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Polynomials The Bracket Polynomial and the Jones Polynomial

Subsection 1

The Bracket Polynomial and the Jones Polynomial
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Polynomials The Bracket Polynomial and the Jones Polynomial

Knot Polynomials as Invariants

To each knot, we associate a Laurent polynomial, i.e., one that can
have both positive and negative powers of the variable t.

We compute the polynomial from a projection of the knot.

Any two projections of the same knot yield the same polynomial.

So the polynomial is an invariant of the knot.

If we have two pictures of two knots and the computed polynomials
are different, then the two knots have to be distinct.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example

E.g., for one of the polynomials V (t) that we compute:

The unknot has polynomial 1;
The knot on the right has polynomial

V (t) = −t−1 + 3t−2 − 2t−3 + 3t−4 − t
−5 − t

−6.

Therefore, the unknot and the knot on the right are distinct.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The Bracket Polynomial (Rule 1)

Suppose that we are trying to create a polynomial invariant for knots
and links.

Let us use the notation 〈K 〉 to denote the bracket polynomial of a
knot K .

We have a few requirements for the polynomial.

First, we would like the polynomial of the trivial knot to be 1.

Then our first rule becomes:

Rule 1: 〈©〉 = 1.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The Bracket Polynomial (Rule 2)

Second, we want a method for obtaining the bracket polynomial of a
link in terms of the bracket polynomials of simpler links.

Given a crossing in our link projection, we split it open vertically and
horizontally, in order to obtain two new link projections, each of
which has one fewer crossing.

We make the bracket polynomial of our link projection a linear
combination of the bracket polynomials of our two new link
projections, with not yet determined coefficients:

Rule 2: 〈 〉 = A〈)(〉+ B〈≍〉
〈 〉 = A〈≍〉+ B〈)(〉.

The second equation here is just the first equation, but looked at
from a perpendicular view.

So we do not actually consider these two equations as distinct rules.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The Bracket Polynomial (Rule 3)

Finally, we would like a rule for adding in a trivial component to a link
(the result of which will always be a split link):

Rule 3: 〈L ∪©〉 = C 〈L〉.

Each time we add in an extra trivial component that is not tangled up
with the original link L, we just multiply the entire polynomial by C .

As with A and B , we consider C a variable in the polynomial, for the
time being.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Invariance

The most important criterion for our polynomial is that it be an
invariant for links.

Equivalently, the calculation of the polynomial cannot depend on the
particular projection that we start with.

It must be unchanged by the Reidemeister moves.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Investigating Invariance (Type II Move)

We begin by looking at what happens to our polynomial when we
apply a type II Reidemeister move.

We want

We have:

=

=

=

=

?
=
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Equating the Coefficients

In order that the polynomial be unchanged by this move, we are
forced to make B = A−1, so that the coefficient in front of the
vertical tangle is one.

With B = A−1, it is apparent that we also need A2 + C + A−2 = 0 so
that the coefficient in front of the horizontal tangle is zero.

So we should make C = −A2 − A−2.

The three rules for computing the bracket polynomial become:

Rule 1: 〈©〉 = 1;

Rule 2: 〈 〉 = A〈)(〉+ A−1〈≍〉;
〈 〉 = A〈≍〉+ A−1〈)(〉;

Rule 3: 〈L ∪©〉 = (−A2 − A−2)〈L〉.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Investigating Invariance (Type III Move)

Now, let’s see what effect the third Reidemeister move has on the
polynomial:

=
Type II
=

=

Thus, Type III Reidemeister moves have no effect on the polynomial.

Once we have fixed it so that the Type II moves leave the polynomial
unchanged, the Type III move comes for free.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example I

We just use Rules 1 and 3 to calculate the polynomial for the usual
projection of the trivial link of two components.

We have
〈© ∪©〉 Rule 3

= − (A−2 + A2)〈©〉
Rule 1
= − (A2 + A−2)1.

.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example II

We compute the bracket polynomial of a projection of the simplest
nontrivial link on two components, the Hopf link.

This time, we use all three rules.

=

=

=

=
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example III

We compute the bracket polynomial of a projection of the trefoil.

Again, we use all three rules.

=

=

=
= A3(−A−2 − A2)2 + A(−A−2 − A2) + A(−A−2 − A2) + A−1

+ A(−A−2 − A2) + A−1 + A−1 + A−3(−A−2 − A2)
= A−1 + 2A3 + A7 − A−1 − A3 − A−1 − A3 + A−1

− A−1 − A3 + A−1 + A−1 − A−5 − A−1

= − A−5 − A3 + A7.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Investigating Invariance (Type I Move)

We look at what happens to the polynomial when we apply a Type I
Reidemeister move.

=

=

=

=

=

=

The polynomial has been changed by a Type I move.

Our polynomial depends on what projection of the knot we have.

