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Applications and Examples Iterated Function Systems

Subsection 1

Iterated Function Systems
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Applications and Examples Iterated Function Systems

Contractions and Contracting Similarities

Let D be a closed subset of Rn, often D = Rn.

A mapping S : D → D is called a contraction on D if there is a
number c with 0 < c < 1, such that

|S(x)− S(y)| ≤ c |x − y |, for all x , y ∈ D.

Clearly any contraction is continuous.

A contraction S : D → D is called a contracting similarity if
equality holds, i.e., if

|S(x) − S(y)| = c |x − y |.

Contracting similarities transform sets into geometrically similar sets.
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Applications and Examples Iterated Function Systems

Iterated Function Systems

An iterated function system or IFS is a finite family of contractions
{S1,S2, . . . ,Sm}, with m ≥ 2.

We call a non-empty compact subset F of D an attractor (or
invariant set) for the IFS if

F =

m⋃

i=1

Si(F ).
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Applications and Examples Iterated Function Systems

IFS’s and Attractors

The fundamental property of an iterated function system is that it
determines a unique attractor, which is usually a fractal.

Example: Take F to be the middle third Cantor set.

Let S1,S2 : R → R be given by

S1(x) =
1

3
x ; S2(x) =

1

3
x +

2

3
.

Then S1(F ) and S2(F ) are just the left and right “halves” of F .

So F = S1(F ) ∪ S2(F ).

Thus, F is an attractor of the IFS {S1,S2}.
S1 and S2 represent the basic self-similarities of the Cantor set.

We shall prove the fundamental property that an IFS has a unique
(non-empty compact, i.e., closed and bounded) attractor.

E.g., the middle third Cantor set is completely specified as the
attractor of the mappings {S1,S2} given above.
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Applications and Examples Iterated Function Systems

Distance Between Nonempty Compact Subsets

Let S denote the class of all non-empty compact subsets of D.

Recall that the δ-neighborhood of a set A is the set of points within
distance δ of A, i.e.,

Aδ = {x ∈ D : |x − a| ≤ δ, for some a ∈ A}.

We make S into a metric space by
defining the distance between two
sets A and B to be the least δ, such
that the δ-neighborhood of A con-
tains B and vice versa:

d(A,B) =
inf {δ : A ⊆ Bδ and B ⊆ Aδ}.
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Applications and Examples Iterated Function Systems

Properties of Distance

A simple check shows that d is a metric or distance function, that is,
satisfies the following three requirements:

(i) d(A,B) ≥ 0, with equality if and only if A = B;
(ii) d(A,B) = d(B,A);
(iii) d(A,B) ≤ d(A,C ) + d(C ,B), for all A,B,C ∈ S.
The metric d is known as the Hausdorff metric on S.
In particular, if d(A,B) is small, then A and B are close to each other
as sets.
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Applications and Examples Iterated Function Systems

Existence of Unique Attractor

Theorem

Consider the iterated function system given by the contractions

{S1, . . . ,Sm}

on D ⊆ Rn, so that

|Si(x) − Si(y)| ≤ ci |x − y |, (x , y) ∈ D,

with ci < 1 for each i . Then there is a unique attractor F , i.e., a
non-empty compact set such that

F =

m⋃

i=1

Si(F ).
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Applications and Examples Iterated Function Systems

Existence of Unique Attractor (Cont’d)

Theorem (Cont’d)

Suppose we define a transformation S on the class S of non-empty
compact sets by

S(E ) =

m⋃

i=1

Si(E ), E ∈ S.

Write Sk for the k-th iterate of S , i.e.,

S0(E ) = E ;
Sk(E ) = S(Sk−1(E )), for k ≥ 1.

Then

F =
∞⋂

k=0

Sk(E ),

for every set E ∈ S, such that Si(E ) ⊆ E , for all i .
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Applications and Examples Iterated Function Systems

First Proof

Note that sets in S are transformed by S into other sets of S.
If A,B ∈ S, then, if the δ-neighborhood (Si (A))δ contains Si(B), for
all i , then (

⋃m
i=1 Si(A))δ contains

⋃m
i=1 Si(B), and vice versa.

So, applying the definition of the metric d , we get

d(S(A),S(B)) = d(
⋃m

i=1 Si(A),
⋃m

i=1 Si(B))

≤ max1≤i≤m d(Si(A),Si (B)).

By hypothesis,

d(S(A),S(B)) ≤
(

max
1≤i≤m

ci

)
d(A,B).

It may be shown that d is a complete metric on S, that is every
Cauchy sequence of sets in S is convergent to a set in S.
Since 0 < max1≤i≤m ci < 1, the preceding inequality states that S is
a contraction on the complete metric space (S, d).
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Applications and Examples Iterated Function Systems

First Proof (Cont’d)

By Banach’s Contraction Mapping Theorem, S has a unique fixed
point, i.e., there is a unique set F ∈ S, such that

S(F ) = F .

This is the first statement in the conclusion.

Moreover Sk(E ) → F as k → ∞.

In particular, if Si(E ) ⊆ E , for all i , then S(E ) ⊆ E .

So Sk(E ) is a decreasing sequence of non-empty compact sets
containing F with intersection

⋂∞
k=0 S

k(E ) which must equal F .
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Applications and Examples Iterated Function Systems

Second Proof (Existence)

Let E be any set in S such that Si(E ) ⊆ E , for all i .

E.g., E = D ∩ B(0, r) will do, provided r is sufficiently large.

Then
Sk(E ) ⊆ Sk−1(E ).

So Sk(E ) is a decreasing sequence of non-empty compact sets.

They necessarily have non-empty compact intersection

F =

∞⋂

k=1

Sk(E ).

But Sk(E ) is a decreasing sequence of sets.

It follows that S(F ) = F .

So F satisfies the first conclusion and is an attractor of the IFS.
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Applications and Examples Iterated Function Systems

Second Proof (Uniqueness)

For uniqueness, we derive, as in the first proof,

d(S(A),S(B)) ≤
(

max
1≤i≤m

ci

)
d(A,B).

Suppose A and B are both attractors.

Then S(A) = A and S(B) = B .

By the preceding inequality, 0 < max1≤i≤m ci < 1.

It follows that
d(A,B) = 0.

This implies A = B .

George Voutsadakis (LSSU) Fractal Geometry April 2024 14 / 173



Applications and Examples Iterated Function Systems

Finding an IFS With a Given Attractor

Finding an IFS that has a given F as its unique attractor can often be
done by inspection, at least if F is self-similar or self-affine.

Example: The Cantor dust is easily seen to be the attractor of the
four similarities which give the basic self-similarities of the set:

S1(x , y) = (14x ,
1
4y + 1

2 );

S2(x , y) = (14x + 1
4 ,

1
4y);

S3(x , y) = (14x + 1
2 ,

1
4y + 3

4);

S4(x , y) = (14x + 3
4 ,

1
4y + 1

4).

In general it may not be possible to find an IFS with a given set as
attractor.

But we can normally find one with an attractor that is a close
approximation to the required set.
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Applications and Examples Iterated Function Systems

Finding the Attractor of a Given IFS: Pre-fractals

The transformation S introduced in the preceding theorem is the key
to computing the attractor of an IFS.

The sequence of iterates Sk(E ) converges to the attractor F for any
initial set E in S, in the sense that d(Sk(E ),F ) → 0.

We have

d(S(A),S(B)) ≤
(

max
1≤i≤m

ci

)
d(A,B).

Let c = max1≤i≤m ci < 1.

Then d(S(E ),F ) = d(S(E ),S(F )) ≤ cd(E ,F ).

So d(Sk(E ),F ) ≤ ckd(E ,F ).

Thus, the Sk(E ) provide increasingly good approximations to F .

If F is a fractal, these approximations are sometimes called
pre-fractals for F .
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Applications and Examples Iterated Function Systems

Finding the Attractor of a Given IFS (Cont’d)

For each k ,

Sk(E ) =
⋃

Ik
Si1 ◦ · · · ◦ Sik (E ) =

⋃

Ik
Si1(Si2(· · · (Sik (E )) · · · )),

where the union is over the set Ik of all k-term sequences (i1, . . . , ik)
with 1 ≤ ij ≤ m.
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Applications and Examples Iterated Function Systems

Finding the Attractor of a Given IFS (Cont’d)

Suppose Si(E ) is contained in E , for all i .

Let x be a point of F .

We know that F =
⋂∞

k=0 S
k(E ).

Hence, there is a (not necessarily unique) sequence (i1, i2, . . .), such
that, for all k ,

x ∈ Si1 ◦ · · · ◦ Sik (E ).
This sequence provides a natural coding for x , with

x = xi1,i2,... =

∞⋂

k=1

Si1 ◦ · · · ◦ Sik (E ).

So F =
⋃{xi1,i2,...}.

This expression for xi1,i2,... is independent of E provided that Si(E ) is
contained in E , for all i .
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Applications and Examples Iterated Function Systems

Finding the Attractor of a Given IFS (Cont’d)

Suppose the union F =
⋃m

i=1 Si(F ) is disjoint.

Then F must be totally disconnected (provided the Si are injections).

Indeed, suppose
xi1,i2,... 6= xi ′1,i

′

2,...
.

Then, we may find k such that

(i1, . . . , ik) 6= (i ′1, . . . , i
′
k).

So the disjoint closed sets Si1 ◦ · · · ◦ Sik (F ) and Si ′1 ◦ · · · ◦ Si ′k (F )
disconnect the two points.
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Applications and Examples Iterated Function Systems

Example

Consider again

S1(x) =
1

3
x , S2(x) =

1

3
x +

2

3
.

Let F be the Cantor set.
Suppose E = [0, 1]. In this case,

Sk(E ) = Ek ,

the set of 2k basic intervals of length 3−k obtained at the k-th stage
of the usual Cantor set construction.
Moreover, xi1,i2,... is the point with base-3 expansion 0.a1a2 . . ., where

ak =

{
0, if ik = 1,
2, if ik = 2.

The pre-fractals Sk(E ) provide the usual construction of many
fractals for a suitably chosen initial set E .
The Si1 ◦ · · · ◦ Sik (E ) are called the level-k sets of the construction.
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Applications and Examples Iterated Function Systems

Drawing IFS Attractors: Method 1

Take any initial set E (such as a square) and draw the k-th
approximation Sk(E ) to F for a suitable value of k .

The set Sk(E ) is made up of mk small sets.

Either these can be drawn in full, or a representative point of each
can be plotted.

In some cases, E can be chosen as a line segment in such a way that
S1(E ), . . . ,Sm(E ) join up to form a polygonal curve with endpoints
the same as those of E .

Then the sequence of polygonal curves Sk(E ) provides increasingly
good approximations to the fractal curve F .

George Voutsadakis (LSSU) Fractal Geometry April 2024 21 / 173



Applications and Examples Iterated Function Systems

Drawing IFS Attractors: Method 2

Take x0 as any initial point.

Select a contraction Si1 from S1, . . . ,Sm at random.

Let x1 = Si1(x0).

Continue in this way:

Choose Sik from S1, . . . , Sm at random (with equal probability, say);
Let xk = Sik (xk−1) for k = 1, 2, . . ..

For large enough k , the points xk will be indistinguishably close to F ,
with xk close to Sik ◦ · · · ◦ Si1(F ).
So the sequence {xk} will appear randomly distributed across F .

A plot of the sequence {xk} from, say, the hundredth term onwards
may give a good impression of F .
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Applications and Examples Dimensions of Self-Similar Sets

Subsection 2

Dimensions of Self-Similar Sets
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Applications and Examples Dimensions of Self-Similar Sets

Similarities and Self-Similar Sets

One of the advantages of using an iterated function system is that
the dimension of the attractor is often relatively easy to calculate or
estimate in terms of the defining contractions.

