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Discrete Time Markov Chains Introduction
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Discrete Time Markov Chains Introduction

Markov Processes and Markov Chains

We study random processes that retain no memory of where they
have been in the past.

This means that only the current state of the process can influence
where it goes next.

Such a process is called a Markov process.

We deal exclusively with the case where the process can assume only
a finite or countable set of states, when it is referred to as a Markov

chain.
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Discrete Time Markov Chains Introduction

Discrete and Continuous Time

We consider chains both in discrete time

n ∈ Z
+ = {0, 1, 2, . . .}

and continuous time

t ∈ R
+ = [0,∞).

The letters n,m, k will always denote integers.

The letters t and s will refer to real numbers.

Thus, we write:

(Xn)n≥0 for a discrete-time process;
(Xt)t≥0 for a continuous-time process.
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Discrete Time Markov Chains Introduction

Example: Discrete Time

We move from state 1 to state 2
with probability 1.

From state 3, we move either to 1 or
to 2 with equal probability 1/2.

From 2, we jump to 3 with
probability 1/3, otherwise stay at 2.

We might have drawn a loop from 2 to itself with label 2/3.

Since the total probability on jumping from 2 must equal 1, this does
not convey any more information.

So one may leave loops out.
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Discrete Time Markov Chains Introduction

Example: Continuous Time

When in state 0, we wait for a random time with exponential
distribution of parameter λ ∈ (0,∞), then jump to 1.

Thus the density function of the waiting time T is given by

fT (t) = λe−λt , for t ≥ 0.

We write T ∼ E (λ) for short.
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Discrete Time Markov Chains Introduction

Example: Poisson Process of Rate λ

Here, when we get to 1, we do not stop but, after another
independent exponential time of parameter λ, jump to 2, and so on.

The resulting process is called the Poisson process of rate λ.
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Discrete Time Markov Chains Introduction

Example: Continuous Time

In state 3, we take two independent
exponential times T1 ∼ E (2) and
T2 ∼ E (4).

If T1 is the smaller, we go to 1 after
time T1;
If T2 is the smaller, we go to 2 after
time T2.

The rules for states 1 and 2 are as
given in the preceding examples.

We will show later that:

The time spent in 3 is exponential of parameter 2 + 4 = 6;
The probability of jumping from 3 to 1 is 2

2+4 = 1
3 .
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Discrete Time Markov Chains Introduction

Example: Discrete Time

The states may be partitioned into communicating classes, namely
{0}, {1, 2, 3} and {4, 5, 6}.
Two of these classes are closed, meaning that you cannot escape.

The closed classes here are recurrent, meaning that you return again
and again to every state.

The class {0} is transient.

The class {4, 5, 6} is periodic, but {1, 2, 3} is not.
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Discrete Time Markov Chains Introduction

Example: Discrete Time (Cont’d)

The following hold:

(a) Starting from 0, the probability of hitting 6 is 1
4 .

(b) Starting from 1, the probability of hitting 3 is 1.
(c) Starting from 1, it takes on average three steps to hit 3.
(d) Starting from 1, the long-run proportion of time spent in 2 is 3

8 .
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Discrete Time Markov Chains Introduction

Example: Discrete Time (Cont’d)

Let p
(n)
ij be the probability of being in state j after n steps, when

starting from state i .

Then we also have:

(e) limn→∞ p
(n)
01 = 9

32 ;

(f) p
(n)
04 does not converge as n → ∞;

(g) limn→∞ p
(3n)
04 = 1

124 .
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Discrete Time Markov Chains Definition and Basic Properties

Subsection 2

Definition and Basic Properties
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Discrete Time Markov Chains Definition and Basic Properties

State Spaces and Distributions

Let I be a countable set.

Each i ∈ I is called a state and I is called the state space.

We say that λ = (λi : i ∈ I ) is a measure on I if 0 ≤ λi < ∞, for all
i ∈ I .

If, in addition the total mass
∑

i∈I λi equals 1, then we call λ a
distribution.

We work throughout with a probability space (Ω,F ,P).

A random variable X with values in I is a function X : Ω → I .

Suppose we set λi = P(X = i) = P({ω : X (ω) = i}).
Then λ defines a distribution, the distribution of X .

We think of X as modelling a random state which takes the value i

with probability λi .
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Discrete Time Markov Chains Definition and Basic Properties

Stochastic Matrices

We say that a matrix P = (pij : i , j ∈ I ) is stochastic if every row
(pij : j ∈ I ) is a distribution.

There is a one-to-one correspondence between stochastic matrices P
and the sort of diagrams described in the Introduction.

Example:

P =

(
1− α α
β 1− β

)
;

P =




0 1 0

0 1
2

1
2

1
2 0 1

2


.
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Discrete Time Markov Chains Definition and Basic Properties

Markov Chains

We say that (Xn)n≥0 is a Markov chain with initial distribution λ
and transition matrix P if:

(i) X0 has distribution λ;
(ii) For n≥ 0, conditional on Xn = i , Xn+1 has distribution (pij : j ∈ I ) and

is independent of X0, . . . ,Xn−1.

More explicitly, these conditions state that, for n ≥ 0 and
i1, . . . , in+1 ∈ I ,

(i) P(X0 = i1) = λi1 ;
(ii) P(Xn+1 = in+1|X0 = i1, . . . ,Xn = in) = pinin+1 .

We say that (Xn)n≥0 is Markov(λ,P) for short.

