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Surfaces and Knots Surfaces without Boundary

Subsection 1

Surfaces without Boundary
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Surfaces and Knots Surfaces without Boundary

Surfaces or Two-Manifolds

A surface or two-manifold is defined to be any object such that
every point in the object has a neighborhood in the object that is a
(possibly nonflat) disk.

Examples: The sphere (surface of a ball) and the torus (surface of a
doughnut) are two-manifolds.
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Examples

Surfaces:

Non-Surfaces:
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Deformability of Surfaces

We think of all surfaces as being made of rubber, and hence
deformable.

Example: We consider a sphere and a cube to be equivalent surfaces,
since we could pullout eight points on a rubber sphere to make it look
like a cube, without having to do any cutting and pasting.
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Isotopies

Example: Consider the three surfaces shown below.

They are equivalently placed in space because we could get from
anyone to any other by a rubber deformation.

We call such a rubber deformation an isotopy.

Two surfaces in space that are equivalent under a rubber deformation
are called isotopic surfaces.
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Ttriangulations

In order to better work with surfaces, we divide them into triangles.

The triangles have to fit together nicely along their edges so that they
cover the entire surface.

They cannot intersect each other in any of the ways pictured:

The triangles need not be flat with straight edges, since they are
deformable.

We call such a division of a surface into triangles a triangulation.
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Examples

Examples of triangulations of the sphere and the torus.
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Cutting the Surface into Triangles

Given a surface with a triangulation, we can cut it into the individual
triangles, keeping track of the original surface by:

Labeling the edges that should be glued back together;
Placing matching arrows on the pairs of edges that are to be glued.
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Homeomorphic Surfaces

We say that two surfaces are homeomorphic if from one of them we
can obtain the other via the following process:

Triangulate;
Cut along a subset of the edges into pieces;
Glue back together along the edges according to the instructions given
by the orientations and labels on the edges.

Example: Two homeomorphic copies of the torus.

We cut along a subset of the edges of a triangulation that form a circle.
We knot the resulting cylinder;
We glue the two circles back together.
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Non-Homeomorphic Surfaces

A sphere and a torus are not homeomorphic.

We could also have the surface of a two-hole doughnut or a
three-hole doughnut.

None of these four examples are homeomorphic to one another.
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Genus of a Surface

Since we could just keep increasing the number of holes in our
doughnuts, there are an infinite number of distinct
(nonhomeomorphic) surfaces.

We call the number of holes in the doughnut the genus of the surface.

Example:

The sphere has genus 0;
The torus has genus 1;
The 2- and 3-holed doughnut surfaces have genera 2 and 3.
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Embeddings of a Surface in Space

Each of the surfaces considered can be placed in space in different
ways.

Example: We saw two ways to put a torus in space.

Even though both of those surfaces were tori, they were not isotopic,
since there was no rubber deformation that would take us from the
one to the other.

However, they were still homeomorphic surfaces, just placed in space
in two different ways.

A specific placement of a surface in space is an embedding of the
surface.
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Example: Embeddings of a Genus 3 Surface in Space

The figure shows three distinct embeddings of a genus 3 surface in
space.

Although they are all homeomorphic to one another, only the first
and the third are isotopic to one another.

On the third surface, we can slide the end of one of the tubes along
another tube to un- knot the knotting.

We call the third surface the surface of a cube-with-holes.

It is the surface of the solid object obtained by drilling three
wormholes out of a cube.
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Homeomorphism Type of a Surface

Given a surface in space, we would like to be able to tell what surface
it is, i.e., what is its homeomorphism type.

It might be a sphere or a torus, but so mangled that we do not
recognize it.

One option is to cut and paste to simplify the appearance of our
surface until we can identify it.

This technique requires us to make a clever choice of how to cut up
the surface and rearrange the pieces before regluing.

It would be better if there were a method for recognizing surfaces
that did not require the cut-and-paste technique.
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The Euler Characteristic

Consider a triangulation of the surface and let:
V be the number of vertices;
E be the number of edges;
F be the number of triangles (F stands for faces).

We define the Euler characteristic of the triangulation to be

χ = V − E + F .

Example: Consider the triangulation of the
sphere in the figure.

We have

V = 6, E = 12, F = 8.

So
χ = 6− 12 + 8 = 2
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Independence from Triangulation

The Euler characteristic depends only on the surface, not on the
particular triangulation of the surface that we use.

We describe the idea behind the proof avoiding the technicalities.

Let T1 and T2 be two different triangulations of surface S .

Place them on the surface so that they are overlapping.