We discuss the case where S1, . . . ,Sm : Rn → Rn are similarities.

Suppose we have

|Si(x)− Si(y)| = ci |x − y |, x , y ∈ R
n,

where 0 < ci < 1 (ci is called the ratio of Si).

Thus, each Si transforms subsets of Rn into geometrically similar sets.
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Applications and Examples Dimensions of Self-Similar Sets

Self-Similar Sets

Suppose S1, . . . ,Sm : Rn → Rn are similarities.

The attractor of such a collection of similarities is called a (strictly)
self-similar set.

It is a union of a number of smaller similar copies of itself.

Standard examples include:

The middle third Cantor set;
The Sierpiński triangle;
The von Koch curve.
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Applications and Examples Dimensions of Self-Similar Sets

Condition Giving the Hausdorff Dimension

We show that, under certain conditions, a self-similar set F :
Has Hausdorff and box dimensions equal to the value of s satisfying

m∑

i=1

c si = 1;

Has positive and finite Hs -measure.

A “heuristic” calculation indicates the plausibility of this.

Suppose F =
⋃m

i=1 Si(F ), with the union “nearly disjoint”.

Then

Hs(F ) =

m∑

i=1

Hs(Si(F )) =

m∑

i=1

csi Hs(F ),

using the Scaling Property.

Assume that, at s = dimHF , we have 0 < Hs(F ) <∞.

Then s satisfies the claimed condition.
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Applications and Examples Dimensions of Self-Similar Sets

The Open Set Condition

For the preceding argument to give the right answer, we require a
condition that ensures that the components Si(F ) of F do no overlap
“too much”.

We say that the Si satisfy the open set condition if, there exists a
non-empty bounded open set V , such that

V ⊇
m⋃

i=1

Si(V )

with the union disjoint.

Example: In the middle third Cantor set example, the open set
condition holds for S1 and S2 with V as the open interval (0, 1).

We show that, if the similarities Si satisfy the open set condition, the
Hausdorff dimension of the attractor is given by

∑m
i=1 c

s
i = 1.
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Applications and Examples Dimensions of Self-Similar Sets

A Geometric Result

Lemma

Let {Vi} be a collection of disjoint open subsets of Rn such that each Vi :

Contains a ball of radius a1r ;

Is contained in a ball of radius a2r .

Then any ball B of radius r intersects at most (1 + 2a2)
na−n

1 of the
closures V i .

Suppose V i meets B .

V i is contained in the ball concentric with B of radius (1 + 2a2)r .

Suppose that q of the sets V i intersect B .

We sum the volumes of the corresponding interior balls of radii a1r .

It follows that q(a1r)
n ≤ (1 + 2a2)

nrn.

This gives the stated bound for q.
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension

Theorem

Suppose that the open set condition holds for the similarities Si on Rn

with ratios 0 < ci < 1 for 1 ≤ i ≤ m. Suppose F is the attractor of the
IFS {S1, . . . ,Sm}, that is

F =
m⋃

i=1

Si(F ).

Then dimHF = dimBF = s, where s is given by

m∑

i=1

csi = 1.

Moreover, for this value of s, 0 < Hs(F ) <∞.
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

Let s satisfy
∑m

i=1 c
s
i = 1.

Let Ik be the set of all sequences (i1, . . . , ik) with 1 ≤ ij ≤ m.

For any set A and (i1, . . . , ik) ∈ Ik , we write

Ai1,...,ik = Si1 ◦ · · · ◦ Sik (A).

By using F =
⋃m

i=1 Si(F ) repeatedly, we get F =
⋃

Ik Fi1,...,ik .

We get an upper estimate for the Hausdorff measure of F .

Si1 ◦ · · · ◦ Sik is a similarity of ratio ci1 · · · cik .
So ∑

Ik |Fi1,...,ik |
s =

∑
Ik (ci1 · · · cik )

s |F |s

= (
∑

i1
csi1) · · · (

∑
ik
csik )|F |

s

= |F |s .
For any δ > 0, we choose k with |Fi1,...,ik | ≤ (maxi ci )

k |F | ≤ δ.

So Hs
δ(F ) ≤ |F |s . Hence, Hs(F ) ≤ |F |s .
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

Let I be the set of all infinite sequences

I = {(i1, i2, . . .) : 1 ≤ ij ≤ m}.

Let Ii1,...,ik = {(i1, . . . , ik , qk+1, . . .) : 1 ≤ qj ≤ m} be the “cylinder”
consisting of those sequences in I with initial terms (i1, . . . , ik).

We may put a mass distribution µ on I, such that

µ(Ii1,...,ik ) = (ci1 · · · cik )s .

We have (ci1 · · · cik )s =
∑m

i=1(ci1 · · · cik ci )s .
That is,

µ(Ii1,...,ik ) =

m∑

i=1

µ(Ii1,...,ik ,i).

So µ is indeed a mass distribution on subsets of I, with µ(I) = 1.
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

Transfer µ to a mass distribution µ̃ on F by

µ̃(A) = µ{(i1, i2, . . .) : xi1,i2,... ∈ A},
for subsets A of F (recall that xi1,i2,... =

⋂∞
k=1 Fi1,...,ik ).

The µ̃-mass of a set is the µ-mass of the corresponding sequences.

It is easily checked that µ̃(F ) = 1.

Claim: µ̃ satisfies the conditions of the Mass Distribution Principle.

Let V be the open set in the open set condition.

We have

V ⊇ S(V ) =

m⋃

i=1

Si(V ).

So the decreasing sequence of iterates Sk(V ) converges to F .
In particular, for each finite sequence (i1, . . . , ik):

V ⊇ F ;
V i1,...,ik ⊇ Fi1,...,ik .
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

Let B be any ball of radius r < 1.

We estimate µ̃(B) by considering the sets Vi1,...,ik with diameters
comparable with that of B and with closures intersecting F ∩ B .

We curtail each infinite sequence (i1, i2, . . .) ∈ I after the first term ik
for which (min1≤i≤m ci )r ≤ ci1ci2 · · · cik ≤ r .

Let Q denote the finite set of all sequences obtained in this way.

Then, for every infinite sequence (i1, i2, . . .) ∈ I, there is exactly one
value of k with (i1, . . . , ik) ∈ Q.

But V1, . . . ,Vm are disjoint.

So, for each (i1, . . . , ik), Vi1,...,ik ,1, . . . , Vi1,...,ik ,m are also disjoint.

Using this in a nested way, it follows that the collection of open sets
{Vi1,...,ik : (i1, . . . , ik) ∈ Q} is disjoint.

Similarly, F ⊆ ⋃Q Fi1,...,ik ⊆
⋃

Q V i1,...,ik .
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

We choose a1 and a2 so that V contains a ball of radius a1 and is
contained in a ball of radius a2.

Then, for all (i1, . . . , ik) ∈ Q, Vi1,...,ik contains a ball of radius
ci1 · · · cik a1.
So it also contains one of radius (mini ci )a1r .

Moreover, it is contained in a ball of radius ci1 · · · cik a2.
Hence it is also contained in a ball of radius a2r .

Let Q1 denote the set of those sequences (i1, . . . , ik) in Q such that
B intersects V i1,...,ik .

By the preceding lemma, there are at most

q = (1 + 2a2)
na−n

1 (min
i

ci )
−n

sequences in Q1.
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Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Cont’d)

Then we have

µ̃(B) = µ̃(F ∩ B)

= µ{(i1, i2, . . .) : xi1,i2,... ∈ F ∩ B}
≤ µ{⋃Q1

Ii1,...,ik},

since, if xi1,i2,... ∈ F ∩ B ⊆Q1 V i1,...,ik , then, there is an integer k , such
that (i1, . . . , ik) ∈ Q1.

Thus,
µ̃(B) ≤ ∑

Q1
µ(Ii1,...,ik )

=
∑

Q1
(ci1 · · · cik )s

≤ ∑
Q1

r s

≤ r sq.

But any set U is contained in a ball of radius |U|. So µ̃(U) ≤ |U|sq.
By Mass Distribution, Hs(F ) ≥ q−1 > 0 and dimHF = s.

George Voutsadakis (LSSU) Fractal Geometry April 2024 35 / 173



Applications and Examples Dimensions of Self-Similar Sets

Computing the Hausdorff Dimension (Conclusion)

If Q is any set of finite sequences such that, for every (i1, i2, . . .) ∈ I,
there is exactly one integer k with (i1, . . . , ik) ∈ Q, it follows
inductively from

∑m
i=1 c

s
i = 1 that

∑
Q(ci1ci2 · · · cik )s = 1.

If Q is chosen as above, Q contains at most (mini ci )
−s r−s sequences.

For each sequence (i1, . . . , ik) ∈ Q, we have

|V i1,...,ik | = ci1 · · · cik |V | ≤ r |V |.

So F may be covered by (mini ci )
−sr−s sets of diameter r |V |, for

each r < 1.

By the equivalent definition of box dimension, dimBF ≤ s.

Noting that s = dimHF ≤ dimBF ≤ dimBF ≤ s, yields the result.

If the open set condition is not assumed, it may be shown that we
still have dimHF = dimBF though this value may be less than s.
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Applications and Examples Dimensions of Self-Similar Sets

Example: Sierpiński Triangle

The Sierpiński triangle or gasket F is
constructed from an equilateral trian-
gle by repeatedly removing inverted
equilateral triangles. Then

dimHF = dimBF =
log 3

log 2
.

The set F is the attractor of the three obvious similarities of ratios 1
2

which map the triangle E0 onto the triangles of E1.

The open set condition holds, taking V as the interior of E0.

The solution of 3(12 )
s =

∑3
1(

1
2 )

s = 1 is s = log 3
log 2 .

Thus, by the theorem, dimHF = dimBF = log 3
log 2 .
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Applications and Examples Dimensions of Self-Similar Sets

Example: Modified von Koch Curve

Fix 0 < a ≤ 1
3 and construct a

curve F by repeatedly replacing the
middle proportion a of each inter-
val by the other two sides of an
equilateral triangle. Then dimHF =
dimBF is the solution of

2as + 2

(
1

2
(1− a)

)s

= 1.

The curve F is the attractor of the similarities that map the unit
interval onto each of the four intervals in E1.

The open set condition holds, taking V as the interior of the isosceles
triangle of base length 1 and height 1

2a
√
3.
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Applications and Examples Dimensions of Self-Similar Sets

Example: Modified von Koch Curve (Cont’d)

Note that:

The left and right segments have scaling factors 1−a
2 ;

The segments forming the two sides of he equilateral triangle have
scaling factors a.

So the equation we get for s is

2

(
1− a

2

)s

+ 2as = 1.
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Applications and Examples Dimensions of Self-Similar Sets

Specifying Self-Similar Sets Diagrammatically

A generator consists of a number of straight line segments and two
points specially identified.

We associate with each line segment the similarity that maps the two
special points onto the endpoints of the segment.

A sequence of sets approximating to the self-similar attractor may be
built up by iterating the process of replacing each line segment by a
similar copy of the generator.

The similarities are defined by the generator only to within:

Reflection;
180◦ rotation.

But the orientation may be specified by displaying the first step of the
construction.
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Example 1

Stages in the construction of a
fractal curve from a generator.
The lengths of the segments in the
generator are 1

3 ,
1
4 ,

1
3 ,

1
4 ,

1
3 .