We try next to fix this problem.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The Writhe of an Oriented Link Projection

We give an orientation to our knot or link projection L.

At every crossing of the projection, we have either a +1 or −1, as in
the left figure.

The sum of all these +1s and −1s is called the writhe of the oriented
link projection L and denoted by w(L).

This is also sometimes called the twist of the projection.

Example: We can calculate the writhe of the oriented link projection
shown in the figure on the right.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Writhe and Reidemeister Moves

TThe writhe of a link projection is invariant under Reidemeister
moves II and III.

Notice that Reidemeister move I always changes the writhe by ±1.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The X Polynomial

We define a new polynomial called the X polynomial.

It is a polynomial of oriented links.

It is defined to be
X (L) = (−A3)−w(L)〈L〉.

Both w(L) and 〈L〉 are unaffected by moves II and III.

So X (L) is unaffected by moves II and III.
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The X Polynomial (Cont’d)

We look at a Reidemeister move of Type I.

Suppose we had a strand as in the figure and took out the twist.

Then w(L′) = w(L) + 1.

X (L′) = (−A3)−w(L′)〈L′〉
= (−A3)−(w(L)+1)〈L′〉
= (−A3)−w(L)−1((−A)3〈L〉)
= (−A3)−w(L)〈L〉
= X (L).

Thus, X (L) is unaffected by this Type I Reidemeister move.

Similarly, it is unaffected by the other version of a Type I move.

Therefore, X (L) is an invariant for knots and links.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example

As an example, consider the link © ©.

As we previously computed, 〈©©〉 = −A2 − A−2.

Since the writhe of this link is 0, we have that X (©©) = −A2−A−2.

This result is independent of the projection of the link.

We could take a really nasty projection
of this link, like the one in the figure.

If we calculated the X polynomial for
this projection, we would find that the
answer was exactly the same, namely
−A2 − A−2.

George Voutsadakis (LSSU) Knot Theory March 2024 21 / 90



Polynomials The Bracket Polynomial and the Jones Polynomial

Example I

We compute X (L) for the oriented knot shown.

We know that

= −A−4 − A
4.

Moreover, we have
w(L) = +2.

So we obtain

X (L) = (−A3)−w(L)〈L〉 = (−A3)−2(−A−4 − A
4) = − A

−10 − A
−2.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example II

We compute X (L) for the oriented knot shown.

We know that

= −A−5 − A
3 + A

7.

Moreover, we have
w(L) = −3.

So we obtain

X (L) = (−A3)−w(L)〈L〉 = (−A3)3(−A−5−A
3+A

7) = A
4+A

12−A
16.
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Polynomials The Bracket Polynomial and the Jones Polynomial

The Jones Polynomial

The original Jones polynomial is obtained from X (L) by replacing
each A in the polynomial with t−1/4.

The resulting polynomial with variable t (and powers that are not
necessarily integers) is exactly the polynomial that Jones first came
up with in 1984.

We denote this polynomial by V (L), and sometimes V (t), when the
link involved is clear.

Using the Jones polynomial (or equivalently the X polynomial) we
can distinguish every prime knot of 9 or fewer crossings, i.e., they all
have distinct Jones polynomials.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example I

Write the Jones polynomial of the knot shown.

We have
X (L) = −A−10 − A

−2.

Therefore,

V (L) = − (t−1/4)−10 − (t−1/4)− 2 = − t
5/2 − t

1/2.
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Polynomials The Bracket Polynomial and the Jones Polynomial

Example II

Write the Jones polynomial of the trefoil knot.

We know
X (L) = A

4 + A
12 − A

16.

So we get

V (L) = (t−1/4)4 + (t−1/4)12 − (t−1/4)16 = t
−1 + t

−3 − t
−4.
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Polynomials The Bracket Polynomial and the Jones Polynomial

A Relation Satisfied by the Jones Polynomial

Let L+, L−, and L0 be three oriented link projections that are
identical except where they appear as in the following figure.

We can use the relation of the bracket polynomial to show that the
Jones polynomials of the three links are related by the equation

t
−1

V (L+)− tV (L−) + (t−1/2 − t
1/2)V (L0) = 0.
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Polynomials Polynomials of Alternating Knots

Subsection 2

Polynomials of Alternating Knots
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Polynomials Polynomials of Alternating Knots

Labeling the Regions in a Knot Projection

We develop a second way to think about the bracket polynomial.

Consider the four regions of the projection plane that come together
at a crossing.

We label two of them with an A and two of them with a B by the
following simple rule:

Rotate the overstrand counterclockwise, passing over two of the
regions.
Label these two regions with an A and the remaining two with a B.
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Polynomials Polynomials of Alternating Knots

A-Splits and B-Splits

Recall Rule 2 for calculating the bracket polynomial:

〈×〉 = A〈)(〉+ A
−1〈≍〉.