We build a new triangulation T3 of S that “contains” T1 and T2.

We show that it has the same Euler characteristic as T1.

The same argument shows T3 has the same Euler characteristic as T2.

So it shows that T1 and T2 have the same Euler characteristic.
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Independence from Triangulation (Adding Vertices)

We will assume that:

Each edge of T1 intersects each of the edges of T2 a finite number of
times. There is a technical proof that the edges of T1 can be moved
just slightly to make sure that this is the case.
The vertices of T2 do not lie on top of a vertex or edge from T1. This
can be made true by moving T1 slightly.

We begin to build the new triangulation T3 by starting with T1.

One at a time, we add to the vertices of T1 a new set of vertices
corresponding to where the edges of T2 cross the edges of T1.

Each new vertex also cuts an edge into two edges.

When computing χ, the number of
vertices is added and the number of
edges is subtracted.

So the Euler characteristic is
unchanged by this operation.
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Independence from Triangulation (Cont’d)

We also add each vertex in the second triangulation T2 to T3,
together with one edge that runs from that vertex to one of the
vertices that is already in T3.

We choose each of these new edges to be a subset of one of the
edges from T2.

The number of faces does not change.

The numbers of vertices and edges each goes up by one.

So this addition does not change the Euler characteristic.

We may need to add a chain of edges to connect a vertex of T2 and
T3.

However, the Euler characteristic remains unchanged.
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Independence from Triangulation (Cont’d)

Now we add all of the pieces of edges from T2 that have not been
added yet, each of which becomes a separate edge in T3.

Note that as we add one of these edges, we cut a face in two.

Hence, the numbers of edges and of faces each goes up by one.

This leaves the Euler characteristic unchanged.
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Independence from Triangulation (Conclusion)

At this point, we may not have a tri-
angulation. Some of the faces may
not be triangles. So now we just add
edges to cut the faces into triangles.

When we add such an edge, it cuts an existing face into two pieces.

So both numbers of edges and faces go up by one.

This leaves the Euler characteristic unchanged.

We showed that there exists a third triangulation, T3, with the same
Euler characteristic as T1, such that it “contains” both T1 and T2.

Note that we could have built T3 by starting with T2.

So it also has the same Euler characteristic as T2.

Hence, we have shown that T1 and T2 must have the same Euler
characteristic.
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Euler Characteristic of Sphere and Torus

The Euler characteristic only depends on the type of surface that we
have, and not on the particular triangulation.

Example: Any triangulation of the sphere has Euler characteristic 2.

Any triangulation of the torus has Euler characteristic 0.
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Genus 2 Surface: Connected Sums

To compute the Euler characteristic of a genus 2 surface S , we could:

Take a triangulation of the surface;
Compute its Euler characteristic.

Instead, we notice that, to obtain a genus 2 surface, we may:

Remove a disk from each of two tori T1 and T2;
Glue the tori together along the resulting circle boundaries.

This operation is called the connected sum of the tori.
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Connected Sum of Triangulated Surfaces

Suppose that we already have triangulations of the two tori.

Then we can think of taking their connected sum as:

Removing the interior of a triangle from each torus;
Gluing together the boundaries of the two missing triangles by pairing
up the vertices and edges.

The result is a triangulated genus 2 surface.

Now we have a triangulation for it.

So we can figure out what the Euler characteristic is.
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Characteristic of Connected Sum

The total number of vertices, edges, and faces in the triangulation of
S is just the total number of vertices, edges, and faces in T1 and T2

with:
Three fewer vertices, since we identified three vertices in T1 with three
vertices in T2;
Three fewer edges, since we identified three edges in T1 with three
edges in T2;
Two fewer faces, since we threw away the interiors of two triangles in
order to construct the connected sum.

In the formula for χ, V is added and E is subtracted.

So the loss of three vertices and three edges has no net effect on χ.

Hence, the only effect is the loss of two faces.

We conclude that

χ(S) = χ(T1) + χ(T2)− 2.

Since the Euler characteristic of a torus is 0, χ(S) = −2.
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Generalizing Triangulation

We make the computation of Euler characteristic even easier.

We subdivide the surface into vertices, edges, and faces.

A face is simply a disk with its boundary made up of a sequence of
edges connecting the vertices (better known as a polygon).

A face must be a single piece that has no holes in it.
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Example

We could subdivide the torus into a single face, with one vertex and
two edges. This gives

χ = V − E + F = 1− 2 + 1 = 0.

We could cut the genus 2 surface up into 4 faces, with 6 vertices and
12 edges. This yields

χ = V − E + F = 6− 12 + 4 = − 2.
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Compact Surfaces

A hard technical fact is that every surface has a triangulation.