The Hausdorff and box dimensions
of F are given by

3

(
1

3

)s

+ 2

(
1

4

)s

= 1.

Thus, s = 1.34 . . ..
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Example 2

A fractal curve and its generator.

The Hausdorff and box dimensions of the curve satisfy

8

(
1

4

)s

= 1.

Thus, they are equal to log 8
log 4 = 3

2 .
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Example 3

A fractal curve and its generator.

The Hausdorff and box dimensions of the curve satisfy

5

(
1

3

)s

= 1.

Thus, they are equal to log 5
log 3 = 1.465 . . ..
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Applications and Examples Non-Similarity Contractions

Subsection 3

Non-Similarity Contractions
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Applications and Examples Non-Similarity Contractions

Dimension Upper Bound

Proposition

Let F be the attractor of an IFS consisting of contractions {S1, . . . ,Sm}
on a closed subset D of Rn, such that

|Si(x)− Si(y)| ≤ ci |x − y |, x , y ∈ D,

with 0 < ci < 1 for each i . Then dimHF ≤ s and dimBF ≤ s, where∑m
i=1 c

s
i = 1.

These estimates are essentially those of the first and last paragraphs
of the proof of the previous theorem.

The difference is that we have, for each set A, instead of an equality,
the inequality

|Ai1,...,ik | ≤ ci1 · · · cik |A|.
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Introducing Dimension Lower Bound

We next obtain a lower bound for dimension in the case where the
components Si(F ) of F are disjoint.

This will certainly be the case if, there is some non-empty compact
set E , such that:

Si(E ) ⊆ E , for all i ;
The Si(E ) are disjoint.
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Dimension Lower Bound

Proposition

Consider the IFS consisting of contractions {S1, . . . ,Sm} on a closed
subset D of Rn, such that

bi |x − y | ≤ |Si(x)− Si(y)|, x , y ∈ D,

with 0 < bi < 1 for each i . Assume that the (non-empty compact)
attractor F satisfies

F =

m⋃

i=1

Si(F ),

with this union disjoint. Then F is totally disconnected and dimHF ≥ s,
where

m∑

i=1

bsi = 0.
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Dimension Lower Bound (Cont’d)

Let d > 0 be the minimum distance between any pair of the disjoint
compact sets S1(F ), . . . ,Sm(F ), i.e.,

d = min
i 6=j

inf {|x − y | : x ∈ Si(F ), y ∈ Sj(F )}.

Let Fi1,...,ik = Si1 ◦ · · · Sik (F ).
Define µ by

µ(Fi1...ik ) = (bi1 · · · bik )s .
We have

∑m
i=1 µ(Fi1...,ik ,i) =

∑m
i=1(bi1 · · · bikbi)s

= (bi1 · · · bik )s

= µ(Fi1,...,ik )

= µ(
⋃k

i=1 Fi1,...,ik ,i).

So µ defines a mass distribution on F with µ(F ) = 1.
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Dimension Lower Bound (Cont’d)

If x ∈ F , there is a unique infinite sequence i1, i2, . . . such that
x ∈ Fi1,...,ik for each k .

For 0 < r < d let k be the least integer such that

bi1 · · · bikd ≤ r < bi1 · · · bik−1
d .

If i ′1, . . . , i
′
k is distinct from i1, . . . , ik , the sets Fi1,...,ik and Fi ′1,...,i

′

k
are

disjoint and separated by a gap of at least bi1 · · · bik−1
d > r .

To see this, note that if j is the least integer such that ij 6= i ′j , then
Fij ,...,ik ⊆ Fij and Fi ′

j
,...,i ′

k
⊆ Fi ′

j
are separated by d .

So Fi1,...,ik and Fi ′1,...,i
′

k
are separated by at least bi1 · · · bij−1

d .
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Dimension Lower Bound (Conclusion)

It follows that F ∩ B(x , r) ⊆ Fi1,...,ik .

So we get

µ(F ∩ B(x , r)) ≤ µ(Fi1,...,ik ) = (bi1 · · · bik )s ≤ d−sr s .

If U intersects F , then U ⊆ B(x , r), for some x ∈ F with r = |U|.
Thus,

µ(U) ≤ d−s |U|s .
So, by the Mass Distribution Principle, Hs(F ) > 0 and dimHF ≥ s.

The separation indicated above implies that F is totally disconnected.
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Example: “Non-Linear” Cantor Set

Suppose D = [12 (1 +
√
3), (1 +

√
3)].

Let S1,S2 : D → D be given by

S1(x) = 1 +
1

x
, S2(x) = 2 +

1

x
.

Then
0.44 < dimHF ≤ dimBF ≤ dimBF < 0.66,

where F is the attractor of {S1,S2}.
We note that

S1(D) = [12(1 +
√
3),

√
3];

S2(D) = [12(3 +
√
3), 1 +

√
3].

So we can use the preceding propositions to estimate dimHF .
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Example: “Non-Linear” Cantor Set (Cont’d)

Let x , y ∈ D be distinct points.

By the Mean Value Theorem, Si (x)−Si (y)
x−y

= S ′
i (zi), for some zi ∈ D.

Thus, for i = 1, 2,

inf
x∈D

|S ′
i (x)| ≤

|Si(x)− Si(y)|
|x − y | ≤ sup

x∈D
|S ′

i (x)|.

But S ′
1(x) = S ′

2(x) = − 1
x2
.

So, for both i = 1 and i = 2,

1
2(2−

√
3) = 1

(1+
√
3)2

≤ |Si (x)−Si (y)|
|x−y |

≤ 1
( 1
2
(1+

√
3))2

= 2(2 −
√
3)
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Example: “Non-Linear” Cantor Set (Cont’d)

According to the preceding propositions, lower and upper bounds for
the dimensions are given by the solutions of

2

(
1

2
(2−

√
3)

)s

= 1 and 2(2(2 −
√
3))s = 1.

These are
s = log 2

log(2(2+
√
3))

= 0.34;

s = log 2

log ( 1
2
(2+

√
3))

= 1.11.

For a subset of the real line, an upper bound greater than 1 is not of
much interest.
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Example: “Non-Linear” Cantor Set (Cont’d)

One way of getting better estimates is to note that F is also the
attractor of the four mappings on [0, 1]

Si ◦ Sj = i +
1

j + 1
x

= i +
x

jx + 1
, i , j = 1, 2.

By calculating derivatives and using the mean-value theorem as
before, we get that (Si ◦ Sj)′(x) = 1

(jx+1)2
.

So

|x − y |
(j(1 +

√
3) + 1)2

≤ |Si ◦ Sj(x)− Si ◦ Sj(y)| ≤
|x − y |

(12 j(1 +
√
3) + 1)2

.
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Example: “Non-Linear” Cantor Set (Cont’d)

Lower and upper bounds for the dimensions are now given by the
solutions of

2(2 +
√
3)−2s + 2(3 + 2

√
3)−2s = 1;

2(12 (3 +
√
3))−2s + 2(2 +

√
3)−2s = 1.

So we obtain
0.44 < dimHF < 0.66.

This is a considerable improvement on the previous estimates.

In fact, it turns out that dimHF = 0.531.

This value that may be obtained by looking at yet higher-order
iterates of the Si .
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Subsection 4

Continued Fractions
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Partial Fraction Expansions

Any number x that is not an integer may be written as x = a0 +
1
x1
,

where a0 is an integer and x1 > 1.

Similarly, if x1 is not an integer, then x1 = a1 +
1
x2

with x2 > 1.

So x = a0 +
1

a1+
1
x2

.

Proceeding in this way,

x = a0 +
1

a1 +
1

a2+
1

...+ 1

ak−1+
1
xk

,

for each k , provided that at no stage is xk an integer.

The integers a0, a1, a2, . . . form the partial quotients of x .

We write

x = a0 +
1

a1+

1

a2+

1

a3 + · · ·
for the continued fraction expansion of x .
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Approximations and Examples

The expansion of x into continued fractions terminates if and only if
x is rational.

Otherwise taking a finite number of terms,

a0 +
1

a1 +
1

a2+
1

...+ 1
ak

provides a sequence of rational approximations to x .

This sequence converge to x as k → ∞.

George Voutsadakis (LSSU) Fractal Geometry April 2024 58 / 173



Applications and Examples Continued Fractions

Examples

Examples of continued fractions include

√
2 = 1 + 1

2+
1
2+

1
2+···

= 1 + 1
2+ 1

2+ 1

2+ 1

...

,

√
3 = 1 + 1

1+
1
2+

1
1+

1
2+···

= 1 + 1
1+ 1

2+ 1

1+ 1

2+ 1

...

.

A quadratic surd is a root of a quadratic equation with integer
coefficients.

Any quadratic surd has eventually periodic partial quotients.
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Partial Quotients and Attractors of IFSs

Sets of numbers defined by conditions on their partial quotients may
be thought of as fractal attractors of certain iterated function systems.

Let F be the set of positive real numbers x with:
Non-terminating continued fraction expressions;
All of whose partial quotients equal to 1 or 2.

Then F is a fractal with

0.44 < dimHF < 0.66.

F satisfies the following properties.

The complement of F is open. So F is closed.
We have F ⊆ [1, 3]. So F s bounded.
x ∈ F precisely when

x = 1 +
1

y
or x = 2 +

1

y
, with y ∈ F .
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Partial Quotients and Attractors of IFSs (Cont’d)

Define
S1(x) = 1 + 1

x
;

S2(x) = 2 + 1
x
.

Then
F = S1(F ) ∪ S2(F ).

That is, F is the attractor of the iterated function system {S1,S2}.
In fact F is exactly the set analyzed in the example at the end of the
previous section.

There, it was shown that

0.44 < dimHF < 0.66.
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Subsection 5

Dimensions of Graphs

George Voutsadakis (LSSU) Fractal Geometry April 2024 62 / 173



Applications and Examples Dimensions of Graphs

Graphs of Functions: Dimension 1

We consider functions f : [a, b] → R.

Under certain circumstances the graph

graphf = {(t, f (t)) : a ≤ t ≤ b}

regarded as a subset of the (t, x)-coordinate plane may be a fractal.

If f has a continuous derivative, then it is not difficult to see that
graphf has dimension 1 and, indeed, is a regular 1-set.

The same is true if f is of bounded variation, i.e., if

m−1∑

i=0

|f (ti )− f (ti+1)| ≤ constant,

for all dissections 0 = t0 < t1 < · · · < tm = 1.

George Voutsadakis (LSSU) Fractal Geometry April 2024 63 / 173



Applications and Examples Dimensions of Graphs

Graphs of Functions: Fractals

It is possible for a continuous function to be sufficiently irregular to
have a graph of dimension strictly greater than 1.

Example: Consider

f (t) =
∞∑

k=1

λ(s−2)k sin (λk t),

where 1 < s < 2 and λ > 1.

The function f is essentially Weierstrass’s example of a continuous
function that is nowhere differentiable.

Its has box dimension s.

It is believed to have Hausdorff dimension s.
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Estimate for Box Dimension

Given a function f and an interval [t1, t2], we write Rf for the
maximum range of f over an interval,

Rf [t1, t2] = sup
t1≤t,u≤t2

|f (t)− f (u)|.

Proposition

Let f : [0, 1] → R be continuous. Suppose that 0 < δ < 1, and m is the
least integer greater than or equal to 1

δ . Then, if Nδ is the number of
squares of the δ-mesh that intersect graphf ,

1

δ

m−1∑

i=0

Rf [iδ, (i + 1)δ] ≤ Nδ ≤ 2m +
1

δ

m−1∑

i=0

Rf [iδ, (i + 1)δ].
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Estimate for Box Dimension (Cont’d)

We consider all mesh squares of side δ.

