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Coloring Graphs Coloring Vertices

Subsection 1

Coloring Vertices
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Coloring Graphs Coloring Vertices

k-Colorability and Chromatic Number

If G is a graph without loops, then G is k-colorable if we can assign
one of k colors to each vertex so that adjacent vertices have different
colors.

If G is k-colorable, but not (k − 1)-colorable, we say that G is
k-chromatic, or that the chromatic number of G is k , and write
χ(G ) = k .

Example: A graph G for which χ(G ) =
4; the colors are denoted by Greek letters.
It is thus k-colorable if k ≥ 4.

We assume that all graphs are simple, since multiple edges do not
affect colorability. We also assume that they are connected.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 4 / 47



Coloring Graphs Coloring Vertices

Some Examples

χ(Kn) = n.

There are graphs with arbitrarily high chromatic number.

χ(G ) = 1 if and only if G is a null graph.

χ(G ) = 2 if and only if G is a non-null bipartite graph.

Every tree and every cycle with an even number of vertices is
2-colorable.

It is not known which graphs are 3-chromatic, but examples include:

The cycle graphs or wheels
with an odd number of
vertices;

The Petersen graph.

The wheels with an even number of vertices are 4-chromatic.
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Coloring Graphs Coloring Vertices

Chromatic Number of an Arbitrary Graph

If a graph has n vertices, then its chromatic number cannot exceed n.

If the graph contains Kr as a subgraph, then its chromatic number
cannot be less than r .

Theorem

If G is a simple graph with largest vertex-degree ∆, then G is
(∆ + 1)-colorable.

By induction on the number of vertices of G .

Let G be simple with n vertices. If we delete any vertex v and its
incident edges, then the graph that remains is simple with n − 1
vertices and largest vertex-degree at most ∆.

By the induction hypoth-
esis, this graph is (∆+1)-
colorable.

A (∆ + 1)-coloring for G is obtained by coloring v with a different
color from the (at most ∆) vertices adjacent to v .
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Coloring Graphs Coloring Vertices

Brooks’ Theorem

By more careful treatment we can strengthen this theorem to obtain
Brooks’ Theorem whose proof is presented later:

Theorem (Brooks’ Theorem, 1941)

If G is a simple connected graph which is not a complete graph, and if the
largest vertex-degree of G is ∆ (≥ 3), then G is ∆-colorable.

By the previous theorem, every cubic graph is 4-colorable.

By Brooks’ Theorem, every connected cubic graph, other than K4, is
3-colorable.

If the graph has a few vertices of large degree, then these theorems
are rather weak:

Example: Brooks’ Theorem asserts that, for
any s, the graph K1,s is s-colorable. It is in
fact 2-colorable.
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Coloring Graphs Coloring Vertices

6-Colorability of Planar Graphs

Theorem

Every simple planar graph is 6-colorable.

By induction on the number of vertices:

The result is trivial for simple planar graphs with at most six vertices.
Suppose that G is a simple planar graph with n vertices, and that all
simple planar graphs with n − 1 vertices are 6-colorable.

By a preceding theorem, G con-
tains a vertex v of degree at most
5. If we delete v and its inci-
dent edges, then the graph that
remains has n− 1 vertices and is
thus 6-colorable.

A 6-coloring of G is then obtained by coloring v with a color different
from the (at most five) vertices adjacent to v .
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Coloring Graphs Coloring Vertices

The Five Color Theorem

Theorem

Every simple planar graph is 5-colorable.

By induction on the number of vertices:

The result is trivial for simple planar graphs with fewer than six vertices.
Suppose then that G is a simple planar graph with n vertices, and that
all simple planar graphs with n − 1 vertices are 5-colorable. As before,
G contains a vertex v of degree at most 5. The deletion of v leaves a
graph with n − 1 vertices, which is thus 5-colorable. The goal is to
color v with one of the five colors, so completing the 5-coloring of G .

