.
Consider the set of transformations σ for which F ∩ σ(F ) is a single
point.
This is a set of transformations of measure 4.
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Higher Dimensions

In R3, “typically”:

Two surfaces intersect in a curve;
A surface and a curve intersect in a point;
Two curves are disjoint.

In Rn, if smooth manifolds E and F intersect at all, then “in general”
they intersect in a submanifold of dimension

max {0, dimE + dimF − n}.

Suppose dimE + dimF − n > 0.

For a set of rigid motions σ of positive measure,

dim(E ∩ σ(F )) = dimE + dimF − n;

For almost all other σ, dim(E ∩ σ(F )) = 0.

Note that σ is measured using the 1
2n(n + 1) parameters required to

specify a rigid transformation of Rn.

George Voutsadakis (LSSU) Fractal Geometry April 2024 60 / 65



Projections, Products and Intersections Intersection of Fractals

Goal of Investigation

We would like to find out whether it is true that, as σ ranges over a
group G of transformations, such as translations, congruences or
similarities:

“In general”, i.e., “for almost all σ”,

dimH(E ∩ σ(F )) ≤ max {0, dimHE + dimHF − n};

“Often”, i.e., “for a set of σ of positive measure”,

dimH(E ∩ σ(F )) ≥ dimHE + dimHF − n.

The measurements are supposed to be with respect to a natural
measure on the transformations in G .

Generally, G can be parametrized by m coordinates in a straightforward
way for some integer m;
We can use Lebesgue measure on the parameter space Rm.
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Upper Bound for Translations

Recall that
F + x = {x + y : y ∈ F}

denotes the translation of F by the vector x .

Theorem

If E ,F are Borel subsets of Rn, then

dimH(E ∩ (F + x)) ≤ max {0, dimH(E × F )− n},

for almost all x ∈ Rn.

We prove this when n = 1.

The proof for n > 1 is similar.

Denote by Lc be the line in the (x , y)-plane with equation

x = y + c .
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Upper Bound for Translations (Cont’d)

Suppose that dimH(E × F ) > 1.

By a previous corollary (rotating the lines through 45◦ and changing
notation slightly), for almost all c ∈ R,

dimH((E × F ) ∩ Lc) ≤ dimH(E × F )− 1.

But a point (x , x − c) ∈ (E × F ) ∩ Lc if and only if x ∈ E ∩ (F + c).

Thus, for each c , the projection onto the x-axis of (E × F )∩ Lc is the
set E ∩ (F + c).

In particular,

dimH(E ∩ (F + c)) = dimH((E × F ) ∩ Lc).

So the result follows from the inequality above.
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Lower Bounds

Theorem

Let E ,F ⊆ Rn be Borel sets, and let G be a group of transformations on
R

n. Then dimH(E ∩ σ(F )) ≥ dimHE + dimHF − n for a set of motions
σ ∈ G of positive measure in the following cases:

(a) G is the group of similarities and E and F are arbitrary sets;

(b) G is the group of rigid motions, E is arbitrary and F is a rectifiable
curve, surface, or manifold;

(c) G is the group of rigid motions and E and F are arbitrary, with either
dimHE > 1

2 (n + 1) or dimHF > 1
2(n + 1).

The proof, which uses potential theoretic methods, is omitted.
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Example

Let F ⊆ R be the middle third Cantor set.

For λ, x ∈ R, write

λF + x = {λy + x : y ∈ F}.

For almost all x ∈ R,

dimH(F ∩ (F + x)) ≤ 2
log 2

log 3
− 1;

For a set of (x , λ) ∈ R2 of positive plane Lebesgue measure,

dimH(F ∩ (λF + x)) = 2
log 2

log 3
− 1.

We showed in a previous example that dimH(F × F ) = 2 log 2
log 3 .

So the stated dimensions follow from the two preceding theorems.
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