Let q be the number of those over [iδ, (i + 1)δ] intersecting graphf .

Using the continuity of f , we have

Rf [iδ, (i + 1)δ]/δ ≤ q ≤ 2 + Rf [iδ, (i + 1)δ]/δ.

Summing over all such intervals gives the inequalities.
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Hölder Condition (Upper Bound)

Corollary

Let f : [0, 1] → R be a continuous function.

(a) Suppose, for c > 0 and 1 ≤ s ≤ 2,

|f (t)− f (u)| ≤ c |t − u|2−s , 0 ≤ t, u ≤ 1.

Then Hs(graphf ) <∞ and

dimHgraphf ≤ dimBgraphf ≤ dimBgraphf ≤ s.

This remains true if the condition on f holds when |t − u| < δ, for
some δ > 0.
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Hölder Condition (Upper Bound Cont’d)

(a) By hypothesis, for 0 ≤ t1, t2 ≤ 1,

Rf [t1, t2] ≤ c |t1 − t2|2−s .

With notation as in the preceding proposition,

m < (1 + δ−1).

By the inequality in the proposition,

Nδ ≤ 2m + δ−1mcδ2−s

≤ (1 + δ−1)(2 + cδ−1δ2−s )

≤ c1δ
−s ,

where c1 is independent of δ.

The conclusion now follows from a previous result.
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Hölder Condition (Lower Bound)

Corollary

Let f : [0, 1] → R be a continuous function.

(b) Suppose that there are numbers c > 0, δ0 > 0 and 1 ≤ s < 2, such
that, for each t ∈ [0, 1] and 0 < δ ≤ δ0, there exists u such that
|t − u| ≤ δ and

|f (t)− f (u)| ≥ cδ2−s .

Then
s ≤ dimBgraphf .
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Hölder Condition (Lower Bound Cont’d)

(b) By hypothesis, for 0 ≤ t1, t2 ≤ 1,

Rf [t1, t2] ≥ c |t1 − t2|2−s .

Note that δ−1 ≤ m.

By the inequality of the preceding proposition,

Nδ ≥ δ−1mcδ2−s

≥ δ−1δ−1cδ2−s

= cδ−s .

Now one of the equivalent definitions of box-counting dimensions in a
preceding theorem gives

s ≤ dimBgraphf .
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Example: The Weierstrass Function

Fix λ > 1 and 1 < s < 2.

Define f : [0, 1] → R by

f (t) =

∞∑

k=1

λ(s−2)k sin (λk t).

Then, provided λ is large enough,

dimBgraphf = s.

Given 0 < h < λ−1, let N be the integer such that

λ−(N+1) ≤ h < λ−N .

The following hold:
By the Mean-Value Theorem, | sin u − sin v | ≤ |u − v |;
| sin u| ≤ 1.
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Example: The Weierstrass Function (Cont’d)

Applying the first on the first N terms of the sum and the second on
the remaining terms, we obtain

|f (t + h)− f (t)| ≤ ∑N
k=1 λ

(s−2)k | sin (λk(t + h))− sin (λk t)|
+
∑∞

k=N+1 λ
(s−2)k | sin (λk(t + h))− sin (λk t)|

≤ ∑N
k=1 λ

(s−2)kλkh +
∑∞

k=N+1 2λ
(s−2)k .

Summing these geometric series,

|f (t + h)− f (t)| ≤ hλ(s−1)N

1−λ1−s + 2λ(s−2)(N+1)

1−λs−2 ≤ ch2−s ,

where c is independent of h.

A previous corollary now gives that

dimBgraphf ≤ s.
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Example: The Weierstrass Function (Cont’d)

In the same way, but splitting the sum into three parts - the first
N − 1 terms, the N-th term, and the rest - we get that, for
λ−(N+1) ≤ h < λ−N ,

|f (t + h)− f (t)− λ(s−2)N (sinλN(t + h)− sinλN t)|
≤ λ(s−2)N−s+1

1−λ1−s + 2λ(s−2)(N+1)

1−λs−2 .

Suppose λ > 2 is large enough for the right-hand side to be less than
1
20λ

(s−2)N , for all N.

For δ < λ−1, take N such that λ−N ≤ δ < λ−(N−1).

For each t, we may choose h, with λ−(N+1) ≤ h < λ−N < δ, such
that

| sinλN(t + h)− sinλNt| > 1

10
.
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Example: The Weierstrass Function (Cont’d)

We chose:
λ, such that λ(s−2)N−s+1

1−λ1−s + 2λ(s−2)(N+1)

1−λs−2 ≤ 1
20λ

(s−2)N ;

λ−(N+1) ≤ h < λ−N < δ, such that | sinλN(t + h)− sinλN t| > 1
10 .

Therefore, by

|f (t + h)− f (t)− λ(s−2)N (sinλN(t + h)− sinλN t)|
≤ λ(s−2)N−s+1

1−λ1−s + 2λ(s−2)(N+1)

1−λs−2 ,

we get

|f (t + h)− f (t)| ≥ 1
10λ

(s−2)N − 1
20λ

(s−2)N

= 1
20λ

(s−2)N

≥ 1
20λ

s−2δ2−s .

It follows from a preceding corollary that

dimBgraphf ≥ s.
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Illustration: Weierstrass Function I

The Weierstrass function

f (t) =
∞∑

k=0

(
3

2

)−0.9k

sin

((
3

2

)k

t

)
.

Here s = 1.1 and dimBgraphf = 1.1.
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Illustration: Weierstrass Function II

The Weierstrass function

f (t) =
∞∑

k=0

(
3

2

)−0.7k

sin

((
3

2

)k

t

)
.

Here s = 1.3 and dimBgraphf = 1.3.
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Illustration: Weierstrass Function III

The Weierstrass function

f (t) =
∞∑

k=0

(
3

2

)−0.5k

sin

((
3

2

)k

t

)
.

Here s = 1.5 and dimBgraphf = 1.5.
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Illustration: Weierstrass Function IV

The Weierstrass function

f (t) =
∞∑

k=0

(
3

2

)−0.3k

sin

((
3

2

)k

t

)
.

Here s = 1.7 and dimBgraphf = 1.7.
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Self-Affine Sets as Graphs of Functions

We saw that self-affine sets defined by iterated function systems are
often fractals.

By a suitable choice of affine transformations, they can also be graphs
of functions.

Let {Si , . . . ,Sm} be affine transformations represented in matrix
notation with respect to (t, x) coordinates by

Si

[
t

x

]
=

[
1
m

0
ai ci

] [
t

x

]
+

[
i−1
m

bi

]
.

This can be written as

Si(t, x) =

(
t

m
+

i − 1

m
, ai t + cix + bi

)
.
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Self-Affine Sets as Graphs of Functions (Cont’d)

We defined

Si(t, x) =

(
t

m
+

i − 1

m
, ai t + cix + bi

)
.

The Si transform vertical lines to vertical lines.

Indeed, we have for t = t0,

Si(t0, x) =

(
t0 + i − 1

m
, cix + (ai t0 + bi )

)
.

The vertical strip 0 ≤ t ≤ 1 is mapped onto the strip i−1
m

≤ t ≤ i
m
.

We obtain that the transformation involves:
A contraction by ci in the t direction;
A contraction by 1

m
in the x-direction.

We suppose that
1

m
< ci < 1

so that contraction in the t is stronger than in the x direction.
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Self-Affine Sets as Graphs of Functions (Cont’d)

The fixed point of S1 is p1 = (0, b1
1−c1

).

S1(t, x) = (t, x) ⇒
{

t
m

= t

a1t + c1x + b1 = x

}
⇒

{
t = 0

x = b1
1−c1

The fixed point of Sm is pm = (1, am+bm
1−cm

).

Sm(t, x) = (t, x) ⇒
{

t+m−1
m

= t

amt + cmx + bm = x

}

⇒
{

m−1
m

= m−1
m

t

amt + bm = (1− cm)x

}
⇒

{
t = 1

x = am+bm
1−cm

We assume that the matrix entries have been chosen so that

Si(pm) = Si+1(p1), 1 ≤ i ≤ m − 1.

Then the segments [Si(p1),Si (pm)] form a polygonal curve E1.
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Self-Affine Sets as Graphs of Functions (Cont’d)

To avoid trivial cases, we assume that the points

p1 = S1(p1), . . . ,Sm(p1),Sm(pm) = pm

are not all collinear.

The attractor F of the iterated function system {Si , . . . ,Sm} may be
constructed by repeatedly replacing line segments by affine images of
the “generator” E1.

The displayed condition ensures that the segments join up with the
result that F is the graph of some continuous function f : [0, 1] → R.

The imposed conditions do not necessarily imply that the Si are
contractions with respect to Euclidean distance.

It is possible to redefine distance in the (x , t) plane in such a way
that the Si become contractions.

Then the IFS theory guarantees a unique attractor.

George Voutsadakis (LSSU) Fractal Geometry April 2024 82 / 173



Applications and Examples Dimensions of Graphs

Illustration

Stages in the construction of a self-affine curve F .

The affine transformations S1 and S2 map the generating triangle
p1pp2 onto the triangles p1q1p and pq2p2, respectively, and transform
vertical lines to vertical lines.

The rising sequence of polygonal curves E0,E1, . . . are given by

Ek+1 = S1(Ek) ∪ S2(Ek).

They provide increasingly good approximations to F .
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Example: Self-Affine Curves

Let F = graphf be the self-affine curve described above. Then

dimBF = 1 +
log (c1 + · · · + cm)

logm
.

Let Ti be the “linear part” of Si , given by the matrix

[
1
m

0
ai ci

]
.

Let Ii1,...,ik be the interval of the t-axis consisting of those t with
base-m expansion beginning 0.i ′1 · · · i ′k where i ′j = ij − 1.

Then the part of F above Ii1,...,ik is the affine image Si1 ◦ · · · ◦ Sik (F ),
which is a translate of Ti1 ◦ · · · ◦ Tik (F ).

The matrix representing Ti1 ◦ · · · ◦ Tik is seen by induction to be
[

m−k 0
m1−kai1 +m2−kci1ai2 + · · · + ci1ci2 · · · cik−1

aik ci1ci2 · · · cik

]
.

This is a shear transformation, contracting vertical lines by a factor
ci1ci2 · · · cik .
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Example: Self-Affine Curves (Cont’d)

Observe that the bottom left-hand entry is bounded by

|m1−kai1 +m2−kci1ai2 + · · ·+ ci1ci2 · · · cik−1
aik |

≤ |m1−ka +m2−kci1a + · · ·+ ci1 · · · cik−1
a| (a = max |ai |)

≤ ((mc)1−k + (mc)2−k + · · ·+ 1)ci1 · · · cik−1
a (c = min {ci} > 1

m
)

≤ rci1 · · · cik−1
. (r = a

1−(mc)−1 )

Thus the image Ti1 ◦ · · · ◦ Tik (F ) is contained in a rectangle of height
(r + h)ci1 · · · cik where h is the height of F .

On the other hand, if q1, q2, q3 are three non-collinear points chosen
from S1(p1), . . . ,Sm(p1), pm, then Ti1 ◦ · · · ◦ Tik (F ) contains the
points Ti1 ◦ · · · ◦ Tik (qj), j = 1, 2, 3.

The height of the triangle with these vertices is at least ci1 · · · cikd ,
where d is the vertical distance from q2 to the segment [q1, q3].
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Example: Self-Affine Curves (Cont’d)

Thus the range of the function f over Ii1,...,ik satisfies

dci1 · · · cik ≤ Rf [Ii1,...,ik ] ≤ r1ci1 · · · cik , with r1 = r + h.