Consider a crossing that is labeled.

We split open the crossing in two different ways.

The first splitting opens a channel between the two regions labeled A

at the crossing. We call this an A-split.
The second splitting opens a channel between the two regions labeled
B at the crossing. We call this a B-split.
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Polynomials Polynomials of Alternating Knots

States of a Link and Bracket Polynomial

We call a choice of how to split all of the n crossings in the projection
of L a state.

The bracket polynomial of L then depends on the bracket polynomials
for all of the possible states of the projection of L.

A particular state of L turns L into a corresponding link L′.

L′ has no crossings.

So L′ must be a set of nonoverlapping unknotted loops in the plane.

Set |S | be the number of loops in L′.

Then the bracket polynomial of L′ is simply

(−A2 − A
−2)|S|−1.
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Polynomials Polynomials of Alternating Knots

States of a Link and Bracket Polynomial (Cont’d)

Each time we split at a crossing, the polynomials of the two resultant
links were multiplied:

By A if the split was an A-split;
By A−1 if the split was a B-split.

So the polynomial of L′ is multiplied by Aa(S)A−b(S), where:

a(S) is the number of A-splits in S ;
b(S) is the number of B-splits in S .

It follows that the total contribution to the bracket polynomial by the
state S is

A
a(S)

A
−b(S)(−A2 − A

−2)|S|−1.
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Polynomials Polynomials of Alternating Knots

Example

Consider the particular state of the trefoil knot shown in the figure:

It contributes A1A−2 to the bracket polynomial of this projection of
the trefoil knot.
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Polynomials Polynomials of Alternating Knots

Computing the Bracket Polynomial of a Link Projection

The bracket polynomial of the projection of the link L is the sum over
all of the possible states of the contributions of all individual states,

〈L〉 =
∑

S

A
a(S)

A
−b(S)(−A2 − A

−2)|S|−1.

If we want to compute the bracket polynomial of a given projection of
L, we do the following:

List all of the links obtained by splitting all of the crossings of L in
every possible combination;
Compute the contribution to the polynomial of each term.
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Polynomials Polynomials of Alternating Knots

Example: The Bracket Polynomial of a Link Projection

We recompute the bracket polynomial of the trefoil projection shown
on the right.

Since there are three crossings in the
projection, there will be 23 = 8 states.

For each state S of the eight states, we
compute |S | by simply counting how many
circles there are in the corresponding link.
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Polynomials Polynomials of Alternating Knots

Example (Cont’d)

〈K 〉 = A3A0(−A2 − A−2)3−1 + A2A−1(−A2 − A−2)2−1

+ A2A−1(−A2 − A−2)2−1 + A2A−1(−A2 − A−2)2−1

+ A1A−2(−A2 − A−2)1−1 + A1A−2(−A2A−2)1−1

+ A1A−2(−A2 − A−2)1−1 + A0A−3(−A2 − A−2)2−1

= A3(−A2 − A−2)2 + 3A(−A2 − A−2)
+ 3A−1 + A−3(−A2 − A−2)

= A7 − A3 − A−5.
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Polynomials Polynomials of Alternating Knots

Reduced Alternating Projections

We have defined an alternating knot to be any knot that has a
projection such that if you traverse the knot in a particular direction,
you alternately pass over and then under crossings.

We call the projection an alternating projection.

We will call an alternating projection
reduced if there are no unnecessary
crossings in the projection, as in the
figure.

An unreduced alternating projection
can be simplified it to a reduced one,
thereby lowering the number of
crossings.

But if an alternating projection is reduced, there is no obvious way to
lower the number of crossings.

George Voutsadakis (LSSU) Knot Theory March 2024 37 / 90



Polynomials Polynomials of Alternating Knots

The Kauffman, Thistlethwaite, Murasugi Theorem

Theorem

Two reduced alternating projections of the same knot have the same
number of crossings.

A reduced alternating projection of a knot has the least number of
crossings for any projection of that knot.

The theorem implies that we can determine the crossing number for
any alternating knot.

We take an alternating projection and simplify it until it is reduced.
Now we know that:

All reduced alternating projections have the same number of crossings;

The least number of crossings occurs in a reduced alternating

projection.

So the least number of crossings is the number of crossings in this
projection.

George Voutsadakis (LSSU) Knot Theory March 2024 38 / 90



Polynomials Polynomials of Alternating Knots

The Span of a Polynomial

The span of a polynomial is the difference between the highest power
that occurs in the polynomial and the lowest power that occurs in the
polynomial.

Example: Consider the polynomial

A
3 − 2A2 + 1− A

1 − 7A−2.

The span of this polynomial is 3− (−2) = 5.
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Polynomials Polynomials of Alternating Knots

The Span of the Bracket Polynomial

Claim: Even though the bracket polynomial is not an invariant for
knots, the span of the bracket polynomial is an invariant.