If (Xn)0≤n≤N is a finite sequence of random variables satisfying
Conditions (i) and (ii), for n = 0, . . . ,N − 1, then we again say
(Xn)0≤n≤N is Markov(λ,P).
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Discrete Time Markov Chains Definition and Basic Properties

Characterization Theorem

Theorem

A discrete-time random process (Xn)0≤n≤N is Markov(λ,P) if and only if
for all i0, i1, . . . , iN ∈ I ,

P(X0 = i0,X1 = i1, . . . ,XN = iN) = λi0pi0i1pi1i2 · · · piN−1iN .

Suppose (Xn)0≤n≤N is Markov(λ,P). Then

P(X0 = i0,X1 = i1, . . . ,XN = iN)

= P(X0 = i0)P(X1 = i1|X0 = i0)
· · ·P(XN = iN |X0 = i0, . . . ,XN−1 = iN−1)

= λi0pi0i1 · · · piN−1iN .
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Discrete Time Markov Chains Definition and Basic Properties

Characterization Theorem (Converse)

On the other hand, suppose the equation holds for N.

By summing both sides over iN ∈ I and using
∑

j∈I pij = 1, we see
that the equation holds for N − 1.

By induction, for all n = 0, 1, . . . ,N,

P(X0 = i0,X1 = i1, . . . ,Xn = in) = λi0pi0i1 · · · pin−1in .

In particular:
P(X0 = i0) = λi0 ;
For n = 0, 1, . . . ,N − 1,

P(Xn+1 = in+1|X0 = i0, . . . ,Xn = in)

=
P(X0 = i0, . . . ,Xn = in,Xn+1 = in+1)

P(X0 = i0, . . . ,Xn = in)

= pinin+1 .

So (Xn)0≤n≤N is Markov(λ,P).
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Discrete Time Markov Chains Definition and Basic Properties

Markov Property

Write δi = (δij : j ∈ I ) for the unit mass at i , where

δij =

{
1, if i = j ,
0, otherwise.

Theorem (Markov Property)

Let (Xn)n≥0 be Markov(λ,P). Then, conditional on Xm = i , (Xm+n)n≥0 is
Markov(δi ,P) and is independent of the random variables X0, . . . ,Xm.

We have to show that, for any event A determined by X0, . . . ,Xm,

P({Xm = im, . . . ,Xm+n = im+n} ∩ A|Xm = i)
= δiimpimim+1 · · · pim+n−1im+nP(A|Xm = i).

Then the result follows by the preceding theorem.
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Discrete Time Markov Chains Definition and Basic Properties

Markov Property (Cont’d)

First consider the case of elementary events

A = {X0 = i0, . . . ,Xm = im}.

In that case we have to show

P(X0=i0,...,Xm+n=im+n and i=im)
P(Xm=i)

= δiimpimim+1 · · · pim+n−1im+n × P(X0=i0,...,Xm=im and i=im)
P(Xm=i) .

This is true by the preceding theorem.

In general, any event A determined by X0, . . . ,Xm may be written as
a countable disjoint union of elementary events A =

⋃∞
k=1 Ak .

In this case, the desired identity for A follows by summing up the
corresponding identities for Ak .
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Discrete Time Markov Chains Definition and Basic Properties

Matrix Notation

We regard P as a matrix whose entries are indexed by I × I .

We regard distributions and measures λ as row vectors whose
components are indexed by I .

When I is finite we will often label the states 1, 2, . . . ,N.

In this case, λ will be an N-vector and P an N × N-matrix.

For finite objects, matrix multiplication is a familiar operation.

(λP)j =

N∑

i=1

λipij , (P2)ik =

N∑

j=1

pijpjk .
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Discrete Time Markov Chains Definition and Basic Properties

Matrix Notation (Cont’d)

We extend matrix multiplication to the general case.

We define a new measure λP and a new matrix P2 by

(λP)j =
∑

i∈I
λipij , (P2)ik =

∑

j∈I
pijpjk .

We define Pn similarly for any n.

We agree that P0 is the identity matrix I , where

(I )ij = δij .

We write p
(n)
ij = (Pn)ij , for the (i , j) entry in Pn.
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Discrete Time Markov Chains Definition and Basic Properties

Conditional Probability Pi

In the case where λi > 0 we shall write Pi(A) for the conditional
probability P(A|X0 = i).

By the Markov property at time m = 0, under Pi , (Xn)n≥0 is
Markov(δi ,P).

So the behavior of (Xn)n≥0 under Pi does not depend on λ.
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Discrete Time Markov Chains Definition and Basic Properties

Transition Probabilities

Theorem

Let (Xn)n≥0 be Markov(λ,P). Then, for all n,m ≥ 0,

(i) P(Xn = j) = (λPn)j ;

(ii) Pi(Xn = j) = P(Xn+m = j |Xm = i) = p
(n)
ij .

(i) By a previous theorem,

P(Xn = j) =
∑

i0∈I · · ·
∑

in−1∈I P(X0 = i0, . . . ,Xn−1 = in−1,Xn = j)

=
∑

i0∈I · · ·
∑

in−1∈I λi0pi0i1 · · · pin−1j

= (λPn)j .

(ii) By the Markov property, conditional on Xm = i , (Xm+n)n≥0 is
Markov(δi ,P). So we just take λ = δi in Part (i).