For fixed k , sum this over the mk intervals Ii1,...,ik of lengths m−k .

We get, using a previous proposition,

mkd
∑

ci1 · · · cik ≤ Nm−k (F ) ≤ 2mk +mk r1
∑

ci1 · · · cik ,

where Nm−k (F ) is the number of mesh squares of side m−k that
intersect F .

For each j , the number cij ranges through the values c1, . . . , cm.

So
∑

ci1 · · · cik = (c1 + · · ·+ cm)
k .

Thus,

dmk(c1 + · · · + cm)
k ≤ Nm−k (F ) ≤ 2mk + r1m

k(c1 + · · ·+ cm)
k .

Taking logarithms and using one of the definitions of box dimension
gives the value stated.
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Example

Self-affine curve defined by the two affine transformations that maps
the triangle p1pp2 onto p1q1p and pq2p2 respectively.

The vertical contraction of both transformations is 0.7.

This gives

dimBgraphf = 1 +
log (0.7 + 0.7)

log 2
= 1.49.
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Example

Self-affine curve defined by the two affine transformations that maps
the triangle p1pp2 onto p1q1p and pq2p2 respectively.

The vertical contraction of both transformations is 0.8.

This gives

dimBgraphf = 1 +
log (0.8 + 0.8)

log 2
= 1.68.
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Subsection 6

Repellers and Iterated Function Systems
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Iterates

Let D be a subset of Rn (often Rn itself).

Let f : D → D be a continuous mapping.

f k denotes the k-th iterate of f , so that

f 0(x) = x , f 1(x) = f (x), f 2(x) = f (f (x)), . . . .

Clearly f k(x) is in D, for all k , if x is a point of D.
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Examples

Typically, x , f (x), f 2(x), . . . are the values of some quantity at times
0, 1, 2, . . ..

Thus the value at time k + 1 is given in terms of the value at time k

by the function f .

For example, f k(x) might represent:

The size after k years of a biological population;
The value of an investment subject to certain interest and tax
conditions.
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Discrete Dynamical Systems and Orbits

An iterative scheme {f k} is called a discrete dynamical system.

We are interested in the behavior of the sequence of iterates, or
orbits, {f k(x)}∞k=1 for various initial points x ∈ D.

Of special interest is the asymptotic behavior (as k → ∞).

Example: Let f (x) = cos x .

Consider any x .

The sequence f k(x) converges to 0.739 . . . as k → ∞.

We can discover this by repeatedly pressing the cosine button on a
calculator.
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Asymptotic Behavior

Sometimes the distribution of iterates appears almost random.

Alternatively, f k(x) may converge to a fixed point w , i.e., a point of
D with f (w) = w .

More generally, f k(x) may converge to an orbit of period-p points

{w , f (w), . . . , f p−1(w)}, where p is the least positive integer with
f p(w) = w , in the sense that |f k(x)− f k(w)| → 0 as k → ∞.

Sometimes, however, f k(x) may appear to move about at random,
but always remaining close to a certain set, which may be a fractal.
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Attractors

We shall call a subset F of D an attractor for f if:

F is a closed set;
F is invariant under f , i.e., such that f (F ) = F ;
The distance from f k(x) to F converges to zero as k tends to infinity,
for all x in an open set V containing F .

The largest such open set V satisfying the last condition above is
called the basin of attraction of F .

It is usual to require that F is minimal in the sense that it has no
proper subset satisfying these conditions.
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Repellers

Consider a function f : D → D.

Denote by f −1 the (perhaps multi-valued) inverse of f .

We shall call a subset F of D a repeller for f if:

F is a closed set;
F is invariant under f ;
The distance from (f −1)k(x) to F converges to zero as k tends to
infinity, for all x in an open set V containing F .

So a repeller is a closed invariant set F from which all nearby points
not in F are iterated away from F .

An attractor or repeller may just be a single point or a period-p orbit.

However, even relatively simple maps f can have fractal attractors.
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A Candidate Attractor Set

Note that f (D) ⊆ D.

So
f k(D) ⊆ f k−1(D) ⊆ · · · ⊆ f (D) ⊆ D.

It follows that
k⋂

i=1

f i(D) = f k(D).

Thus, the set

F =

∞⋂

k=1

f k(D)

is invariant under f .

Now f k(x) ∈ ⋂k
i=1 f

i (D), for all x ∈ D.

So the iterates f k(x) approach F as k → ∞.

Thus, F is often an attractor of f .
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Chaotic Behavior

Very often, if f has a fractal attractor or repeller F , then f exhibits
“chaotic” behavior on F .

f would be regarded as chaotic on F if the following hold:

(i) The orbit {f k(x)} is dense in F , for some x ∈ F .
(ii) The periodic points of f in F (points for which f p(x) = x , for some

positive integer p) are dense in F .
(iii) f has sensitive dependence on initial conditions.

That is, there is a number δ > 0, such that, for every x in F , there are
points y in F arbitrarily close to x , such that

|f k(x)− f k(y)| ≥ δ, for some k .

Thus, points that are initially close do not remain close under iterates
of f .
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Chaotic Behavior (Cont’d)

Implications of the conditions:

Condition (i) implies that F cannot be decomposed into smaller closed
invariant sets;
Condition (ii) suggests a skeleton of regularity in the structure of F ;
Condition (iii) reflects the unpredictability of iterates of points on F .

Condition (iii) implies that accurate long-term numerical
approximation to orbits of f is impossible, since a tiny numerical error
is magnified under iteration.
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Example: Repellers as Attractors

The mapping f : R → R given by

f (x) =
3

2
(1− |2x − 1|)

is called the tent map because of the
form of its graph.

f maps R in a two-to-one manner onto
(−∞, 32).
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Example: Repellers as Attractors (Cont’d)

Define an iterated function system S1,S2 : [0, 1] → [0, 1] by the
contractions

S1(x) = 1
3x ;

S2(x) = 1− 1
3x .

Then, for 0 ≤ x ≤ 1,

f (S1(x)) = 3
2(1− |21

3x − 1|)
= 3

2(1− (1− 2
3x))

= x ;

f (S2(x)) = 3
2(1|2(1 − 1

3x)− 1|)
= 3

2(1− |1− 3
2x |)

= 3
2(1− 1 + 2

3x)

= x .

Thus S1 and S2 are the two branches of f −1.
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Example: Repellers as Attractors (Cont’d)

We started with

f (x) =
3

2
(1− |2x − 1|).

We defined the two branches of f −1,

S1(x) =
1

3
x ; S2(x) = 1− 1

3
x .

A previous theorem implies that there is a unique non-empty compact
attractor F ⊆ [0, 1] satisfying F = S1(F ) ∪ S2(F ).

Write S(E ) = S1(E ) ∪ S2(E ), for any set E .

Then F is given by

F =

∞⋂

k=0

Sk([0, 1]).

Clearly the attractor F is the middle third Cantor set.

It has Hausdorff and box dimensions log 2
log 3 .

It follows from F = S1(F ) ∪ S2(F ) that f (F ) = F .
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Example: Repellers as Attractors (Cont’d)

Claim: F is a repeller.

Suppose x < 0.

f (x) =
3

2
(1− |2x − 1|) = 3

2
(1− (−2x + 1)) = 3x .

So f k(x) = 3kx → −∞ as k → ∞.

Suppose x > 1.

f (x) =
3

2
(1− |2x − 1|) = 3

2
(1− (2x − 1)) = 3(1− x) < 0.

Again f k(x) → −∞.

If x ∈ [0, 1]\F , then for some k , we have

x 6∈ Sk [0, 1] =
⋃

{Si1 ◦ · · · ◦ Sik [0, 1] : ij = 1, 2}.

So f k(x) 6∈ [0, 1]. Again f k(x) → −∞ as k → ∞.

All points outside F are iterated to −∞. So F is a repeller.
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The Chaotic Nature of f

Denote the points of F by xi1,i2,... with ij = 1, 2.

If i1 = i ′1, . . . , ik = i ′k ,

|xi1,i2,... − xi ′1,i
′

2,...
| ≤ 3−k .

Note that xi1,i2,... = Si1(xi2,i3,...).

It follows that
f (xi1,i2,...) = xi2,i3,....

Suppose that (i1, i2, . . .) is an infinite sequence with every finite
sequence of 1s and 2s appearing as a consecutive block of terms.

Example:

(1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, . . .)

where the spacing is just to indicate the form of the sequence.
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The Chaotic Nature of f (Cont’d)

For each point xi ′1,i ′2,... in F and each integer q, we may find k , such
that (i ′1, i

′
2, . . . , i

′
q) = (ik+1, . . . , ik+q). Then

|xik+1,ik+2,... − xi ′1,i
′

2,...
| < 3−q.

So the iterates
f k(xi1,i2,...) = xik+1,ik+2,...

come arbitrarily close to each point of F for suitable large k .

So f has dense orbits in F .

Similarly, xi1,...,ik ,i1,...,ik ,i1,... is a periodic point of period k .

So the periodic points of f are dense in F .

George Voutsadakis (LSSU) Fractal Geometry April 2024 104 / 173



Applications and Examples Repellers and Iterated Function Systems

The Chaotic Nature of f (Cont’d)

The iterates have sensitive dependence on initial conditions.

In fact, on the one hand,

f k(xi1,...,ik ,1,...) ∈
[
0,

1

3

]
.

And, on the other,

f k(xi1,...,ik ,2,...) ∈
[
2

3
, 1

]
.

So Conditions (i)-(iii) specifying chaotic behavior of f on F are
satisfied.

We conclude that F is a chaotic repeller for f .

The study of f by its effect on points of F represented by sequences
(i1, i2, . . .) is known as symbolic dynamics.

George Voutsadakis (LSSU) Fractal Geometry April 2024 105 / 173



Applications and Examples Repellers and Iterated Function Systems

IFS and Dynamical Systems

Suppose S1, . . . ,Sm is a set of bijective contractions on a domain D.

Suppose they have an attractor F , with S1(F ), . . . ,Sm(F ) disjoint.

Then F is a repeller for any mapping f , such that, for x is near Si(F ),

f (x) = S−1
i (x).

By examining the effect of f on the point xi1,i2,..., it may be shown
that f acts chaotically on F .

For many dynamical systems f , it is possible to decompose the
domain D into parts, such that the branches of f −1 on each part look
rather like an iterated function system.

Such a decomposition of the domain is called Markov partition.
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Subsection 7

General Theory of Julia Sets
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Complex Polynomials and Iterates

Let f : C → C be a polynomial of degree n ≥ 2 with complex
coefficients,

f (z) = anz
n + an−1z

n−1 + · · · + a0.

With minor modifications, the theory remains true if f is a rational
function f (z) = p(z)

q(z) , where p, q are polynomials, on the extended

complex plane C ∪ {∞}.
Much of the theory holds if f is any meromorphic function, that is, a
function that is analytic on C except at isolated poles.

We write f k for the k-fold composition f ◦ · · · ◦ f of the function f .

So f k(w) is the k-th iterate f (f (· · · (f (w)) · · · )) of w .
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Julia Sets and Fatou Sets

Julia sets are defined in terms of the behavior of f k(z) for large k .

The filled-in Julia set of the polynomial f is defined by

K (f ) = {z ∈ C : f k(z) 6→ ∞}.

The Julia set of f is the boundary of the filled-in Julia set,

J(f ) = ∂K (f ).

We write K for K (f ) and J for J(f ) when the function is clear.