However, not every surface has one with a finite number of triangles.

We say that a surface is compact if it has a triangulation with a
finite number of triangles.

Example: The sphere and torus are compact surfaces.

But neither the plane nor a torus minus a disk is compact, as neither
can be triangulated with finitely many triangles.

Note that both the plane and the torus minus a disk do satisfy the
definition of a surface.
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The Complement of a Knot

Surfaces appear in knot theory in the space around the knot.

Let R3 be the three-dimensional space that the knot K sits in.

The space M around the knot is everything but the knot.

This set M = R3 − K is called the complement of the knot.

The complement M is what is left over if we drill K out of space.
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Complements and Splittable Links

The figure shows an example of a
surface in the complement of a link
when the link is splittable.

Since we can pull the components of the link apart, we can think of
there being a sphere that separates the components from one another.

An alternative way to define a splittable link is simply to say that it is
a link such that there is a sphere in the link complement that has
components of the link on either side of it.
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Additional Examples

Every knot is contained in a torus.

The second figure contains a torus that surrounds a knot in a more
unusual way.

The last figure shows a genus 2 surface in the complement of a knot.
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Compressible Surfaces

Let L be a link in R3.

Let F be a surface in the complement R3 − L.

We say that F is compressible if there is a disk D in R3 − L, such
that:

D intersects F exactly in its boundary;
The boundary of D does not bound another disk on F .

Example: The surface F in the figure is compressible.

The disk D is a disk in R3, such that:

D does not intersect the link L;

D intersects F exactly in its
boundary;

The boundary of D does not
bound a disk on F .
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Compression

A compressible surface can be simplified by:

Cutting it open along the boundary of the disk;
Gluing two copies of the disk to the two curves that result.

We obtain a simpler surface (or sometimes a pair of surfaces) that
still lies in the link complement.

This simplifying operation is called a compression of the original
surface.

George Voutsadakis (LSSU) Knot Theory March 2024 34 / 70



Surfaces and Knots Surfaces without Boundary

Incompressible Surfaces

If a surface is not compressible, we say that it is incompressible.

Example: The torus shown is incompressible, although proving it is
somewhat difficult.

Notice that any disk that intersects the torus in its boundary looks
like it must satisfy one of the following:

It must intersect the link L;
Its boundary must cut a disk off of the torus.
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Swallow-Follow Tori

An incompressible torus like the one in the figure

exists any time that we have a composite knot.

It is called a swallow-follow torus because:

It swallows one of the two factor knots;
It follows the other one.
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Subsection 2

Surfaces with Boundary
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Surfaces with Boundary

In order to obtain surfaces with boundary, we can just remove the
interiors of disks from the surfaces that we already have.

We leave the boundaries of the disks in the surfaces, which become
the boundaries of the surfaces.

All of the resulting boundaries are circles.

These circles are called boundary components.
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Deformations of Surfaces with Boundary

Since all of our surfaces are made of rubber, they can look very
different when we deform them.

Example: The figure shows two different pictures of a torus with one
boundary component.

It also shows the deformation for getting from the one picture to the
other.
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Surfaces with Boundary and Euler Characteristic

When we remove a disk from a surface without boundary, we can
think of it as removing the interior of one triangle in a triangulation
of the surface.

Hence the Euler characteristic goes down by one.

Example: Consider a surface with three
boundary components.
It has an Euler characteristic three less
than the Euler characteristic of the surface
obtained by filling in the three boundaries
with disks.

Filling in boundary components by attaching disks is called capping

off a surface with boundary.
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Example

We can find the Euler characteristics of the surface in the figure
without triangulating it.

A genus 3 surface has Euler characteristic −4.

Since it has two boundary components it Euler characteristic is 2 less
than −4.

Therefore, the surface in the figure has Euler characteristic −6.
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Euler Characteristic and Distinguishability

Unlike surfaces without boundary in three-space, surfaces with
boundary cannot all be distinguished by Euler characteristic.

Example: The figure contains two surfaces with boundary that have
the same Euler characteristic, but that are not homeomorphic.

It might help to picture these surfaces by thinking of their boundaries
as wire frames and the surfaces as soap films spanning the wires.
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Constructing Surfaces Using Paper

To construct the surface on the right from
paper:

Cut out two larger disks and three thin
strips of paper;

At one end of each of the disks, tape two of
the strips running from one disk to the
other, each with a half twist in it;

Tape the last strip from the one disk to the other with a full twist in it,
making sure that the direction of the twist matches the direction of the
twist in the figure.
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Orientability

Consider again the two surfaces in the picture.