We call p
(n)
ij the n-step transition probability from i to j .
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Discrete Time Markov Chains Definition and Basic Properties

Example

The most general two-state chain has
transition matrix of the form

P =

(
1− α α
β 1− β

)
.

We exploit the relation Pn+1 = PnP to write

p
(n+1)
11 = p

(n)
12 β + p

(n)
11 (1− α).

We also know that

p
(n)
11 + p

(n)
12 = P1(Xn = 1 or 2) = 1.
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Discrete Time Markov Chains Definition and Basic Properties

Example (Cont’d)

We wrote
p
(n+1)
11 = p

(n)
12 β + p

(n)
11 (1− α),

p
(n)
11 + p

(n)
12 = 1.

By eliminating p
(n)
12 we get a recurrence relation for p

(n)
11 ,

p
(n+1)
11 = (1− α− β)p

(n)
11 + β, p

(0)
11 = 1.

This has a unique solution

p
(n)
11 =

{
β

α+β + α
α+β (1− α− β)n, for α+ β > 0

1, for α+ β = 0.
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Discrete Time Markov Chains Definition and Basic Properties

Example: Virus Mutation

Suppose a virus can exist in N different strains.

In each generation it either stays the same, or with probability α
mutates to another strain, which is chosen at random.

We compute the probability that the strain in the n-th generation is
the same as that in the 0-th generation.

We could model this process as an N-state chain.

The N × N transition matrix P given by

pii = 1− α, pij =
α

N − 1
, for i 6= j .

Then the probability we seek is found by computing p
(n)
11 .

In this example there is a much simpler approach, which relies on
exploiting the symmetry present in the mutation rules.
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Discrete Time Markov Chains Definition and Basic Properties

Example: Virus Mutation (Cont’d)

At any time a transition is made:
From the initial state to another with probability α;
From another state to the initial state with probability α

N−1 .

Thus, we have a two-state chain with the depicted diagram.

By putting β = α
N−1 in the preceding example, we find

p
(n)
11 = β

α+β + α
α+β (1− α− β)n

=
α

N−1

α+ α

N−1
+ α

α+ α

N−1
(1− α− α

N−1)
n

= 1
N
+
(
1− 1

N

) (
1− αN

N−1

)n
.
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Discrete Time Markov Chains Definition and Basic Properties

Example

Consider the three-state chain shown.

It has transition matrix

P =




0 1 0
0 1

2
1
2

1
2 0 1

2


 .

We want to find a general formula for p
(n)
11 .

First we compute the eigenvalues of P .

Its characteristic equation is

det(x − P) = 0

x(x − 1
2)

2 − 1
4 = 0

1
4(x − 1)(4x2 + 1) = 0.

So the eigenvalues are 1, i
2 and − i

2 .
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Discrete Time Markov Chains Definition and Basic Properties

Example (Cont’d)

It follows that P is diagonalizable with

P = U




1 0 0

0 i
2 0

0 0 − i
2


U−1,

for some invertible matrix U.

So we get Pn = U




1 0 0

0 ( i2 )
n 0

0 0 (− i
2)

n


U−1.

We conclude that p
(n)
11 has the form

p
(n)
11 = a + b

(
i

2

)n

+ c

(
− i

2

)n

,

for some constants a, b and c .
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Discrete Time Markov Chains Definition and Basic Properties

Example (Cont’d)

We found that p
(n)
11 has the form

p
(n)
11 = a + b

(
i

2

)n

+ c

(
− i

2

)n

,

for some constants a, b and c .

The answer we want is real and
(
± i

2

)n

=

(
1

2

)n

e±inπ/2 =

(
1

2

)n (
cos

nπ

2
± i sin

nπ

2

)
.

So it makes sense to rewrite p
(n)
11 in the form

p
(n)
11 = α+

(
1

2

)n {
β cos

nπ

2
+ γ sin

nπ

2

}

for constants α, β and γ.
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Discrete Time Markov Chains Definition and Basic Properties

Example (Conclusion)

The first few values of p
(n)
11 are easy to write down.

So we get equations to solve for α, β and γ:

1 = p
(0)
11 = α+ β;

0 = p
(1)
11 = α+ 1

2γ;

0 = p
(2)
11 = α− 1

4β.

So we get α = 1
5 , β = 4

5 , γ = −2
5 .

It follows that

p
(n)
11 =

1

5
+

(
1

2

)n {4

5
cos

nπ

2
− 2

5
sin

nπ

2

}
.
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Discrete Time Markov Chains Definition and Basic Properties

The General Method

The following method may in principle be used to find a formula for

p
(n)
ij for any M-state chain and any states i and j .

(i) Compute the eigenvalues λ1, . . . , λM of P by solving the characteristic
equation.

(ii) If the eigenvalues are distinct, then p
(n)
ij has the form

p
(n)
ij = a1λ

n
1 + · · ·+ aMλn

M ,

for some constants a1, . . . , aM (depending on i and j).
If an eigenvalue λ is repeated (once, say) then the general form
includes the term (an + b)λn.

(iii) As roots of a polynomial with real coefficients, complex eigenvalues will
come in conjugate pairs and these are best written using sine and
cosine, as in the preceding example.
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Discrete Time Markov Chains Class Structure

Subsection 3

Class Structure
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Discrete Time Markov Chains Class Structure

Communicating Classes of a Chain

We say that i leads to j , written i → j , if

Pi(Xn = j for some n ≥ 0) > 0.