I.e., for a knot K , if we calculate the bracket polynomial from any
projection, and then take the span, we always get the same answer.

Suppose we have two different projections P1 and P2 of the knot K .

There is a series of Reidemeister moves that take us from P1 to P2.

We have already seen that the Reidemeister moves of Types II and III
do not change the bracket polynomial at all.

So these moves leave the span of the bracket polynomial unchanged.

So it remains to examine Type I moves.
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The Span of the Bracket Polynomial (Cont’d)

Type I Reidemeister moves can change the bracket polynomial.

We show that they leave the span unaffected.

We saw that a Type I move multiplies the polynomial by A3 or A−3.

If we multiply by A3, this increases the highest power in the polynomial
by 3 and increases the lowest power in the polynomial by 3. Hence the
difference of those two, which gives the span, is unchanged.
Similarly, multiplying the entire polynomial by A−3 also leaves the span
unchanged.

Thus, all three Reidemeister moves leave the span of the bracket
polynomial unchanged.

We conclude that the span of the bracket polynomial must be the
same for all projections of the knot K .

So the span of the bracket polynomial is an invariant of the knot.
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Number of Regions in a Link Projection

Claim: The number of regions R (including the region outside the
knot) in a connected knot or link projection is always two more than
the number of crossings .

Use the fact that the Euler characteristic of a disk is always 1.

Alternatively, draw a knot, keeping count of the number of regions
created whenever a new crossing is created.
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Span of Reduced Alternating Projection

Lemma

If K has a reduced alternating projection of n crossings, then
span(〈K 〉) = 4n.

We know that the span of the bracket polynomial of K does not
depend on the projection of the knot that we use. So we may use the
reduced alternating projection given in the statement of the lemma.
Since the span is simply the difference between the highest power and
the lowest power, we look at each of these two quantities.

Each state S contributes a term Aa(S)A−b(S)(−A2 − A−2)|S|−1.

The highest power of A in this term is Aa(S)A−b(S)(A2)|S|−1.

Among all the states we therefore want to find the one that has the
highest value of a(S)− b(S) + 2(|S | − 1).

That highest value will be the highest power of A that occurs in the
bracket polynomial.
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Span of Reduced Alternating Projection (Cont’d)

In order to make a(S)− b(S) + 2(|S | − 1) as large as possible, we
want to pick a state where |S | and a(S) are large but b(S) is small.

For |S | to be large, we need there to be many disjoint circles in the link
corresponding to S .
For a(S) to be large and b(S) to be small, we want as many of the
splits as possible to be A-splits, and, consequently, as few of the splits
as possible to be B-splits.

Wr try taking all A-splits and no B-splits.

Since we have n crossings, this means a(S) = n and b(S) = 0.

We look at what happens to |S |.
Since the knot is alternating, when we place
A’s and B ’s around a crossing, the vertices in
any region of the projection are either all
labeled with A’s or all labeled with B ’s.

We shade the A regions gray while leaving the
B regions white.
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Span of Reduced Alternating Projection (Cont’d)

What happens when we open all of the A-channels?

The gray waters flood the projection, leaving
only a set of white islands in the middle of the
gray lake.

Each circle is either the boundary of an island
or the boundary of the lake (if the outermost
region is white).

Thus, if W is the number of white regions in the original projection,
including possibly the outer region, then |S | = W .

So the highest power of A in the term of this particular state is

a(S)− b(S) + 2(|S | − 1) = n + 2(W − 1).

Claim: Every other state has a highest power that is lower than this.
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Span of Reduced Alternating Projection (Cont’d)

Any other state has some B-splits.

We show that if we have a state S1 and we go to a state S2 by
changing one A-split to a B-split, the highest power cannot go up.

Since, going from S1 to S2, we decrease the number of A-splits by
one and increase the number of B splits by one.
So the highest power in the term corresponding to:

S1 is a(S1)− b(S1) + 2(|S1| − 1);
S2 is (a(S1)− 1)− (b(S1) + 1) + 2(|S2| − 1) .

So the question remaining is how different |S2| can be from |S1|.
But S2 differs from S1 in only one split. So the number of circles
either increases by one or it decreases by one.

Hence, |S2| = |S1| ± 1.

Thus the highest power of the term corresponding to S2 is

a(S1)− b(S1)− 2 + 2((|S1| ± 1)− 1).

This is certainly no greater than the highest term corresponding to S1.
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Span of Reduced Alternating Projection (Cont’d)

Thus, any time we change an A-split to a B-split, we do not increase
the highest power.

Since every state can be obtained from the all-A-split state by a
sequence of such changes, no other state has a higher power than the
all-A-split state.

Therefore, the highest power that occurs in the bracket polynomial
for K is in fact n + 2(W − 1).

By a similar argument, we can also show that the lowest power that
occurs is −n− 2(D − 1), where D is the number of darkened regions.