If deg(v) < 5, then v can be colored with any color not assumed by the
(at most four) vertices adjacent to v , completing the proof in this case.
Suppose that deg(v) = 5, and that the vertices v1, . . . , v5 adjacent to v

are arranged around v in clockwise order. If the vertices v1, . . . , v5 are
all mutually adjacent, then G contains the non-planar graph K5 as a
subgraph, which is impossible.
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Coloring Graphs Coloring Vertices

The Five Color Theorem (Cont’d)

So at least two of the vertices vi (say, v1 and
v3) are not adjacent:
We now contract the two edges vv1 and vv3.
The resulting graph is a planar graph with
fewer than n vertices, and is thus 5-colorable.

We next reinstate the two edges, giving both v1 and v3 the color
originally assigned to v . A 5-coloring of G is then obtained by
coloring v with a color different from the (at most four) colors
assigned to the vertices vi .
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Coloring Graphs Coloring Vertices

The Four-Color Theorem

One of the most famous unsolved problems in mathematics had been
the “four-colour problem”, whether every simple planar graph is
4-colorable.

This problem, first posed in 1852, was eventually settled by K. Appel
and W. Haken in 1976.

The Four-Color Theorem (Appel and Haken, 1976)

Every simple planar graph is 4-colorable.

Their proof, which took them several years and a substantial amount
of computer time, relies on a complicated extension of the ideas in
the proof of the five color theorem.
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The Chemical Storage Problem

Suppose chemicals a, b, c , d and e are to be
stored in various areas of a warehouse. Some
of these react when in contact, and so must
be kept in separate areas. In the following ta-
ble, an asterisk indicates those pairs of chemi-
cals that must be separated. How many areas
are needed?

a b c d e

a − ∗ ∗ ∗ −

b ∗ − ∗ ∗ ∗

c ∗ ∗ − ∗ −

d ∗ ∗ ∗ − ∗

e − ∗ − ∗ −

To answer this, we draw a graph:

Its vertices correspond to the five
chemicals;

Two vertices are adjacent whenever
the corresponding chemicals are to be
kept apart.

We color the vertices as shown.

The colors correspond to the areas needed for safe storage.
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Subsection 2

Brooks’ Theorem
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Coloring Graphs Brooks’ Theorem

Brooks’ Theorem

Theorem

If G is a simple connected graph which is not a complete graph, and if the
largest vertex degree of G is ∆ (≥ 3), then G is ∆-colorable.

The proof is by induction on the number of vertices of G . Suppose
that G has n vertices.

If any vertex of G has degree less than ∆, then we can complete the
proof by imitating the proof of the preceding theorem.
We may thus suppose that G is regular of degree ∆.
If we delete a vertex v and its incident edges, then the graph that
remains has n − 1 vertices and the largest vertex degree is at most ∆.
By the induction hypothesis, this graph is ∆-colorable. Our aim is now
to color v with one of the ∆ colors. We can assume that the vertices
v1, . . . , v∆, adjacent to v , are arranged around v in clockwise order,
and that they are colored with distinct colors c1, . . . , c∆, since,
otherwise, there would be a spare color that could be used to color v .
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Coloring Graphs Brooks’ Theorem

Brooks’ Theorem: The Components

We define Hij (i 6= j , 1 ≤ i , j ≤ ∆) to be the subgraph of G whose
vertices are those colored ci or cj and whose edges are those joining a
vertex colored ci and a vertex colored cj .

If the vertices vi and vj lie in different components of Hij ,
then we can inter-
change the colors
of all the vertices in
the component of
Hij containing vi .

The result of this recoloring is that vi and vj both have color cj . This
enables v to be colored ci .
We may thus assume that, given any i and j , vi and vj are connected
by a path that lies entirely in Hij . We denote the component of Hij

containing vi and vj by Cij .
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Coloring Graphs Brooks’ Theorem

Brooks’ Theorem: The Paths

If vi is adjacent to more than one vertex with color cj , then there is a
color (other than ci ) that is not assumed by any vertex adjacent to vi .
In this case, vi can be recolored using this color, enabling v to be
colored with color ci .

If this does not happen, then we can use a similar argument to show
that every vertex of Cij (other than vi and vj) must have degree 2.