We say i communicates with j , written i ↔ j , if

i → j and j → i .
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Discrete Time Markov Chains Class Structure

A Characterization Theorem

Theorem

For distinct states i and j the following are equivalent:

(i) i → j ;

(ii) pi1i2pi2i3 · · · pin−1in > 0, for some i1, i2, . . . , in, with i1 = i and in = j ;

(iii) p
(n)
ij > 0, for some n ≥ 0.

Observe that

p
(n)
ij ≤ Pi (Xn = j for some n ≥ 0) ≤

∞∑

n=0

p
(n)
ij .

This proves the equivalence of (i) and (iii).

We also have p
(n)
ij =

∑
i2,...,in−1

pii2pi2i3 · · · pin−1j .

So (ii) and (iii) are equivalent.
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Discrete Time Markov Chains Class Structure

Closed, Absorbing and Irreducible Classes

It is clear from (ii) that i → j and j → k imply i → k .

Also i → i for any state i .

So ↔ satisfies the conditions for an equivalence relation on I .

Thus ↔ partitions I into communicating classes.

We say that a class C is closed if

i ∈ C and i → j imply j ∈ C .

Thus, a closed class is one from which there is no escape.

A state i is absorbing if {i} is a closed class.

A chain or transition matrix P , where the set I of states is a single
class, is called irreducible.
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Discrete Time Markov Chains Class Structure

Example

Find the communicating classes associated to the stochastic matrix

P =




1
2

1
2 0 0 0 0

0 0 1 0 0 0
1
3 0 0 1

3
1
3 0

0 0 0 1
2

1
2 0

0 0 0 0 0 1
0 0 0 0 1 0




.

The solution is obvious from the
diagram.

The classes are {1, 2, 3}, {4} and
{5, 6}.
Only {5, 6} is closed.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Subsection 4

Hitting Times and Absorption Probabilities
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Hitting Times

Let (Xn)n≥0 be a Markov chain with transition matrix P .

The hitting time of a subset A of I is the random variable
HA : Ω → {0, 1, 2, . . .} ∪ {∞} given by

HA(ω) = inf {n ≥ 0 : Xn(ω) ∈ A},

where we agree that the infimum of the empty set ∅ is ∞.

The probability starting from i that (Xn)n≥0 ever hits A is then

hAi = Pi(H
A < ∞).
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Absorption Probabilities

When A is a closed class,

hAi = Pi(H
A < ∞)

is called the absorption probability.

The mean time taken for (Xn)n≥0 to reach A is given by

kAi = Ei(H
A) =

∑

n<∞
nPi(H

A = n) +∞Pi(H
A = ∞).

We shall often write less formally

hAi = Pi(hit A), kAi = Ei(time to hit A).

These quantities can be calculated explicitly by means of certain
linear equations associated with the transition matrix P .
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Example

Consider the chain with the following di-
agram:

Starting from 2, we calculate the probability of absorption in 4.

We also calculate the time until the chain is absorbed in 1 or 4.

Introduce hi = Pi(hit 4), ki = Ei (time to hit {1, 4}).
Clearly, h1 = 0, h4 = 1 and k1 = k4 = 0.

Suppose now that we start at 2.

Consider the situation after making one step.

With probability 1
2 we jump to 1;

With probability 1
2 we jump to 3.

So
h2 = 1

2h1 +
1
2h3,

k2 = 1 + 1
2k1 +

1
2k3.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Example (Cont’d)

We got
h2 = 1

2h1 +
1
2h3,

k2 = 1 + 1
2k1 +

1
2k3.

Similarly,
h3 = 1

2h2 +
1
2h4,

k3 = 1 + 1
2k2 +

1
2k4.

Hence
h2 = 1

2h3 =
1
2(

1
2h2 +

1
2),

k2 = 1 + 1
2k3 = 1 + 1

2(1 +
1
2k2).

So, starting from 2:

The probability of hitting 4 is 1
3 ;

The mean time to absorption is 2.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Hitting Probabilities

Theorem

The vector of hitting probabilities hA = (hAi : i ∈ I ) is the minimal
non-negative solution to the system of linear equations

{
hAi = 1, for i ∈ A,
hAi =

∑
j∈I pijh

A
j for i 6∈ A.

Minimality means that if x = (xi : i ∈ I ) is another solution with xi ≥ 0,
for all i , then xi ≥ hAi , for all i .

First we show that hA satisfies the system.

Suppose X0 = i ∈ A. Then HA = 0. So hAi = 1.

Suppose X0 = i 6∈ A. Then HA ≥ 1.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Hitting Probabilities (Cont’d)

By the Markov property,

Pi(H
A < ∞|X1 = j) = Pj(H

A < ∞) = hAj .

Moreover,

hAi = Pi(H
A < ∞)

=
∑

j∈I Pi(H
A < ∞,X1 = j)

=
∑

j∈I Pi(H
A < ∞|X1 = j)Pi (X1 = j)

=
∑

j∈I pijh
A
j .

Suppose, now, that x = (xi : i ∈ I ) is a solution of the system.

For i ∈ A, hAi = xi = 1.
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Hitting Probabilities (Cont’d)

Suppose i 6∈ A. Then

xi =
∑

j∈I
pijxj =

∑

j∈A
pij +

∑

j 6∈A
pijxj .