We have z ∈ J(f ) if, in every neighborhood of z , there are points w
and v , such that f k(w) → ∞ and f k(v) 6→ ∞.

The Fatou set or stable set F (f ) is the complement of the Julia set.
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Example

Let f (z) = z2. Then f k(z) = z2k .

We have:

If |z | < 1, f k (z) → 0 as k → ∞;
If |z | > 1, f k (z) → ∞;
If |z | = 1, f k (z) remains on the circle
|z | = 1, for all k .

Thus, the filled-in Julia set K is the unit disc |z | ≤ 1.

The Julia set J is its boundary, the unit circle, |z | = 1.

The Julia set J is the boundary between the sets of points which
iterate to 0 and ∞.

Of course, in this special case, J is not a fractal.
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Example

Suppose that we modify the preceding example slightly, taking

f (z) = z2 + c , c a small complex number.

It can be shown that:

If z is small, f k(z) → w , where w is the
fixed point of f close to 0;
If z is large, f k(z) → ∞.

Again, the Julia set is the boundary between these two types of
behavior.

However, it turns out that now J is a fractal curve.
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Fixed-Points and Periodic Points

If f (w) = w , we call w a fixed point of f .

If f p(w) = w , for some p ≥ 1, we call w a periodic point of f .

The least such p is called the period of w .

We call w , f (w), . . . , f p(w) a period p orbit.
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Attractive and Repelling Points

Let w be a periodic point of period p, with

(f p)′(w) = λ,

where the prime denotes complex differentiation.

The point w is called attractive if 0 ≤ |λ| < 1, in which case nearby
points are attracted to the orbit under iteration by f ;
The point w is called repelling if |λ| > 1, in which case points close to
the orbit move away.

The study of sequences f k(z) for various initial z is known as
complex dynamics.

The position of z relative to the Julia set J(f ) is a key to this
behavior.
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Complex Polynomials and Unboundedness

Lemma

Given a polynomial

f (z) = anz
n + an−1z

n−1 + · · ·+ a0, an 6= 0,

there exists a number r , such that if |z | ≥ r , then |f (z)| ≥ 2|z |. In
particular, if |f m(z)| ≥ r , for some m ≥ 0, then f k(z) → ∞ as k → ∞.
Thus, either f k(z) → ∞ or {f k(z) : k = 0, 1, 2, . . .} is a bounded set.

We may choose r sufficiently large to ensure that if |z | ≥ r , then

1

2
|an||z |n ≥ 2|z |

and

(|an−1||z |n−1 + · · ·+ |a1||z |+ |a0|) ≤
1

2
|an||z |n.
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Complex Polynomials and Unboundedness (Cont’d)

Then, if |z | ≥ r ,

|f (z)| ≥ |an||z |n − (|an−1||z |n−1 + · · ·+ |a1||z |+ |a0|)
≥ 1

2 |an||z |n

≥ 2|z |.

Furthermore, suppose |f m(z)| ≥ r , for some m.

Applying this inductively, we get

|f m+k(z)| ≥ 2m|f k(z)| ≥ r .

So f k(z) → ∞.
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Structure of Julia Sets

Proposition

Let f (z) be a polynomial. Then the filled in Julia set K (f ) and the Julia
set J(f ) are non-empty and compact, with J(f ) ⊆ K (f ). Furthermore,
J(f ) has an empty interior.

Consider r given by the preceding lemma.

By the lemma, K is contained in the disc B(0, r).

So K is bounded. Hence, its boundary J is bounded.

If z 6∈ K , then f k(z) → ∞. So |f m(z)| > r , for some integer m.

By continuity of f m, |f m(w)| > r , for all w in a sufficiently small disc
centered at z . By the preceding lemma, for such w , f k(w) → ∞.

Thus, w 6∈ K . Hence, the complement of K is open. So K is closed.

As the boundary of K , the Julia set J is closed and contained in K .

Thus K and J are closed and bounded. So they are compact.

George Voutsadakis (LSSU) Fractal Geometry April 2024 116 / 173



Applications and Examples General Theory of Julia Sets

Structure of Julia Sets (Cont’d)

The equation f (z) = z has at least one solution z0.

So f k(z0) = z0, for all k .

This shows that z0 ∈ K and K is non-empty.

Let z1 ∈ C\K .

Then, for some 0 ≤ λ ≤ 1, the point λz0 + (1− λ)z1, lying on the
line joining z0 and z1, will be on the boundary of K .

Taking λ as the infimum value for which λz0 + (1− λ)z1 ∈ K will do.

Thus, J = ∂K is non-empty.

Finally, suppose U is a non-empty open subset of J ⊆ K .

Then U lies in the interior of K .

Therefore it has empty intersection with its boundary J.

This contradicts ∅ 6= U ⊆ J.
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Invariance of J Under f and f −1

Proposition

The Julia set J = J(f ) of f is forward and backward invariant under f ,
i.e., J = f (J) = f −1(J).

Let z ∈ J. Then f k(z) 6→ ∞.

There exist wn → z with f k(wn) → ∞ as k → ∞, for all n.

Thus, we have:

f k(f (z)) 6→ ∞;
f k(f (wn)) → ∞.

Moreover, by continuity of f , f (wn) can be chosen as close as we like
to f (z). Thus, f (z) ∈ J. So f (J) ⊆ J.

This also implies
J ⊆ f −1(f (J)) ⊆ f −1(J).
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Invariance of J Under f and f −1 (Cont’d)

Similarly, let z and wn be as above and f (z0) = z .

Using the mapping properties of polynomials on C, we may find
vn → z0 with f (vn) = wn.

Hence, as k → ∞:

f k(z0) = f k−1(z) 6→ ∞;
f k(vn) = f k−1(wn) → ∞.

So z0 ∈ J. Thus, f −1(J) ⊆ J.

This implies
J = f (f −1(J)) ⊆ f (J).
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Julia Sets of Iterates

Proposition

J(f p) = J(f ) for every positive integer p.

By a previous lemma, either f k(z) → ∞ or {f k(z) : k = 0, 1, 2, . . .} is
a bounded set.

This implies that

f k(z) → ∞ if and only if (f p)k(z) = f kp(z) → ∞.

Thus f and f p have identical filled-in Julia sets.

Consequently, they also have identical Julia sets.
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Normal Families of Functions

Let U be an open subset of C.

Recall that a complex function is analytic on U if it is differentiable
on U in the complex sense.

Let gk : U → C, k = 1, 2, . . . be a family of complex analytic
functions.

The family {gk} is said to be normal on U if every sequence of
functions selected from {gk} has a subsequence which converges
uniformly on every compact subset of U, either to a bounded analytic
function or to ∞.

This means that the subsequence converges either to a finite analytic
function or to ∞ on each connected component of U.

Note that, in the former case, the derivatives of the subsequence
must converge to the derivative of the limit function.
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Families of Functions Normal at a Point

Let gk : U → C, k = 1, 2, . . . be a family of complex analytic
functions.

The family {gk} is normal at the point w of U if, there is some open
subset V of U containing w , such that {gk} is a normal family on V .

This is equivalent to there being a neighborhood V of w on which
every sequence {gk} has a subsequence convergent to a bounded
analytic function or to ∞.
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Montel’s Theorem

The key result which we will use in our development of Julia sets is
the remarkable theorem of Montel, which asserts that non-normal
families of functions take virtually all complex values.

Montel’s Theorem

Let {gk} be a family of complex analytic functions on an open domain U.
If {gk} is not a normal family, then for all w ∈ C, with at most one
exception, there exists z ∈ U and k , such that

gk(z) = w .
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Characterization of Julia Sets

Proposition

J(f ) = {z ∈ C : the family {f k} is not normal at z}.

Suppose z ∈ J. Then, in every neighborhood V of z , there are points
w , such that f k(w) → ∞, whilst f k(z) remains bounded.

Thus, no subsequence of {f k} is uniformly convergent on V .

So {f k} is not normal at z .

Suppose that z 6∈ J.
Assume, first, z ∈ intK . Let V be open, with z ∈ V ⊆ intK .
Then f k(w) ∈ K , for all w ∈ V and all k .
By Montel’s Theorem {f k} is normal at w .
Suppose, next, z ∈ C\K .
Then |f k(z)| > r for some k , where r is given by a previous lemma.
So |f k(w)| > r , for all w in some neighborhood V of z .
By the same lemma, f k(w) → ∞ uniformly on V .
So, again, {f k} is normal at w .
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Mixing of f Near J(f )

Lemma

Let f be a polynomial, let w ∈ J(f ) and let U be any neighborhood of w .
Then, for each j = 1, 2, . . ., the set W ≡ ⋃∞

k=j f
k(U) is the whole of C,

except possibly for a single point. Any such exceptional point is not in
J(f ), and is independent of w and U.

By the preceding proposition, the family {f k}∞k=j is not normal at w .

So the first part follows immediately by Montel’s Theorem.

Suppose v 6∈ W . Assume f (z) = v .

Since f (W ) ⊆ W , it follows that z 6∈ W .

Now C\W consists of at most one point. So z = v .

But f is a polynomial of degree n.

Moreover, the only solution of f (z)− v = 0 is v .
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Mixing of f Near J(f ) (Cont’d)

It follows that
f (z)− v = c(z − v)n,

for some constant c .

If z is sufficiently close to v , then

f k(z)− v → 0 as k → ∞.

Moreover, convergence is uniform on, say,

{z : |z − v | < (2c)−1/(n−1)}.

Thus {f k} is normal at v .

So the exceptional point v 6∈ J(f ).

Clearly v only depends on the polynomial f .

In fact, if W omits a point v of C, then J(f ) is the circle with center
v and radius c−1/(n−1).
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Towards Generating Pictures of Julia Sets

Corollary

(a) The following holds for all z ∈ C with at most one exception.

If U is an open set intersecting J(f ) then f −k(z) intersects U for
infinitely many values of k .

(b) If z ∈ J(f ), then J(f ) is the closure of
⋃∞

k=1 f
−k(z).

(a) Unless z is the exceptional point of the lemma, z ∈ f k(U).

Thus, f −k(z) intersects U, for infinitely many k .
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Towards Generating Pictures of Julia Sets (Cont’d)

(b) If z ∈ J(f ), then f −k(z) ⊆ J(f ), by a previous proposition.

It follows that ∞⋃

k=1

f −k(z) ⊆ J(f ).

Hence, the closure of the union is contained in the closed set J(f ).

Conversely, let U be an open set containing z ∈ J(f ).

Then f −k(z) intersects U for some k , by Part (a).

(By the preceding lemma, z cannot be the exceptional point.)

So z is in the closure of
⋃∞

k=1 f
−k(z).
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J(f ) is Perfect

Proposition

J(f ) is a perfect set (i.e., closed and with no isolated points) and is
therefore uncountable.

Let v ∈ J(f ) and let U be a neighborhood of v .

We must show that U contains other points of J(f ).

We consider three cases.

(i) Suppose, first, v is not a fixed or periodic point of f .
By the preceding corollary and a previous proposition, U contains a
point of f −k(v) ⊆ J(f ), for some k ≥ 1.
This point must be different from v .

George Voutsadakis (LSSU) Fractal Geometry April 2024 129 / 173



Applications and Examples General Theory of Julia Sets

J(f ) is Perfect (Cont’d)

(ii) Suppose, next, f (v) = v .
Suppose f (z) = v has no solution other than v .
Just as in the proof of the preceding lemma, v 6∈ J(f ).
Thus, there exists w 6= v , with f (w) = v .
By the preceding corollary, U contains a point u of
f −k(w) = f −k−1(v), for some k ≥ 1.
Any such u is in J(f ), by backward invariance.
Moreover, it is distinct from v , since f k (v) = v 6= w = f k(u).