This lowest power occurs in the term of the polynomial coming from
the all-B-split state.
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Span of Reduced Alternating Projection (Conclusion)

We reasoned that:

Highest power is n + 2(W − 1);
Lowest power is −n− 2(D − 1).

We therefore have

span(〈K 〉) = highest power− lowest power

= n + 2(W − 1)− (−n − 2(D − 1))

= 2n + 2(W + D − 2).

But W + D is the total number of regions in the projection.

The total number of regions is n + 2.

Hence,
span(〈K 〉) = 2n + 2n = 4n.
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Reduced Alternating Projections and Number of Crossings

Theorem

Two reduced alternating projections of the same knot have the same
number of crossings.

Suppose the first projection has n crossings.

By the lemma, the span of its bracket polynomial is 4n.

But the span of the bracket polynomial is an invariant of the knot.

So the span of the bracket polynomial of the second projection is 4n.

The lemma implies that the number of crossings in the second
projection is also n.

Hence, both projections have the same number of crossings.
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Alternating Projections and Compositeness

Menasco proved that if K1#K2 is an alternating knot, then it appears
composite in any alternating projection.

This means that there is a circle in the projection plane that
intersects the knot twice, such that the factor knots on either side of
the circle are themselves alternating.

In particular, K1#K2 looks something like the following figure:
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Crossing Number of a Composite Alternating Knot

Corollary

If K1#K2 is an alternating knot, then c(K1#K2) = c(K1) + c(K2).

Choose a reduced alternating projection for K1#K2.

By Menasco’s result, K1 appears as part of this projection.

Hence, we have a reduced alternating projection of K1.

By the Kauffman, Thistlethwaite, Murasugi Theorem, the least
number of crossings for K1 is the number appearing in this picture.

Since K2 is alternating, by the same result, its least number of
crossings is the number appearing in this picture.

But K1#K2 is alternating.

So its least number of crossings also occurs in this picture.

We conclude that c(K1#K2) = c(K1) + c(K2).
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Subsection 3

The Alexander and HOMFLY Polynomials
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The Alexander Polynomial ∆

The first rule is that the trivial knot has trivial polynomial equal to 1.

Rule 1: ∆(©) = 1.

This holds true for any projection of the trivial knot, not just the
usual one.

For the second rule: We take three
projections of links L+, L− and L0,
such that they are identical except
in the region depicted in the figure.

Then the polynomials of these three links are related through our
second rule:

Rule 2: ∆(L+)−∆(L−) + (t1/2 − t
−1/2)∆(L0) = 0.
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Invariance of the Alexander Polynomial

The two rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links.

In particular, the following hold:

If we are given a projection of a knot, we can compute the Alexander
polynomial of the knot in that projection;
We will get the same answer as in any projection.

So we do not need to keep the projections frozen throughout the
calculation, as we had to do with the bracket polynomial.
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Example

We compute the Alexander polynomial of the trefoil knot.
Treating the trefoil knot as L+, with the circled crossing as the one to
which Rule 2 is to be applied, we obtain

∆( )−∆( ) + (t1/2 − t
−1/2)∆( ) = 0.

Now, we have
∆( ) = ∆(©) = 1.

Moreover,

∆( )−∆( ) + (t1/2 − t
−1/2)∆( ) = 0.

The Alexander polynomial of any splittable link is 0, ∆( ) = 0.

Therefore, ∆( ) = −t1/2 + t−1/2.
So we get

∆( ) = (t1/2 − t
−1/2)2 + 1 = t − 1 + t

−1.
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Alexander Polynomial and the Trivial Knot

Unlike the Jones polynomial, there are known examples of nontrivial
knots with Alexander polynomial equal to 1.

So one of the disadvantages of the Alexander polynomial is that it
cannot distinguish all knots from the trivial knot.

Example: The (−3, 5, 7)-pretzel knot pictured below has Alexander
polynomial 1.
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The Computation Takes Finitely Many Steps

When we discussed unknotting number, we proved that any
projection can be turned into a projection of a trivial link by changing
some subset of the crossings.

Suppose we have a knot or link for which we would like to compute
the Alexander polynomial.

Given a particular projection, we could choose a crossing, such that it
is one of the crossings that we would like to change in order to turn the
projection into a trivial projection.
Letting the original projection correspond to either L+ or L

−
, we can

use Rule 2 in order to obtain the polynomial of our original link in
terms of:

The polynomial of a link with a projection with one fewer crossing;

The polynomial of a link with a projection that is one crossing closer to

the trivial projection.

Iterating this procedure allows us to obtain the polynomial of the
original link in terms of the polynomials of a set of trivial links.
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The Resolving Tree

This process of repeatedly choosing a crossing, and then applying
Rule 2 to reduce the process to two simpler links, yields a tree of links
called the resolving tree.