Substitute for xj to obtain

xi =
∑

j∈A pij +
∑

j 6∈A pij(
∑

k∈A pjk +
∑

k 6∈A pjkxk)

= Pi(X1 ∈ A) + Pi(X1 6∈ A,X2 ∈ A) +
∑

j 6∈A
∑

k 6∈A pijpjkxk .

By repeated substitution for x in the final term we obtain after n steps

xi = Pi(X1 ∈ A) + · · · + Pi(X1 6∈ A, . . . ,Xn−1 6∈ A,Xn ∈ A)
+
∑

j1 6∈A · · ·∑jn 6∈A pij1pj1j2 · · · pjn−1jnxjn .

Now if x is non-negative, so is the last term on the right.

Moreover, the remaining terms sum to Pi(H
A ≤ n).

So xi ≥ Pi(H
A ≤ n), for all n.

Then xi ≥ limn→∞ Pi(H
A ≤ n) = Pi(H

A < ∞) = hi .
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Example Revisited

Consider again the chain shown.

The system of linear equations for h = h{4} are given by

h4 = 1,
h2 = 1

2h1 +
1
2h3, h3 =

1
2h2 +

1
2h4.

So
h2 = 1

2h1 +
1
2(

1
2h2 +

1
2),

h2 = 1
3 + 2

3h1, h3 =
2
3 + 1

3h1.

The value of h1 is not determined by the system.

However, the minimality condition now makes us take h1 = 0.

So we recover h2 =
1
3 .
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Example: Gambler’s Ruin

Consider the following Markov chain with 0 < p = 1− q < 1.

The transition probabilities are

p00 = 1, pi ,i−1 = q, pi ,i+1 = p, for i = 1, 2, . . ..

Imagine that we enter a casino with a fortune of $i and gamble, $1 at
a time, with:

Probability p of doubling our stake;
Probability q of losing it.

The resources of the casino are regarded as infinite.

So there is no upper limit to our fortune.

We compute the probability that we go bust.
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Example: Gambler’s Ruin (Cont’d)

Set hi = Pi (hit 0).

Then h is the minimal non-negative solution to

h0 = 1,
hi = phi+1 + qhi−1, for i = 1, 2, . . . .

Suppose p 6= q.

Then the recurrence has a general solution

hi = A+ B

(
q

p

)i

.
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Example: Gamblers’ Ruin (Cont’d)

For p 6= q, we have hi = A+ B(q
p
)i .

Suppose p < q.
Since 0 ≤ hi ≤ 1, B = 0. So hi = 1, for all i .
Suppose p > q.
Since h0 = 1, we get a family of solutions

hi =

(
q

p

)i

+ A

(
1−

(
q

p

)i
)
.

For a non-negative solution we must have A ≥ 0.
So the minimal nonnegative solution is hi = ( q

p
)i .

Suppose p = q.

The recurrence relation has a general solution hi = A+ Bi .

Again, 0 ≤ hi ≤ 1 forces B = 0. So hi = 1, for all i .

Thus, even in a fair casino, we are certain to end up broke.

This apparent paradox is called gamblers’ ruin.
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Example: Birth-and-Death Chain

Consider the following Markov chain.

For i = 1, 2, . . ., we have 0 < pi = 1− qi < 1.

As in the preceding example, 0 is an absorbing state.

We wish to calculate the absorption probability starting from i .

Such a chain may serve as a model for the size of a population.

pi is the probability of a birth before a death in a population of size i .

Then hi = Pi(hit 0) is the extinction probability starting from i .

We write down the usual system of equations

h0 = 1,
hi = pihi+1 + qihi−1, i = 1, 2, . . . .

This recurrence relation has variable coefficients.
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Example: Birth-and-Death Chain (Cont’d)

Take hi = pihi+1 + qihi−1.

Rewrite as
pihi + qihi = pihi+1 + qihi−1.

Consider ui = hi−1 − hi .

Then
piui+1 = qiui .

So

ui+1 =

(
qi

pi

)
ui =

(
qiqi−1 · · · q1
pipi−1 · · · p1

)
u1 = γiu1,

where γi :=
qiqi−1···q1
pipi−1···p1 .

Then
u1 + · · · + ui = h0 − hi .
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Example: Birth-and-Death Chain (Cont’d)

We now have
hi = 1− A(γ0 + · · · + γi−1),

where A = u1 and γ0 = 1, with A still to be determined.
Suppose

∑∞
i=0 γi = ∞.

The restriction 0 ≤ hi ≤ 1 forces A = 0.
So hi = 1, for all i .
Suppose

∑∞
i=0 γi < ∞.

Then we can take A > 0 so long as

1− A(γ0 + · · ·+ γi−1) ≥ 0, for all i .

Thus, the minimal non-negative solution occurs when A = 1∑
∞

i=0 γi
.

Then

hi =

∑∞
j=i γj∑∞
j=0 γj

.

In this case, for i = 1, 2, . . ., we have hi < 1.
So the population survives with positive probability.
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Mean Hitting Times

Recall that
kAi = Ei (H

A),

where HA is the first time (Xn)n≥0 hits A.

We use the notation 1B for the indicator function of B .

1B(i) =

{
1, if i ∈ B ,
0, if i 6∈ B .

Example: 1X1=j is:

Equal to 1 if X1 = j ;
Equal to 0, otherwise.
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Computing Mean Hitting Times

Theorem

The vector of mean hitting times kA = (kAi : i ∈ I ) is the minimal
non-negative solution to the system of linear equations

{
kAi = 0, for i ∈ A,
kAi = 1 +

∑
j 6∈A pijk

A
j , for i 6∈ A.