For, if w is the first vertex of the path from vi to vj with degree
greater than 2, then w can be recolored with a color other than ci , cj ,

thereby destroying the prop-
erty that vi and vj are con-
nected by a path lying en-
tirely in Cij .

We can thus assume that, for any i and j , the component Cij consists
only of a path from vi to vj .
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Coloring Graphs Brooks’ Theorem

Brooks’ Theorem: Pairs of Path

We can also assume that two paths of the form Cij and Cjℓ (where
i 6= ℓ) intersect only at vj , since any other point of intersection x can
be recolored with a color different from ci , cj or cℓ.

This would contradict the fact that vi and vj are connected by a path.
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Coloring Graphs Brooks’ Theorem

Brooks’ Theorem: Conclusion

To complete the proof, we choose two vertices vi and vj that are not
adjacent, and let y be the vertex with color cj that is adjacent to vi .

If Ciℓ is a path (for some ℓ 6= j),
then we can interchange the col-
ors of the vertices in this path
without affecting the coloring of
the rest of the graph.

But if we carry out this interchange, then y would be a vertex
common to the paths Cij and Cjℓ which is a contradiction. This
proves the theorem.
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Subsection 3

Coloring Maps
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Coloring Graphs Coloring Maps

Coloring a Map

Given a map containing several countries, the goal is to find the
number of colors needed to color them so that no two countries with
a boundary line in common share the same color.

The most familiar form of the four-color theorem is the statement
that every map can be colored with only four colors.

Example: The figure shows a map that has been colored with four
colors (shades of grey):
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Coloring Graphs Coloring Maps

Formal Definition of Maps

Since the two colors on either side of an edge must be different, we
need to exclude maps containing a bridge:

We also exclude vertices of degree 2, as they can easily be eliminated.

We define a map to be a 3-connected plane graph.

Thus a map contains no cutsets with 1 or 2 edges, and in particular
no vertices of degree 1 or 2.

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 21 / 47



Coloring Graphs Coloring Maps

Face and Vertex Colorability

A map is k-colorable(f) if its faces can be colored with k colors so
that no two faces with a boundary edge in common have the same
color.

To avoid confusion, we use k-colorable(v) to mean k-colorable in the
usual sense.

Example: The map in the figure is 3-colorable(f) and 4-colorable(v).
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Coloring Graphs Coloring Maps

Criterion for 2-Colorability(f)

Theorem

A map G is 2-colorable(f) if and only if G is an Eulerian graph.

⇒: For each vertex v of G , the faces surrounding v must be even in
number, since they can be colored with two colors. It follows that
each vertex has even degree. So G is Eulerian.

⇐: If G is Eulerian, we color its faces in two colors as follows. Choose
any face F and color it red. Draw a curve from a point x in F to a
point in each other face, passing through no vertex of G .

If such a curve crosses an even
number of edges, color the face
red;

otherwise, color it blue.

Each vertex has an even number of edges incident with it. Thus, a
“cycle” of two such curves crosses an even number of edges of G .
Hence, the coloring is well defined.
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Coloring Graphs Coloring Maps

Geometric Duality and Colorability

Theorem

Let G be a plane graph without loops, and let G ∗ be a geometric dual of
G . Then G is k-colorable(v) if and only if G ∗ is k-colorable(f).

⇒: We can assume that G is simple and connected, so that G ∗ is a map.
If we have a k-coloring(v) for G , then we can k-color the faces of G ∗

so that each face inherits the color of the unique vertex that it
contains.

No two adjacent faces of G ∗ can
have the same color because the
vertices of G that they contain
are adjacent in G and so are dif-
ferently colored. Thus, G ∗ is k-
colorable(f).
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Coloring Graphs Coloring Maps

Geometric Duality and Colorability

⇐: Suppose now that we have a k-coloring(f) of G ∗.

Then we can k-color the vertices
of G so that each vertex inherits
the color of the face containing
it. No two adjacent vertices of G
have the same color, by reason-
ing similar to the above. Thus,
G is k-colorable(v).