At the top is our original link.
At the bottom, we find all of the trivial links that result from
repeatedly applying Rule 2.

Example: The resolving tree for the trefoil knot:
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The Depth of a Link

Define the depth of a resolving tree to be the number of levels of
links in the tree, not including the initial level at the top.

Example: The resolving tree shown for the trefoil has depth two.

Define the depth of a link L to be the minimal depth for any
resolving tree for that link.

The depth of a link is an invariant for links that measures the
complexity of the calculation of the Alexander polynomial.

The following facts are known:

The only links of depth zero are the trivial links.
Bleiler and Scharlemann:

A knot of depth one is always a trivial knot;

The links of depth one are all Hopf links, possibly with a few extra

disentangled trivial components added in.

Scharlemann and Thompson: The links of depth two have also been
classified.
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The HOMFLY Polynomial

The HOMFLY polynomial is a polynomial with two variables m and
ℓ that generalizes both the Jones polynomial and the Alexander
polynomial.

Example: The oriented link in the figure

has HOMFLY polynomial

P = (−ℓ3 − ℓ5)m−1 + (2ℓ3 − ℓ5 − ℓ7)m + (−ℓ3 + ℓ5)m3.
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Rule 1 for the HOMFLY Polynomial

We look at the rules used to calculate the HOMFLY polynomial.

The first rule is
Rule 1: P(©) = 1.

The unknot has polynomial 1.

As with the Alexander polynomial, this holds true for any projection
of the unknot.
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Rule 2 for the HOMFLY Polynomial

The second rule: Consider three oriented links that are identical
except in the region appearing the figure.

Rule 2: ℓP(L+) + ℓ−1
P(L−) +mP(L0) = 0.

Notice the similarity of this rule to:

Rule 2 for the Alexander polynomial;
The relation satisfied by the Jones polynomial in the first section.
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Example

We use the rules to calculate the HOMFLY polynomials for some
links.

The three links shown are identical except at the one crossing.

Thus, they form a triple of links L+, L− and L0.

Hence, we have that ℓP(L+) + ℓ−1P(L−) +mP(L0) = 0.

Both L+ and L− are simply slightly twisted pictures of the unknot.

Hence P(L+) = P(L−) = 1.

Therefore, mP(L0) = −(ℓ+ ℓ−1).

Thus, we have shown that P(L0) = −m−1(ℓ+ ℓ−1).
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Example

Determine the polynomial of the trefoil in the figure.

We have
ℓ−1P(T ) + ℓ+mP(T ′) = 0

ℓ(−m−1(ℓ+ ℓ−1)) + ℓ−1P(T ′) +m = 0.

The second gives P(T ′) = m−1ℓ3 +m−1ℓ−mℓ.

Plugging into the first, we get

ℓ−1P(T ) = −ℓ−m(m−1ℓ3 +m−1ℓ−mℓ)

P(T ) = −2ℓ2 − ℓ4 +m2ℓ2.
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HOMFLY Polynomial and Orientation

Claim: The HOMFLY polynomial of a knot is identical to the
HOMFLY polynomial of the same knot, but with the opposite
orientation.

This shows that we need not distinguish between orientations when
we are discussing the HOMFLY polynomial of a knot.

If we are dealing with a link, however, changing some but not all of
the orientations on the components can have an effect on the
polynomial.
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Computation of the HOMFLY Polynomial

We can always compute the HOMFLY polynomial of a link.

As with the Alexander polynomial, all that we need is a resolving tree
in order to do the calculation.

However, the calculation can be very slow, since a link with c

crossings would eventually reduce to 2c links, none of which have any
crossings.
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HOMFLY Polynomial and Split Union

Suppose L1 ∪ L2 is the split union of the two links L1 and L2.

This is the link obtained by moving L1 over near L2, but not
overlapping them or linking them in any way.

L1 and L2 can be separated by a sphere, so L1 ∪ L2 is splittable.

Then
P(L1 ∪ L2) = −(ℓ+ ℓ−1)m−1

P(L1)P(L2).
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Example

Consider the trivial knot on two components.

It is the split union of two unknots L1 and L2.

Using the split union rule for the HOMFLY polynomial, we get

P(L1 ∪ L2) = − (ℓ+ ℓ−1)m−1P(L1)P(L2)

= −m−1(ℓ+ ℓ−1).

This coincides with the expression obtained previously.
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HOMFLY Polynomial and Composition

A second interesting property of the HOMFLY polynomial is the
following:

P(L1#L2) = P(L1)P(L2).

So the polynomial of the composition of two links is simply the
product of the polynomials of the factor links.
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Example

Consider the composite of two trefoils L.

We showed that the HOMFLY polynomial of a trefoil is

−2ℓ2 − ℓ4 + ℓ2m2.

So we get
P(L) = (−2ℓ2 − ℓ4 + ℓ2m2)2.
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HOMFLY Polynomials of Composites

We did not specify how to take the composition of a link.