A trait (other than Euler
characteristic) that
distinguishes between the two
is orientability.

Suppose we start painting one side of the first surface gray.

If we continue to paint that side, eventually we will end up painting
the entire surface gray on both sides.

In essence, the surface does not have two distinct sides.

On the second surface, the two sides could be painted black and
white so that nowhere would any black paint touch any white paint.

There really are two distinct sides of the surface.

We say that the second surface is orientable.
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Orientable Surfaces

A surface sitting in three-dimensional space is orientable if it has two
sides that can be painted black and white, so that the black paint
never meets the white paint except along the boundary of the surface.

Example: A torus is an orientable surface, because we could always
paint the outer side black and the inner side white.

Also, the following surfaces with boundary are all orientable.
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Non-Orientability: The Möbius Band

One of the simplest surfaces that are not orientable is the Möbius
band.

This surface is not orientable because if we started painting one side
of it black and continued working on that side, we would find that
when we were done, we had painted all of it black.

A surface that has only one side is called nonorientable.
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Non-Orientability: The Klein Bottle

Another nonorientable surface is shown.

A surface is nonorientable if and only if it
contains a Möbius band within it.

The Möbius band may have an odd number
of half-twists in it rather than just one
half-twist, since it would be homeomorphic
to the usual Möbius band.

We can easily imagine a copy of the Möbius
band on the Klein bottle pictured.
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Determining the Homeomorphism Type of a Surface

Suppose that we have a surface with boundary and we want to figure
out what surface it is.

To do so, we need to know three facts.

1. Whether it is orientable or nonorientable;
2. How many boundary components it has;
3. Its Euler characteristic.

These three pieces of information will completely determine the
homeomorphism type of the surface.
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Example

Consider the surface shown in the figure.

The surface is orientable.
It has three boundary components.
It can be subdivided, as in the second figure, in order to determine that
its Euler characteristic is −3.

Therefore, if we cap off its boundary components with three disks,
the resulting surface without boundary will have χ = 0.

So the resulting surface without boundary is a torus.

Hence, our surface is simply a torus with three disks removed.
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Genus of Surfaces with Boundary

If a surface has boundary, we define its genus to be the genus of the
corresponding surface without boundary obtained by capping off each
of its boundary components with a disk.

Example: Consider again the following surface with boundary.

It results from the torus by removing three disks.

So its genus must be 1.
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Surfaces with Boundary and the Unknot

One way to define the unknot is to say that it is the only knot that
forms the boundary of a disk.

In some projections of the unknot, the disk is not at all obvious, but it
is always there.
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Surfaces with Boundary and Composite Knots

If we have a composite knot, there is a
sphere with two boundary components
that lies outside the knot.

This surface is also called an annulus.

Note that we thickened the knot up a little in this picture.

If we had left the knot infinitely thin, we would have said the surface
was a sphere with two punctures, the punctures occurring where the
knot passed through the sphere.

An alternative definition of a composite knot is a knot such that
there is a sphere in space punctured twice by the knot, such that the
knot is nontrivial both inside and outside the sphere.
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Surfaces with Boundary and Tangles

We looked at tangles as regions in the projection plane with four
outgoing strands.

We can also think of a tangle as a portion
of the knot surrounded by a sphere with
four punctures, the punctures occurring
where the knot passes through the sphere.

Such a sphere is called a Conway sphere.

If we thicken up the knot, the punctures become holes and we have a
sphere with four boundary components.
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The Möbius Band and the Trefoil Knot

In the figure is pictured a Möbius band with boundary the trefoil knot.

Even though the band has three twists instead of one, it is still
(homeomorphic to) a Möbius band:

We can cut this band open along an arc;
Untwist one full twist;
Reidentify the points we first cut along, obtaining the Möbius band.
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Torus with Boundary and Trefoil Knot

We will be particularly interested in orientable surfaces with one
boundary component such that the boundary component is a knot.

Example: The picture shows a torus with one boundary component
where that boundary component is a trefoil knot.

The surface pictured does not look like a torus with one boundary.

We can use the Euler characteristic to show that it actually is.
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Subsection 3

Genus and Seifert Surfaces
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Seifert’s Algorithm

Seifert’s algorithm:
Takes as input any knot;
Creates an orientable surface with one boundary component, such that
the boundary circle is that knot.

Suppose we want to construct such a surface for a knot K .

Starting with a projection of the knot, choose an orientation on K .

At each crossing, two strands come in and two strands go out.