The theorem asserts that we can dualize any theorem on the coloring
of the vertices of a planar graph to give a theorem on the coloring of
the faces of a map, and conversely.
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Coloring Graphs Coloring Maps

2-Colorability and 4-colorability Revisited

Theorem

A map G is 2-colorable(f) if and only if G is an Eulerian graph.

Second Proof: The dual of an Eulerian planar graph is a bipartite
planar graph, and conversely. Now note that a connected planar
graph without loops is 2-colorable(v) iff it is bipartite.

Corollary

The four-color theorem for maps is equivalent to the four color theorem for
planar graphs.

⇒: We may assume that G is a simple connected plane graph. Then its
geometric dual G ∗ is a map. By assumption G ∗ is 4-colorable(f). By
duality, G is 4-colorable(v).

⇐: Let G be a map and G ∗ its dual. Then G ∗ is a simple planar graph.
By assumption G ∗ is 4-colorable(v). So G is 4-colorable(f).
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Coloring Graphs Coloring Maps

3-Colorability of Cubic Maps

Theorem

Let G be a cubic map. Then G is 3-colorable(f) if and only if each face is
bounded by an even number of edges.

⇒: Given any face F of G , the faces of G that
surround F must alternate in color. Thus,
there must be an even number of them. So
each face is bounded by an even number of
edges.

⇐: We prove the dual result:

If G is a simple connected plane graph in which each face is a triangle
and each vertex has even degree (that is, G is Eulerian), then G is
3-colorable(v).
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Coloring Graphs Coloring Maps

3-Colorability of Cubic Maps (Cont’d)

Denote the three colors by α, β and γ.

Since G is Eulerian, its faces can be colored with two colors, red and
blue.

A 3-coloring of the vertices of G is then obtained as follows:

Color the vertices of any red face so that
the colors α, β and γ appear in clockwise
order;

Color the vertices of any blue face so
that these colors appear in anti-clockwise
order.

This vertex coloring can be extended to the whole graph.
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Coloring Graphs Coloring Maps

Relaxing the Cubic Hypothesis

Theorem

In order to prove the four-color theorem, it is sufficient to prove that each
cubic map is 4-colorable(f).

By the first corollary, it is sufficient to prove that the 4-colorability(f)
of every cubic map implies the 4-colorability(f) of any map.

Let G be any map. If G has any vertices of degree 2, then we can
remove them without affecting the coloring. It remains only to
eliminate vertices of degree 4 or more.

But if v is such a vertex, then we can
stick a “patch” over v : Repeating this
for all such vertices, we obtain a cubic
map that is 4-colorable(f) by hypothesis.

The required 4-coloring of the faces of G is then obtained by shrinking
each patch to a single vertex and reinstating each vertex of degree 2.
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Subsection 4

Coloring Edges
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Coloring Graphs Coloring Edges

Edge Colorability and Chromatic Index

A graph G is k-colorable(e) (or k-edge colorable) if its edges can
be colored with k colors so that no two adjacent edges have the same
color.

If G is k-colorable(e) but not (k − 1)-colorable(e), we say that the
chromatic index of G is k , and write χ′(G ) = k .

Example: The figure shows a graph G for which χ′(G ) = 4.
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Coloring Graphs Coloring Edges

Vizing’s Theorem

If ∆ is the largest vertex degree of G , then χ′(G ) ≥ ∆.

The following result, known as Vizing’s theorem, gives very sharp
bounds for the chromatic index of a simple graph G :

Theorem (Vizing, 1964)

If G is a simple graph with largest vertex-degree ∆, then
∆ ≤ χ′(G ) ≤ ∆+ 1.

It is not known which graphs have chromatic index ∆ and which have
chromatic index ∆ + 1.

For particular types of graphs, this classification can easily be found.

Example: χ′(Cn) = 2 or 3, depending on whether n is even or odd.
χ′(Wn) = n − 1 if n ≥ 4.
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Coloring Graphs Coloring Edges

Chromatic Index of Complete Graphs: n Odd

Theorem

χ′(Kn) = n if n is odd (n 6= 1) and χ′(Kn) = n− 1 if n is even.

The result is trivial if n = 2. Assume that n ≥ 3.