First we show that kA satisfies the system.

Suppose X0 = i ∈ A. Then HA = 0. So kAi = 0.

Suppose X0 = i 6∈ A. Then HA ≥ 1.

By the Markov property, Ei(H
A|X1 = j) = 1 + Ej(H

A).

kAi = Ei (H
A) =

∑
j∈I Ei (H

A1X1=j)

=
∑

j∈I Ei(H
A|X1 = j)Pi (X1 = j)

= 1 +
∑

j 6∈A pijk
A
j .
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Mean Hitting Times (Converse)

Suppose, now, that y = (yi : i ∈ I ) is a solution to the given system.

Suppose i ∈ A. Then kAi = yi = 0.

Suppose i 6∈ A. Then

yi = 1 +
∑

j 6∈A pijyj

= 1 +
∑

j 6∈A pij(1 +
∑

k 6∈A pjkyk)

= Pi(H
A ≥ 1) + Pi(H

A ≥ 2) +
∑

j 6∈A
∑

k 6∈A pijpjkyk .

By repeated substitution for y , we get after n steps

yi = Pi(H
A ≥ 1) + · · ·+ Pi (H

A ≥ n) +
∑

j1 6∈A
· · ·
∑

jn 6∈A
pij1pj1j2 · · · pjn−1jnyjn .

So, if y is non-negative, yi ≥ Pi(H
A ≥ 1) + · · ·+ Pi(H

A ≥ n).

Letting n → ∞,

yi ≥
∞∑

n=1

Pi(H
A ≥ n) = Ei (H

A) = kAi .
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Subsection 5

Strong Markov Property
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Stopping Times

Let T : Ω → {0, 1, 2, . . .} ∪ {∞} be a random variable.

T is called a stopping time if the event {T = n} depends only on
X0,X1, . . . ,Xn, for n = 0, 1, 2, . . ..

Examples:

(a) The first passage time Tj = inf {n ≥ 1 : Xn = j} is a stopping time.
We have {Tj = n} = {X1 6= j , . . . ,Xn−1 6= j ,Xn = j}.

(b) The first hitting time HA is a stopping time.
We have {HA = n} = {X0 6∈ A, . . . ,Xn−1 6∈ A,Xn ∈ A}.

(c) The last exit time LA = sup {n ≥ 0 : Xn ∈ A} is not in general a
stopping time because the event {LA = n} depends on whether
(Xn+m)m≥1 visits A or not.
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Introducing the Strong Markov Property

We shall show that the Markov Property holds at stopping times.

The essential feature is that if:

T is a stopping time;
B ⊆ Ω is determined by X0,X1, . . . ,XT ;

Then B ∩ {T = m} is determined by X0,X1, . . . ,Xm, for all
m = 0, 1, 2, . . ..
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The Strong Markov Property

Theorem (Strong Markov Property)

Let (Xn)n≥0 be Markov(λ,P) and let T be a stopping time of (Xn)n≥0.
Then, conditional on T < ∞ and XT = i , (XT+n)n≥0 is Markov(δi ,P)
and independent of X0,X1, . . . ,XT .

Suppose B is an event determined by X0,X1, . . . ,XT .

Then B ∩ {T = m} is determined by X0,X1, . . . ,Xm.

So, by the Markov Property at time m,

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩ B ∩ {T = m} ∩ {XT = i})
= Pi(X0 = j0,X1 = j1, . . . ,Xn = jn)P(B ∩ {T = m} ∩ {XT = i}),

where we have used the condition T = m to replace m by T .
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Strong Markov Property (Cont’d)

We compute

P({XT = j0,XT+1 = j1, . . . ,XT+n = jn} ∩ B |T < ∞,XT = i)

= P({XT=j0,XT+1=j1,...,XT+n=jn}∩B∩{T<∞,XT=i})
P(T<∞,XT=i)

=
∑∞

m=0 P({XT=j0,XT+1=j1,...,XT+n=jn}∩B∩{T=m,XT=i})
P(T<∞,XT=i)

=
∑∞

m=0 Pi ({XT=j0,XT+1=j1,...,XT+n=jn})P(B∩{T=m}∩{XT=i})
P(T<∞,XT=i)

=
Pi ({XT=j0,XT+1=j1,...,XT+n=jn})

∑∞
m=0 P(B∩{T=m}∩{XT=i})

P(T<∞,XT=i)

= Pi ({XT=j0,XT+1=j1,...,XT+n=jn})P(B∩{T<∞}∩{XT=i})
P(T<∞,XT=i)

= Pi({XT = j0,XT+1 = j1, . . . ,XT+n = jn})P(B |T < ∞,XT = i).

George Voutsadakis (LSSU) Markov Chains April 2024 61 / 159



Discrete Time Markov Chains Strong Markov Property

Example

Consider the Markov chain (Xn)n≥0 shown below.

Here, 0 < p = 1− q < 1.

We know from a previous example the probability of hitting 0 starting
from 1.

We obtain the complete distribution of the time to hit 0 starting from
1 in terms of its probability generating function.

Set Hj = inf {n ≥ 0 : Xn = j}.
For 0 ≤ s < 1, let

φ(s) = E1(s
H0) =

∑

n<∞
snP1(H0 = n).
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Example (Cont’d)

Suppose we start at 2.