Eliminate the crossing by connecting each of the strands coming into
the crossing to the adjacent strand leaving the crossing.
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Sefert’s Algorithm (Seifert Circles)

Now all of the resultant strands will no longer cross.

The result will be a set of (topological) circles in the plane, called
Seifert circles.

Each circle will bound a disk in the plane.

Since we do not want the disks to intersect one another, we will
choose them to be at different heights rather than having them all in
the same plane.
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Sefert’s Algorithm (Connecting the Circles)

Now we would like to connect the disks to one another at the cross-
ings of the knot by twisted bands.

The result is a surface with one boundary component such that the
boundary component is the knot K .
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A Second Example
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Orientability of the Generated Surfaces

The surfaces that we are generating are always orientable.

To see this, we need to show that each surface has two distinct sides,
which can be painted two different colors.

Let’s give each Seifert circle the orientation that it inherits from the
knot, either clockwise or counterclockwise.

For each disk that has a clockwise orientation on its bounding Seifert
circle, we paint its upward pointing face white and its downward
pointing face black.
For each disk that has a counterclockwise orientation on its bounding
Seifert circle, we paint its upward pointing face black and its downward
pointing face white.
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Orientability of the Generated Surfaces (Cont’d)

At each crossing in the knot, we connect two of the disks bounded by
the Seifert circles by a band containing a half-twist.

If one of the two disks is adjacent to the other, the two disks have
opposite orientations on their boundaries.
Hence, the twist in the band allows us to extend the black and white
paint across the two faces of the band so that they match up
consistently on the disks.
If one of the two disks is on top of the other, the two disks have the
same orientation on their boundaries.
Again, the twist in the band allows us to extend the paint consistently
across the band.

Thus, the entire surface can be painted black and white so that no
black paint touches any white paint.

This shows that the surface is orientable.
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Genus of the Generated Surface

Consider a knot.

Construct the Seifert surface generated by the knot.
Suppose that:

c is the number of crossings;
s is the number of Seifert circles.

Then its characteristic is given by

χ = v − e + f = 2c − (2c + c) + s = s − c .

On the other hand, we know that a surface of genus g , with b

boundary components, has characteristic

χ = 2− 2g − b.

Thus, for our Seifert surface, we get

s − c = 2− 2g − 1 ⇒ g =
1 + c − s

2
.
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Different Surfaces from the Same Knot

Notice that Seifert’s algorithm can be used to generate lots of
different surfaces for the same knot.

We could alter the projection of the knot and then obtain a surface
that at least looks different.
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Seifert Surfaces for a Knot; Genus of a Knot

Given a knot K , a Seifert surface for K is an orientable surface with
one boundary component such that the boundary component of the
surface is the knot K .

We have described one way to obtain a Seifert surface for a knot.

However, there may be other Seifert surfaces for the same knot.

We define the genus of a knot to be the least genus of any Seifert
surface for that knot.
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Genus of the Unknot

The unknot bounds a disk.

When we cap off the disk, we get a sphere, which has genus 0.

Therefore the unknot has genus 0.

Note that the unknot is the only knot with genus 0.
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Genus of the Figure-Eight Knot

Consider the figure-eight knot.

By Seifert’s algorithm, we obtain a Seifert surface with genus 1.

Since the figure-eight knot is not trivial, it cannot bound a surface of
genus 0.

So 1 is the least genus of a Seifert surface for the figure-eight knot.

Thus, the genus of the figure-eight knot is 1.
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Calculating the Genus of an Alternating Knot

Theorem

Applying Seifert’s algorithm to an alternating projection of an alternating
knot or link yields a Seifert surface of minimal genus.

We use the theorem to calculate the genus of the knot in the figure.

Therefore, g = 1+c−s

2 = 1+6−3
2 = 2.
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The Genus of a Composite Knot

Let g(K ) denote the genus of knot K .

Theorem

g(J#K ) = g(J) + g(K ).

It’s easy to see that g(J#K ) ≤ g(J) + g(K ).
Take a Seifert surface Q of genus g(J) for J.

Take a Seifert surface R of genus g(K ) for K .

Remove a little piece of each along their boundaries, and sew them
together to obtain a Seifert surface of genus g(J) + g(K ) for J#K .

The proof of the converse is much more technical and we omit it.
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Indecomposability of the Trivial Knot

Claim: The trivial knot cannot be the composition of two nontrivial
knots.

Genus 0 means the knot bounds a disk and is therefore trivial.

So any nontrivial knot has genus at least 1.

So the composition of two nontrivial knots has genus at least 2.

Therefore it cannot be the trivial knot.
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