If n is odd, then we can n-color the edges of Kn by placing the vertices
of Kn in the form of a regular n-gon:

coloring the edges around the boundary with
a different color for each edge;

then coloring each remaining edge with the
color used for the boundary edge parallel to it.

Kn is not (n − 1)-colorable(e): Kn has n vertices and n(n−1)
2 edges. So

the largest possible number of edges of the same color is n−1
2 . It

follows that Kn has at most n−1
2 · χ′(Kn) edges. This gives χ

′(Kn) ≥ n.
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Chromatic Index of Complete Graphs: n Even

If n is even, then we first obtain Kn by joining the complete graph
Kn−1 to a single vertex.

If we now color the edges of Kn−1 as
above, then there is one color miss-
ing at each vertex, and these missing
colors are all different. We complete
the edge coloring of Kn by coloring
the remaining edges with these miss-
ing colors.
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Coloring Graphs Coloring Edges

Four Color Theorem and Edge Colorings

Theorem

The four-color theorem is equivalent to the statement that χ′(G ) = 3 for
each cubic map G .

⇒: Suppose that we have a 4-coloring of the faces of G , where the colors
are denoted by α = (1, 0), β = (0, 1), γ = (1, 1) and δ = (0, 0).

We can then construct a 3-coloring of
the edges of G by coloring each edge
e with the color obtained by adding
together (modulo 2) the colors of the
two faces adjoining e.
For example, if e adjoins two faces colored α and γ, then e is colored
β, since (1, 0) + (1, 1) = (0, 1). Note that the color δ cannot occur in
this edge coloring, since the two faces adjoining each edge must be
distinct. Moreover, no two adjacent edges can share the same color.
We thus have the required edge coloring.
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Coloring Graphs Coloring Edges

Four Color Theorem and Edge Colorings (Cont’d)

⇐: Suppose now that we have a 3-coloring of the edges of G . Then there
is an edge of each color at each vertex.

The subgraph determined by those edges colored α or β is regular of
degree 2. So we can color its faces with two colors, 0 and 1.
Similarly, we can color the faces of the subgraph determined by those
edges colored α or γ with the colors 0 and 1.

Thus, we can assign to each face of G two coordinates (x , y), where
each of x and y is 0 or 1.

Since the coordinates assigned to two adjacent faces of G must differ
in at least one place, we get a 4-coloring of the faces of G .

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 36 / 47



Coloring Graphs Coloring Edges

The Chromatic Index of a Bipartite Graph

Theorem (König 1916)

If G is a bipartite graph with largest vertex-degree ∆, then χ′(G ) = ∆.

By induction on the number of edges of G , we show that if all but
one of the edges have been colored with at most ∆ colors, then there
is a ∆-coloring of the edges of G .

Suppose that each edge of G has been colored, except for the edge
vw . Then there is at least one color missing at the vertex v , and at
least one color missing at the vertex w .

If some color is missing from both v and w , then we color the edge vw

with this color.
If this is not the case, then let α be a color missing at v , and β be a
color missing at w .
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The Chromatic Index of a Bipartite Graph (Cont’d)

We let α be a color missing at v , and β be a color missing at w .

Let Hαβ be the connected subgraph of G consist-
ing of the vertex v and those edges and vertices
of G that can be reached from v by a path con-
sisting entirely of edges colored α or β.
Since G is bipartite, the subgraph Hαβ cannot
contain the vertex w . So we can interchange the
colors α and β in this subgraph without affecting
w or the rest of the coloring.

The edge vw can now be colored β, thereby completing the coloring
of the edges of G .

Corollary

χ′(Kr ,s) = max (r , s).

George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 38 / 47



Coloring Graphs Chromatic Polynomials

Subsection 5

Chromatic Polynomials
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The Chromatic Function of a Simple Graph

Let G be a simple graph, and let PG (k) be the number of ways of
coloring the vertices of G with k colors so that no two adjacent
vertices have the same color.

PG is called the chromatic function of G .

Example: If G is the tree shown on
the right, then PG (k) = k(k − 1)2,
since the middle vertex can be colored
in k ways, and then the end-vertices can
each be colored in any of k − 1 ways.