(iii) Assume, finally, f p(v) = v , for some p > 1.
By a previous proposition, J(f ) = J(f p).
By applying Part (ii) to f p , we see that U contains points of
J(f p) = J(f ) other than v .

Thus J(f ) has no isolated points.

Since it is closed, it is perfect.

Finally, every perfect set is uncountable.
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J(f ) as the Closure of Repelling Periodic Points

Theorem

If f is a polynomial, J(f ) is the closure of the repelling periodic points of f .

Let w be a repelling periodic point of f of period p.

So w is a repelling fixed point of g = f p.

Suppose that {gk} is normal at w .

Then w has an open neighborhood V on which a subsequence {gki }
converges to a finite analytic function g0 (it cannot converge to ∞
since gk(w) = w for all k).

By a standard result from complex analysis, the derivatives also
converge,

(gki )′(z) → g ′
0(z), z ∈ V .
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J(f ) as the Closure of Repelling Periodic Points (Cont’d)

We have, for all z ∈ V ,

(gki )′(z) → g ′
0(z), z ∈ V .

By the chain rule, |(gki )′(w)| = |(g ′(w))ki |.
But w is a repelling fixed point and |g ′(w)| > 1.

So we get |(gki )′(w)| = |(g ′(w))ki | → ∞.

This contradicts the finiteness of g ′
0(w).

So {gk} cannot be normal at w .

By a previous proposition, w ∈ J(g) = J(f p) = J(f ).

Since J(f ) is closed, it follows that the closure of the repelling
periodic points is in J(f ).
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J(f ) as the Closure of Repelling Periodic Points (Cont’d)

Define

E = {w ∈ J(f ) : exists v 6= w with f (v) = w and f ′(v) 6= 0}.

Suppose that w ∈ E .

Then there is an open neighborhood V of w on which we may find a
local analytic inverse f −1 : V → C\V so that f −1(w) = v 6= w (just
choose values of f −1(z) in a continuous manner).

Define a family of analytic functions {hk} on V by

hk(z) =
f k(z)− z

f −1(z)− z
.

Let U be any open neighborhood of w , with U ⊆ V .

Since w ∈ J(f ), the family {f k} is not normal on U.

Thus, by the definition, the family {hk} is not normal on U.
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J(f ) as the Closure of Repelling Periodic Points (Cont’d)

By Montel’s theorem, hk(z) must take either the value 0 or 1 for
some k and z ∈ U.

In the first case f k(z) = z , for some z ∈ U .
In the second f k(z) = f −1(z).
So f k+1(z) = z , for some z ∈ U .

Thus, U contains a periodic point of f .

So w is in the closure of the repelling periodic points, for all w ∈ E .

But f is a polynomial.

So E contains all of J(f ) except for a finite number of points.

By the preceding proposition, J(f ) contains no isolated points.

So J(f ) ⊆ E is a subset of the closure of the repelling periodic points.
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Basin of Attraction

If w is an attractive fixed point of f , we write

A(w) = {z ∈ C : f k(z) → w as k → ∞}

for the basin of attraction of w .

The basin of attraction of infinity, A(∞), is defined in the same
way.

Since w is attractive, there is an open set V containing w in A(w).

If w = ∞, we may take {z : |z | > r}, for sufficiently large r .

This implies that A(w) is open.

Suppose z ∈ A(w).

Then f k(z) ∈ V , for some k , where V ⊆ A(w) is open.

So z ∈ f −k(V ), which is open.
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J(f ) as the Boundary of a Basin of Attraction

Lemma

Let w be an attractive fixed point of f . Then ∂A(w) = J(f ). The same is
true if w = ∞.

If z ∈ J(f ), then f k(z) ∈ J(f ) for all k .

So it cannot converge to an attractive fixed point.

Thus, z 6∈ A(w).

Suppose U is any neighborhood of z .

The set f k(U) contains points of A(w), for some k , by a previous
lemma.

So there are points arbitrarily close to z that iterate to w .

Thus, z ∈ A(w).

So z ∈ ∂A(w).
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J(f ) as the Boundary of a Basin of Attraction (Converse)

Suppose z ∈ ∂A(w) but z 6∈ J(f ).

Then z has a connected open neighborhood V on which {f k} has a
subsequence convergent either to an analytic function or to ∞.

The subsequence converges to w on V ∩ A(w), which is open and
nonempty.

But an analytic function is constant on a connected set if it is
constant on any open subset.

Therefore this subsequence converges on V .

All points of V are mapped into A(w) by iterates of f .

So V ⊆ A(w). This contradicts z ∈ ∂A(w).

Example: Recall the case f (z) = z2.

The Julia set is the unit circle.

It is the boundary of both A(0) and A(∞).
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Summary and Remarks on Chaotic Behavior

Summary

The Julia set J(f ) of the polynomial f is the boundary of the set of points
z ∈ C, such that f k(z) → ∞. It is an uncountable non-empty compact set
containing no isolated points, and is invariant under f and f −1, and
J(f ) = J(f p), for each positive integer p. If z ∈ J(f ), then J(f ) is the
closure of

⋃∞
k=1 f

−k(z). The Julia set is the boundary of the basin of
attraction of each attractive fixed point of f , including ∞, and is the
closure of the repelling periodic points of f .

This collects together the results of this section.

It may be shown that “f acts chaotically on J”.
Periodic points of f are dense in J;
J contains points z with iterates f k(z) that are dense in J.
f has “sensitive dependence on initial conditions” on J.
Thus |f k (z)− f k(w)| will be large for certain k , regardless of how close
z ,w ∈ J are, making accurate computation of iterates impossible.
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Subsection 8

Quadratic Functions: The Mandelbrot Set
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Quadratic Polynomials

We study Julia sets of polynomials of the form fc(z) = z2 + c .

This is not as restrictive as it first appears.

Let h(z) = αz + β, α 6= 0.

Then f −1(z) = z−β
α

So we get

h−1(fc(h(z))) = h−1(fc(αz + β))

= h−1(α2z2 + 2αβz + β2 + c)

= α2z2+2αβz+β2+c−β
α .

By choosing appropriate values of α, β and c we can make this
expression into any quadratic function f that we please.

Then h−1 ◦ fc ◦ h = f .

So h−1 ◦ f kc ◦ h = f k , for all k .
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Quadratic Polynomials (Cont’d)

We found that, for any quadratic function f ,

h−1 ◦ f kc ◦ h = f k , for all k .

This means that the sequence of iterates {f k(z)} of a point z under
f is just the image under h−1 of the sequence of iterates {f kc (h(z))}
of the point h(z) under fc .

The mapping h transforms the dynamical picture of f to that of fc .

In particular, f k(z) → ∞ if and only if f kc (z) → ∞.

Thus, the Julia set of f is the image under h−1 of the Julia set of fc .
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Conjugacy and Branches of f −1
c

The transformation h is called a conjugacy between f and fc .

Any quadratic function is conjugate to fc for some c .

So, by studying the Julia sets of fc for c ∈ C, we effectively study the
Julia sets of all quadratic polynomials.

Since h is a similarity transformation, the Julia set of any quadratic
polynomial is geometrically similar to that of fc , for some c ∈ C.

When z 6= c , f −1
c (z) takes two distinct values

±(z − c)1/2.

These are called the two branches of f −1
c (z).

Thus, if U is a small open set with c 6∈ U, then:

The pre-image f −1
c (U) has two parts,;

Both parts are mapped bijectively and smoothly by fc onto U .
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The Mandelbrot Set

We define the Mandelbrot set M to be the set of parameters c for
which the Julia set of fc is connected

M = {c ∈ C : J(fc) is connected}.

At first, M appears to relate to one rather specific property of J(fc ).

As we will see, M contains an enormous amount of information about
the structure of Julia sets.

George Voutsadakis (LSSU) Fractal Geometry April 2024 143 / 173



Applications and Examples Quadratic Functions: The Mandelbrot Set

An Equivalent Definition

The definition of M is awkward for computational purposes.

We show that c ∈ M if and only if f kc (0) 6→ ∞.

This equivalent definition is much more useful for:

Determining whether a parameter c lies in M ;
Investigating the extraordinarily intricate form of M .
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Loops, Interior and Exterior

A curve in the complex plane is:

Smooth if it is differentiable;
Simple if it is non-self-intersecting.

A loop is a smooth, closed, simple curve in the complex plane.

We refer to the parts of C inside and outside such a curve as the
interior and exterior of the loop.

A figure of eight is a smooth closed curve with a single point of
self-intersection.
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Inverse Action as related to Loops

Lemma

Let C be a loop in the complex plane.

(a) If c is inside C then f −1
c (C ) is a loop, with the inverse image of the

interior of C as the interior of f −1
c (C ).

(b) If c lies on C then f −1
c (C ) is a figure of eight with self-intersection at

0, such that the inverse image of the interior of C is the interior of
the two loops.

(c) If c is outside C , then f −1
c (C ) comprises two disjoint loops, with the

inverse image of the interior of C the interior of the two loops.

Note that f −1
c (z) = ±(z − c)1/2 and (f −1

c )′(z) = ±1
2(z − c)−1/2.

The latter is finite and non-zero, if z 6= c .

Hence, if we select one of the two branches of f −1
c , the set f −1

c (C ) is
locally a smooth curve, provided c 6∈ C .
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Inverse Action as related to Loops (Part (a))

(a) Suppose c is inside C .

Take an initial point w on C .

Choose one of the two values for f −1
c (w).

Allow f −1
c (z) to vary continuously as z moves around C .

The point f −1
c (z) traces out a smooth curve.

When z returns to w , however, f −1
c (w) takes its second value.

As z traverses C again, f −1
c (z) continues on its smooth path.

The path closes as z returns to w the second time.

Now c 6∈ C .

So 0 6∈ f −1
c (C ).

It follows that f ′c (z) 6= 0 on f −1
c (C ).

Thus, fc is locally smooth and bijective near points on f −1
c (C ).
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Inverse Action as related to Loops (Part (a) Cont’d)

fc is locally smooth and bijective near points on f −1
c (C ).

fc(z) cannot be a self-intersection point of C .

So z ∈ f −1
c (C ) cannot be a point of self-intersection of f −1

c (C ).

Thus, f −1(C ) is a loop.

But fc is a continuous function that maps the loop f −1
c (C ) and no

other points onto the loop C .

So the polynomial fc must map the interior and exterior of f −1
c (C )

into the interior and exterior of C , respectively.

Hence, f −1
c maps the interior of C to the interior of f −1

c (C ).
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Inverse Action as related to Loops (Parts (b) and (c))

(b) This is proved in a similar way to Part (a).

Suppose C0 is a smooth piece of curve through c .

Then f −1
c (C0) consists of two smooth pieces of curve through 0.

These pieces cross at right angles.

So they provide the self-intersection of the figure of eight.

(c) This is similar to Part (a).

f −1
c (z) can only pick up one of the two values, as z moves around C .

So we get two loops.
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Fundamental Theorem of the Mandelbrot Set

Theorem

M = {c ∈ C : {f kc (0)}k≥1 bounded}
= {c ∈ C : f kc (0) 6→ ∞ as k → ∞}.

We provide a sketch of the proof based on the lemma.

(a) We show that if {f kc (0)} is bounded then J(fc ) is connected.

Let C be a large circle in C such that:

All the points {f kc (0)} lie inside C ;
f −1
c (C ) is interior to C ;
Points outside C iterate to ∞ under f kc .