Apply the Strong Markov Property at H1.

Denote by H̃0 the time taken after H1 to get to 0.
It is independent of H1;
It has the (unconditioned) distribution of H1.

So, under P2, conditional on H1 < ∞, we have

H0 = H1 + H̃0.

Now we get

E2(s
H0) = E2(s

H1 |H1 < ∞)E2(s
H̃0 |H1 < ∞)P2(H1 < ∞)

= E2(s
H11H1<∞)E2(s

H̃0 |H1 < ∞)

= E2(s
H1)2

= φ(s)2.
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Example (Cont’d)

Next we use the Markov Property at time 1, conditional on X1 = 2.

Let H0 be the time taken after time 1 to get to 0.

It has the same distribution as H0 does under P2.

Moreover, we have
H0 = 1 + H0.

So we get

φ(s) = E1(s
H0)

= pE1(s
H0 |X1 = 2) + qE1(s

H0|X1 = 0)

= pE1(s
1+H0 |X1 = 2) + qE1(s|X1 = 0)

= psE2(s
H0) + qs

= psφ(s)2 + qs.

Thus φ = φ(s) satisfies psφ2 − φ+ qs = 0.

George Voutsadakis (LSSU) Markov Chains April 2024 64 / 159



Discrete Time Markov Chains Strong Markov Property

Example (Cont’d)

We found that φ = φ(s) satisfies psφ2 − φ+ qs = 0.

So φ =
1±
√

1−4pqs2

2ps .

But φ(0) ≤ 1 and φ is continuous.

So we are forced to take the negative root at s = 0 and stick with it
for all 0 ≤ s < 1.

To recover the distribution of H0 we expand the square-root as a
power series:

φ(s) =
1−
√

1−4pqs2

2ps

= 1
2ps [1− (1 + 1

2(−4pqs2) + 1
2(−1

2 )
(−4pqs2)2

2! + · · · )]
= qs + pq2s3 + · · ·
= sP1(H0 = 1) + s2P1(H0 = 2) + s3P1(H0 = 3) + · · · .

The first few probabilities P1(H0 = 1), P1(H0 = 2), . . . are readily
checked from first principles.
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Example (Cont’d)

We found φ(s) = sP1(H0 = 1) + s2P1(H0 = 2) + s3P1(H0 = 3) + · · · .
On letting s ր 1, we have φ(s) → P1(H0 < ∞).

So
P1(H0 < ∞) = 1−√

1−4pq
2p

q=1−p
= 1−|2q−1|

2p

=

{
1, if p ≤ q,
q
p
, if p > q.

For the mean hitting time, E1(H0) = lim
sր1

φ′(s).

It is only worth considering the case p ≤ q, where the mean hitting
time has a chance of being finite.

Differentiate psφ2 − φ+ qs = 0 to obtain 2psφφ′ + pφ2 − φ′ + q = 0.

So φ′(s) = pφ(s)2+q

1−2psφ(s)

sր1→ 1
1−2p = 1

q−p
.
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Example

We consider an application of the Strong Markov Property to a
Markov chain (Xn)n≥0 observed only at certain times.

Suppose that J is some subset of the state-space I .

Suppose we observe the chain only when it takes values in J.

The resulting process (Ym)m≥0 may be obtained formally by setting
Ym = XTm

, where

T0 = inf {n ≥ 0 : Xn ∈ J};
Tm+1 = inf {n > Tm : Xn ∈ J}, m = 0, 1, 2, . . . .

Let us assume that P(Tm < ∞) = 1, for all m.

For each m, Tm, the time of the m-th visit to J, is a stopping time.
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Example (Cont’d)

Let, for j ∈ J, the vector (hji : i ∈ I ) be the minimal non-negative
solution to

h
j
i = pij +

∑

k 6∈J
pikh

j
k ;

Set, for i , j ∈ J, pij = h
j
i .

By the Strong Markov Property, for i1, . . . , im+1 ∈ J,

P(Ym+1 = im+1|Y0 = i1, . . . ,Ym = im)

= P(XTm+1
= im+1|XT0

= i1, . . . ,XTm
= im)

= Pim(XT1
= im+1) = pimim+1

.

Thus (Ym)m≥0 is a Markov chain on J with transition matrix P .
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Example

A second example of a similar type arises if we observe the original
chain (Xn)n≥0 only when it moves.

The resulting process (Zm)m≥0 is given by Zm = XSm , where S0 = 0
and for m = 0, 1, 2, . . .,

Sm+1 = inf {n ∈ Sm : Xn 6= XSm}.
Let us assume there are no absorbing states.

Then the random times Sm for m ≥ 0 are stopping times.

By the Strong Markov Property,

P(Zm+1 = im+1|Z0 = i1, . . . ,Zm = im)
= P(XSm+1

= im+1|XS0 = i1, . . . ,XSm = im)
= Pim(XS1 = im+1) = p̃imim+1 ,

where p̃ii = 0 and, for i 6= j , p̃ij =
pij∑
k 6=i pik

.

Thus (Zm)m≥0 is a Markov chain on I with transition matrix P̃.
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Subsection 6

Recurrence and Transience
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Recurrent and Transient States

Let (Xn)n≥0 be a Markov chain with transition matrix P .

We say that a state i is recurrent if

Pi(Xn = i for infinitely many n) = 1.

We say that i is transient if

Pi(Xn = i for infinitely many n) = 0.