If T is any tree with n vertices, then

PT (k) = k(k − 1)n−1.
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The Chromatic Function of a Complete Graph

If G is the complete graph K3, then

PG (k) = k(k − 1)(k − 2).

This can be extended to

PKn
(k) = k(k − 1)(k − 2) · · · (k − n+ 1).

It is clear that:

if k < χ(G), then PG (k) = 0;
if k ≥ χ(G), then PG (k) > 0.

The four-color theorem is equivalent to the statement:

If G is a simple planar graph, then PG (4) > 0.
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Calculating the Chromatic Function

A systematic method for obtaining the chromatic function of a simple
graph in terms of the chromatic functions of null graphs is available:

Theorem

Let G be a simple graph, and let G − e and G/e be the graphs obtained
from G by deleting and by contracting an edge e, respectively. Then
PG (k) = PG−e(k)− PG/e(k).

Example: Let G be the following graph:

The graphs G − e and G/e are shown on the right. By the theorem
k(k − 1)(k − 2)(k − 3) = [k(k − 1)(k − 2)2]− [k(k − 1)(k − 2)].
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Calculating the Chromatic Function (Cont’d)

Let e = vw . We compute PG−e(k) as follows:
The number of k-colorings of G − e in which v and w have different
colors is unchanged if the edge e is drawn joining v and w . So, it is
equal to PG (k).
The number of k-colorings of G − e in which v and w have the same
color is unchanged if v and w are identified. It is therefore equal to
PG/e(k).

So, the total number PG−e(k) of k-colorings of G − e is
PG (k) + PG/e(k). This gives PG (k) = PG−e(k)− PG/e(k).
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Coloring Graphs Chromatic Polynomials

Chromatic Functions of Simple Graphs

Corollary

The chromatic function of a simple graph is a polynomial.

We continue the above procedure by choosing edges in G − e and G/e
and deleting and contracting them. We then repeat the procedure for
these four new graphs, and so on. The process terminates when no
edges remain, i.e., when each remaining graph is a null graph.

The chromatic function of a null graph is a polynomial (= k r , where
r is the number of vertices).

So by repeated application of the theorem, the chromatic function of
the graph G must be a sum of polynomials.

Hence, it must itself be a polynomial.
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Coloring Graphs Chromatic Polynomials

The Chromatic Polynomial of a Simple Graph

We can call PG (k) the chromatic polynomial of G .

If G has n vertices, then PG (k) is of degree n, since no new vertices are
introduced at any stage.
Since the construction yields only one null graph on n vertices, the
coefficient of kn is 1.
The coefficients alternate in sign.
The coefficient of kn−1 is −m, where m is the number of edges of G .
Since we cannot color a graph if no colors are available, the constant
term of any chromatic polynomial is 0.
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Coloring Graphs Chromatic Polynomials

Example

We find the chromatic polynomial of the graph G on the left.

We then verify that this polynomial has the form
k5 − 7k4 + ak3 − bk2 + ck , where a, b and c are positive constants.

It is convenient at each stage to draw the graph itself, rather than
write its chromatic polynomial:

For example, instead of writing

PG (k) = PG−e(k)− PG/e(k),

we “draw” the equation of the right of the figure above.
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Coloring Graphs Chromatic Polynomials

Example (Cont’d)

With this convention, and ignoring multiple edges, we have:

Thus,

PG (k) = k(k − 1)4 − 3k(k − 1)3 + 2k(k − 1)2 + k(k − 1)(k − 2)
= k(k4 − 4k3 + 6k2 − 4k + 1)− 3k(k3 − 3k2 + 3k − 1)

+ 2k(k2 − 2k + 1) + k(k2 − 3k + 2)
= k5 − 4k4 + 6k3 − 4k2 + k − 3k4 + 9k3 − 9k2 + 3k

+ 2k3 − 4k2 + 2k + k3 − 3k2 + 2k
= k5 − 7k4 + 18k3 − 20k2 + 8k .

This has the required form k5 − 7k4 + ak3 − bk2 + ck , where a, b
and c are positive constants.
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