Now c = fc(0) is inside C .

Thus, Part (a) of the lemma gives that f −1
c (C ) is a loop contained in

the interior of C .
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Fundamental Theorem of the Mandelbrot Set (Cont’d)

Also, fc(c) = f 2c (0) is inside C .

Moreover, f −1
c maps the exterior of C onto the exterior of f −1

c (C ).

So c is inside f −1
c (C ).

By Part (a) of the lemma, f −2
c (C ) is a loop contained in the interior

of f −1
c (C ).

Proceeding in this way, {f −k
c (C )} consists of a sequence of loops,

each containing the next in its interior.
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Fundamental Theorem of the Mandelbrot Set (Cont’d)

Let K denote the closed set of points that are on or inside the loops
f −k
c (C ), for all k .

If z ∈ C\K , some iterate f kc (z) lies outside C .

So f kc (z) → ∞.

Thus,
A(∞) = {z : f kc (z) → ∞ as k → ∞} = C\K .

So K is the filled in Julia set of fc .

By a previous lemma, J(fc ) is the boundary of C\K .

This is, of course, the same as the boundary of K .

But K is the intersection of a decreasing sequence of closed simply
connected sets (i.e., connected with a connected complement).

So, by a simple topological argument, K is simply connected.

Therefore, K has a connected boundary.

Thus, J(fc) is connected.
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Fundamental Theorem of the Mandelbrot Set (Part (b))

(b) We now show that J(fc) is not connected if {f kc (0)} is unbounded.

Let C be a large circle such that:

f −1
c (C ) is inside C ;
All points outside C iterate to ∞;
For some p, the point f p−1

c (c) = f pc (0) ∈ C with f kc (0) inside or
outside C according as to whether k is less than or greater than p.

Just as in the first part of the proof, we construct a series of loops
{f −k

c (C )}, each containing the next in its interior.

But the argument breaks down when we get to the loop f
1−p
c (C ).

We have c ∈ f
1−p
c (C ) and Part (a) of the lemma does not apply.

By Part (b), we get that:

E ≡ f −p(C ) is a figure of eight inside the loop f 1−p
c (C );

fc maps the interior of each half of E onto the interior of f 1−p
c (C ).
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Fundamental Theorem of the Mandelbrot Set (Cont’d)

The Julia set J(fc) must lie in the interior of the loops of E , since
other points iterate to infinity. But J(fc ) is invariant under f

−1
c .

So parts of it must be contained in each of the loops of E .

Thus, this figure of eight E disconnects J(fc ).

In fact, by applying Part (c) of the previous lemma in the same way,
we can see that J(fc) is totally disconnected.
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Comments

The reason for considering iterates of the origin in the theorem is that
the origin is the critical point of fc for each c , i.e., the point for which

f ′c (z) = 0.

The critical points are the points where fc fails to be a local bijection.

This is the property that was crucial in distinguishing the two cases in
the proof of the theorem.
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Pictures of the Mandelbrot Set

The equivalent definition of M provided by the theorem is the basis of
computer pictures of the Mandelbrot set.

Choose numbers r > 2 and k0 of the order of 100, say.

For each c compute successive terms of the sequence {f kc (0)} until
one of the following two cases occurs:

|f kc (0)| ≥ r .
In this case c is deemed to be outside M ;
k = k0.
In this case we take c ∈ M .

Repeating this process for values of c across a region enables a
picture of M to be drawn.

Often colors are assigned to the complement of M according to the
first integer k such that |f kc (0)| ≥ r .
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Properties of the Mandelbrot Set

The Mandelbrot set has a highly complicated form.

It has a main cardioid to which a series of prominent circular “buds”
are attached.
Each of these buds is surrounded by further buds, and so on.
In addition, fine, branched “hairs” grow outwards from the buds.
These hairs carry miniature copies of the entire Mandelbrot set along
their length.

The Mandelbrot set is connected.

Its boundary has Hausdorff dimension 2, a reflection on its intricacy.
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Subsection 9

Julia Sets of Quadratic Functions
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Dimension of the Julia Set

Theorem

Suppose |c | > 1
4 (5 + 2

√
6) = 2.475 . . .. Then J(fc) is totally disconnected,

and is the attractor of the contractions given by the two branches of

f −1
c (z) = ±(z − c)1/2, for z near J.

When |c | is large,

dimBJ(fc ) = dimHJ(fc) ≃
2 log 2

log 4|c | .

Let C be the circle |z | = |c | and D its interior |z | < |c |.
Then

f −1
c (C ) = {(ce iθ − c)1/2 : 0 ≤ θ ≤ 4π}.

This is a figure of eight with self-intersection point at 0.

Its loops are on either side of a straight line through the origin.
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Dimension of the Julia Set (Cont’d)

By hypothesis, |c | > 2. Assume |z | > |c |. Then we have

|fc(z)| ≥ |z2| − |c | ≥ |c |2 − |c | > |c |.

Therefore, f −1
c (C ) ⊆ D.

The interior of each of the loops of f −1
c (C ) is mapped by fc in a

bijective manner onto D.
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Dimension of the Julia Set (Cont’d)

Define S1,S2 : D → D as the branches of f −1
c (z) inside each loop.

Then S1(D) and S2(D) are the interiors of the two loops.

Let V be the disc
V = {z : |z | < |2c |1/2}.

We have chosen the radius of V so that V just contains f −1
c (C ).

So S1(D),S2(D) ⊆ V ⊆ D.

Hence S1(V ),S2(V ) ⊆ V , with S1(V ) and S2(V ) disjoint.
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Dimension of the Julia Set (Cont’d)

Now we have, for i = 1, 2,

|Si(z1)− Si(z2)| = |(z1 − c)1/2 − (z2 − c)1/2|
= |z1−z2|

|(z1−c)1/2+(z2−c)1/2| .

Hence, if z1, z2 ∈ V , taking least and greatest values,

1

2
(|c |+ |2c |1/2)−1/2 ≤ |Si(z1)− Si(z2)|

|z1 − z2|
≤ 1

2
(|c | − |2c |1/2)−1/2.

The upper bound is less than 1, if |c | > 1
4(5 + 2

√
6).

In this case S1 and S2 are contractions on the disc V .

By a previous theorem, there is a unique non-empty compact
attractor F ⊆ V satisfying S1(F ) ∪ S2(F ) = F .

S1(V ) and S2(V ) are disjoint. So S1(F ) and S2(F ) are disjoint.

Thus, F is totally disconnected.
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Dimension of the Julia Set (Cont’d)

F is none other than the Julia set J = J(fc ).

To see this, note that V contains at least one point z of J (for
example, a repelling fixed point of fc).

Taking into account f −k
c (V ) ⊆ V , we have

J = closure

( ∞⋃

k=1

f −k
c (z)

)
⊆ V .

Using previous results, J is a non-empty compact subset of V
satisfying J = f −1

c (J) or, equivalently, J = S1(J) ∪ S2(J).

Thus J = F , the unique non-empty compact set satisfying

S1(F ) ∪ S2(F ) = F .
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Dimension of the Julia Set (Cont’d)

Finally, we estimate the dimension of J(fc ) = F .

By previous propositions, lower and upper bounds for dimHJ(fc) are
provided by the solutions of

2

(
1

2
(|c | ± |2c |1/2)−1/2

)s

= 1.

That is, by

s =
2 log 2

log 4
(|c | ± |2c |1/2).

This gives the stated asymptotic estimate.
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The Case of Small c

We next turn to the case where c is small.

We know that, if c = 0, then J(fc) is the unit circle.

Suppose c is small.

If z is small enough, then f kc (z) → w as k → ∞, where w is the
attractive fixed point 1

2(1 −
√
1− 4c) close to 0;

If z is large, f kc (z) → ∞.

The circle “distorts” into a simple closed curve (i.e., having no points
of self-intersection) separating these two types of behavior as c moves
away from 0, provided that fc retains an attractive fixed point, i.e., if
|f ′c (z)| < 1 at one of the roots of fc(z) = z .

This happens if c lies inside the cardioid z = 1
2e

iθ(1− 1
2e

iθ),
0 ≤ θ ≤ 2π, the main cardioid of the Mandelbrot set.

For convenience, we treat the case of |c | < 1
4 , but the proof is easily

modified if fc has any attractive fixed point.
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Julia Sets for Small c

Theorem

If |c | < 1
4 , then J(fc ) is a simple closed curve.

Let C0 be the curve |z | = 1
2 , which encloses both c and the attractive

fixed point w of fc .

By direct calculation, the inverse image
f −1
c (C0) is a loop C1 surrounding C0.
We may fill the annular region A1 between
C0 and C1 by a continuum of curves,
which we call “trajectories”, which leave
C0 and reach C1 perpendicularly.

For each θ, let ψ1(θ) be the point on C1 at the end of the trajectory
leaving C0 at ψ0(θ) =

1
2e

iθ.
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Julia Sets for Small c (Cont’d)

The inverse image f −1
c (A1) is an annular region A2, with:

Outer boundary the loop C2 = f −1
c (C1);

Inner boundary C1.

fc maps A2 onto A1 in a two-to-one manner.

The inverse image of the trajectories joining C0 to C1 provides a
family of trajectories joining C1 to C2.

ψ2(θ) := point on C2 at the end of the trajectory leaving C1 at ψ1(θ).
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Julia Sets for Small c (Cont’d)

We continue in this way to get:

A sequence of loops Ck , each surrounding its predecessor;
Families of trajectories joining the points ψk (θ) on Ck to ψk+1(θ) on
Ck+1, for each k .

As k → ∞, the curves Ck approach the boundary of the basin of
attraction of w .

By a previous lemma, this boundary is just the Julia set J(fc).

Since |f ′c (z)| > γ, for some γ > 1 outside C1, it follows that f
−1
c is

contracting near J.

Thus, the length of the trajectory joining ψk(θ) to ψk+1(θ) converges
to 0 at a geometric rate as k → ∞.

Consequently, ψk(θ) converges uniformly to a continuous function
ψ(θ) as k → ∞.

It follows that J is the closed curve given by ψ(θ), 0 ≤ θ ≤ 2π.
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Julia Sets for Small c (Cont’d)

It remains to show that ψ represents a simple curve. Suppose that
ψ(θ1) = ψ(θ2). Let D be the region bounded by C0 and the two
trajectories joining ψ(θ1) and ψ(θ2) to this common point.

The boundary of D remains bounded under iterates of fc .

So by the maximum modulus theorem (that the modulus of an
analytic function takes its maximum on the boundary point of a
region) D remains bounded under iteration of f .

Thus D is a subset of the filled-in Julia
set. So the interior of D cannot contain
any points of J. Thus the situation of
the figure on the right cannot occur. So
ψ(θ) = ψ(θ1) = ψ(θ2), for all θ between
θ1 and θ2. It follows that ψ(θ) has no
point of self-intersection.
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Dimension of the Julia Set for Small c

By an extension of this argument, if c is in the main cardioid of M,
then J(fc ) is a simple closed curve.

Such curves are sometimes referred to as quasi-circles.

Of course, J(fc ) will be a fractal curve if c > 0.

It may be shown that, for small c , its dimension is given by

s = dimBJ(fc) = dimHJ(fc)

= 1 + |c|2
4 log 2 + terms in |c |3 and higher powers.

Moreover, 0 < Hs(J) <∞, with dimBJ(fc) = dimHJ(fc) given by a
real analytic function of c .
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Examples

Julia sets J(fc ) for c at various points in the Mandelbrot set.
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Examples

Julia sets of the quadratic function fc(z) = z2 + c .
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