That is, we did not say which component of the first link should be
connected up to which component of the second link.

In fact, it does not matter.

All (possibly distinct) composite links will have the same polynomial.

This is our first example of links that are certainly distinct, but that
cannot be distinguished by the HOMFLY polynomial.
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Formula for L1#L2 from Formula for L1 ∪ L2

The composite link L1#L2 has a pro-
jection that appears as in the figure on
the right.

Without cutting the strands to L1, we flip that part of the projection
corresponding to L2 in two different ways, to get the two links L+ and
L−.

Note that both of these projections are still projections of L1#L2.

In addition, L0 is simply the disjoint union L1 ∪ L2.
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Formula for L1#L2 from Formula for L1 ∪ L2 (Cont’d)

The second rule for calculation of the P polynomial then says

ℓP(L1#L2) + ℓ−1
P(L1#L2) +mP(Ll ∪ L2) = 0.

But we know that

P(L1 ∪ L2) = −(ℓ+ ℓ−1)m−1
P(L1)P(L2).

Hence we have

ℓP(L1#L2) + ℓ−1P(L1#L2) +m(−(ℓ+ ℓ−1)m−1P(L1)P(L2)) = 0

(ℓ+ ℓ−1)P(L1#L2) + (−(ℓ+ ℓ−1)P(L1)P(L2)) = 0

P(L1#L2) = P(L1)P(L2).

So the polynomials of the knots behave exactly as the integers do.

The polynomial of a composite knot factors into the polynomials of
all of its factor knots.
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HOMFLY Polynomial and Distinguishability of Links

The HOMFLY polynomial is better than either the Jones polynomial
or the Alexander polynomial at telling apart knots and links, since we
will see that both of those are simply special cases of this polynomial.

But we have already seen examples of links that it will not
distinguish, particularly composite variants of two links.

The HOMFLY polynomial is not even for knots what is called a
complete invariant, i.e., it cannot distinguish all knots.
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Example

A pair of mutant knots will always have the same HOMFLY
polynomial.

Mutants are troublesome in general.

They cannot be distinguished by hyperbolic volume.

They cannot be distinguished by genus either.
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The HOMFLY Polynomial and the Jones Polynomial

Take the HOMFLY Polynomial.

Let i =
√
−1 be the imaginary unit.

Perform the replacements:

ℓ← it
−1 and m← i(t−1/2 − t

1/2).

Recall Rule 2 for the HOMFLY polynomial

ℓP(L+) + ℓ−1
P(L−) +mP(L0) = 0.

It gives

it
−1

P(L+) + (it−1)−1
P(L−) + i(t−1/2 − t

1/2)P(L0) = 0.

Upon multiplication by −i , we get

t
−1

P(L+)− tP(L−) + (t−1/2 − t
1/2)P(L0) = 0.

This is the rule proven previously for the Jones polynomial.
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Example

We have seen that the HOMFLY polynomial of the trefoil knot is

P(K ) = −2ℓ2 − ℓ4 + ℓ2m2.

Substituting for m and ℓ, we have that

V (K ) = − 2(it−1)2 − (it−1)4 + (it−1)2(t−1/2 − t1/2)2

= 2t−2 − t−4 − t−2(t−1 − 2 + t)

= t−4 − t−3 + t−1.

This is exactly the Jones polynomial for the trefoil.
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The HOMFLY Polynomial and the Alexander Polynomial

In a similar way, take the HOMFLY Polynomial.

Perform the replacements:

ℓ← i and m← i(t1/2 − t
−1/2).

Then one obtains the Alexander polynomial.

This can be proven by showing that the resulting polynomial obeys
the rules for the Alexander polynomial.

Thus, the HOMFLY polynomial carries the information of both the
Jones and the Alexander polynomials within it.

So it is a more powerful invariant than either the Jones polynomial or
the Alexander polynomial.
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Subsection 4

Amphichirality
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Amphichiral Knots

Recall that an amphichiral knot is a knot that is ambient isotopic to
its mirror image.

That is to say, a knot is amphichiral if it can be deformed through
space to the knot obtained by changing every crossing in the
projection of the knot to the opposite crossing.

We also insist that an orientation on the knot is taken to the
corresponding orientation on the mirror image of the knot under the
ambient isotopy.

We denote by K ∗ the mirror image of K .

George Voutsadakis (LSSU) Knot Theory March 2024 80 / 90



Polynomials Amphichirality

Amphichiral Knots and the Bracket Polynomial

We show that the bracket polynomial of K ∗ is just the bracket
polynomial of K where the variable A is replaced by A−1.

Consider K and K ∗ and fix a crossing of K and its mirror image in K ∗.

Denote by K)(, K≍, K
∗
)( and K ∗

≍ the knots with one less crossing
obtained by opening up the fixed crossing in K and K ∗, respectively,
in the way suggested by the notation.

Then, denoting by B(K )(A) := 〈K 〉, we have:

B(K )(A) = AB(K)()(A) + A−1B(K≍)(A),

B(K ∗)(A) = AB(K ∗
≍)(A) + A−1B(K ∗

)()(A).

Now we compute, using induction,

B(K )(A−1) = AB(K≍)(A
−1) + A−1B(K)()(A

−1)

= AB(K ∗
≍)(A) + A−1B(K ∗

)()(A)

= B(K ∗)(A).
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Amphichiral Knots and the X Polynomial

We show that the X polynomial of K ∗ is just the X polynomial of K
where the variable A is replaced by A−1.

Keep the same notation as in the preceding slide.

Note that w(K ∗) = −w(K ).

So we have

X (K ∗)(A) = (−A3)−w(K∗)B(K ∗)(A)

= (−A3)w(K)B(K )(A−1)

= (−(A−1)3)−w(K)B(K )(A−1)

= X (K )(A−1).
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Amphichiral Knots and Palindromic X Polynomial

If K is an amphichiral knot, then K is in fact the same knot as K ∗,
since they are simply in distinct projections.

Hence, it must be the case that XK (A) = XK∗(A), where XK (A)
means the X polynomial of K with variable A.

By the preceding claim, XK (A) = XK∗(A−1).

Thus, if K is an amphichiral knot, it must be that

XK (A) = XK∗(A
−1) = XK (A

−1).

Hence the polynomial of an amphichiral knot must be palindromic,
i.e., the coefficients must be the same backwards or forwards, where
we list all of the coefficients, including all the zeros.
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Example: The Figure-Eight Knot

We showed that the figure-eight knot was amphichiral utilizing the
Reidemeister moves.

Therefore its polynomial should be palindromic.

Its polynomial is
A
8 − A

4 + 1− A
−4 + A

−8.

We see that, replacing every A by an A−1 gives us the same
polynomial back again.

So the polynomial is indeed palindromic.

George Voutsadakis (LSSU) Knot Theory March 2024 84 / 90



Polynomials Amphichirality

Example: The Trefoil Knot

The trefoil knot has polynomial A4 + A12 − A16.

This polynomial is not palindromic.

If we replace every A by an A−1, we get

A
−4 + A

−12 − A
−16.

This is not the same polynomial.

This shows that the trefoil knot is not amphichiral, i.e., the trefoil
knot is distinct from its mirror image.
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Example: The Trefoil Knot (Cont’d)

All along we have been discussing the trefoil as if it were a single knot.

But it turns out it is actually two knots.

The left-hand trefoil: The right-hand trefoil:

George Voutsadakis (LSSU) Knot Theory March 2024 86 / 90



Polynomials Amphichirality

Amphichiral Alternating Knots

We have already seen that if K is an alternating knot in a reduced
alternating projection of n crossings, then

max deg〈K 〉 = n+ 2(W − 1),

min deg〈K 〉 = −n− 2(D − 1).

Since X (K ) = (−A)−3w(K)〈K 〉, we have that

max degX (K ) = n + 2(W − 1) − 3w(K ),

min degX (K ) = − n − 2(D − 1)− 3w(K ).
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Amphichiral Alternating Knots (Cont’d)

But we have already seen that for an amphichiral knot

XK (A) = XK (A
−1).

So
max degX (K ) = −min degX (K ).

Thus,

n + 2(W − 1)− 3w(K ) = −(−n − 2(D − 1)− 3w(K ))

n+ 2W − 2− 3w(K ) = n + 2D − 2 + 3w(K )

6w(K ) = 2(W − D)

3w(K ) = W − D.

For an amphichiral alternating knot, the difference in the number of
white regions and darkened regions in any reduced alternating
projection is exactly three times the writhe.
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Amphichiral Knots and the HOMFLY Polynomial

Since the information of the Jones and X polynomials is embedded
within the HOMFLY polynomial, it should also provide us with
information about amphichirality.

In fact, the following holds.

Claim: The HOMFLY polynomial of K ∗ is obtained by replacing each
ℓ in the HOMFLY polynomial of K with an ℓ−1.

Corollary: The left-hand and right-hand trefoil knots are distinct.
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Remarks

Although surprisingly effective at determining the amphichirality of
knots, the HOMFLY polynomial is not infallible.

Consider the knot K in the figure.

It has HOMFLY polynomial

P(K ) = (−2ℓ−2 − 3− 2ℓ2) + (ℓ−2 + 4 + ℓ2)m2 −m
4.

Note that the polynomial is unchanged when
every ℓ is replaced by an ℓ−1.

Hence, P(K ) = P(K ∗).

However, there exists a “signature” invariant
coming out of algebraic topology that proves
that K is not amphichiral.
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