A recurrent state is one to which you keep coming back.

A transient state is one which you eventually leave for ever.

We will show that every state is either recurrent or transient.
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Passage Times

The first passage time to state i is the random variable Ti defined
by

Ti (ω) = inf {n ≥ 1 : Xn(ω) = i},
where inf ∅ = ∞.

We now define inductively the r -th passage time T
(r)
i to state i by

T
(0)
i (ω) = 0;

T
(1)
i (ω) = Ti(ω);

T
(r+1)
i (ω) = inf {n ≥ T

(r)
i (ω) + 1 : Xn(ω) = i}, r = 0, 1, . . . .
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Length of Excursion

The length of the r -th excursion to i is

S
(r)
i =

{
T

(r)
i − T

(r−1)
i , if T

(r−1)
i < ∞,

0, otherwise.
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Excursion Lengths Given Passage Times

Lemma

For r = 2, 3, . . ., conditional on T
(r−1)
i < ∞, S

(r)
i is independent of

{Xm : m ≤ T
(r−1)
i } and P(S

(r)
i = n|T (r−1)

i < ∞) = Pi(Ti = n).

Apply the strong Markov property at the stopping time T = T
(r−1)
i .

It is automatic that XT = i on T < ∞.

So, conditional on T < ∞:

(XT+n)n≥0 is Markov(δi ,P);
Independent of X0,X1, . . . ,XT .

But
S
(r)
i = inf {n ≥ 1 : XT+n = i}.

So S
(r)
i is the first passage time of (XT+n)n≥0 to state i .
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Number of Visits and Return Probabilities

Recall that the indicator function 1{X1=j} is the random variable equal
to 1 if X1 = j and 0 otherwise.

We introduce the number of visits Vi to i .

It may be written in terms of indicator functions as

Vi =

∞∑

n=0

1{Xn=i}.

Note that
Ei(Vi ) = Ei

∑∞
n=0 1{Xn=i}

=
∑∞

n=0 Ei(1{Xn=i})
=

∑∞
n=0 Pi(Xn = i)

=
∑∞

n=0 p
(n)
ii .

Define the return probability fi = Pi(Ti < ∞).

George Voutsadakis (LSSU) Markov Chains April 2024 75 / 159



Discrete Time Markov Chains Recurrence and Transience

Number of Visits in terms of Return Probabilities

Lemma

For r = 0, 1, 2, . . ., we have Pi(Vi > r) = f ri .

Observe that if X0 = i , then {Vi > r} = {T (r)
i < ∞}.

When r = 0 the result is true.

Suppose inductively that it is true for r .

Then

Pi(Vi > r + 1) = Pi(T
(r+1)
i < ∞)

= Pi(T
(r)
i < ∞ and S

(r+1)
i < ∞)

= Pi(S
(r+1)
i < ∞|T (r)

i < ∞)Pi(T
(r)
i < ∞)

prec. lem.
= fi f

r
i

= f r+1
i .
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Expectation of Nonnegative Integer Random Variable

Recall that one can compute the expectation of a non-negative
integer-valued random variable as follows:

E(V ) =
∑∞

v=1 vP(V = v)

=
∑∞

v=1

∑v−1
r=0 P(V = v)

=
∑∞

r=0

∑∞
v=r+1 P(V = v)

=
∑∞

r=0 P(V > r).
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Criterion for Recurrence or Transience

Theorem

The following dichotomy holds:

(i) if Pi(Ti < ∞) = 1, then i is recurrent and
∑∞

n=0 p
(n)
ii = ∞;

(ii) if Pi(Ti < ∞) < 1, then i is transient and
∑∞

n=0 p
(n)
ii < ∞.

In particular, every state is either transient or recurrent.

If Pi(Ti < ∞) = 1, then, by the preceding lemma,

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r) = 1.

So i is recurrent and

∞∑

n=0

p
(n)
ii = Ei(Vi ) = ∞.
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Criterion for Recurrence or Transience (Cont’d)

On the other hand, suppose fi = Pi (Ti < ∞) < 1.

Then by the preceding lemma

∑∞
n=0 p

(n)
ii = Ei (Vi)

=
∑∞

r=0 Pi(Vi > r)

=
∑∞

r=0 f
r
i

= 1
1−fi

< ∞.

So Pi(Vi = ∞) = 0 and i is transient.
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Class Property of Recurrence and Transience

Theorem

Let C be a communicating class. Then either all states in C are transient
or all are recurrent.

Take any pair of states i , j ∈ C and suppose that i is transient.

By hypothesis, there exist n,m ≥ 0 with p
(n)
ij > 0 and p

(m)
ji > 0.

Moreover, for all r ≥ 0,

p
(n+r+m)
ii ≥ p

(n)
ij p

(r)
jj p

(m)
ji .

So, by the preceding theorem,

∞∑

r=0

p
(r)
jj ≤ 1

p
(n)
ij p

(m)
ji

∞∑

r=0

p
(n+r+m)
ii < ∞.

Hence j is also transient.

As a result, we may speak of a recurrent or transient class.
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Closure of Recurrent Classes

Theorem

Every recurrent class is closed.

Let C be a class which is not closed.

Then there exist i ∈ C , j 6∈ C and m ≥ 1, with Pi(Xm = j) > 0.

But we have

Pi({Xm = j} ∩ {Xn = i for infinitely many n}) = 0.

It follows that

Pi(Xn = i for infinitely many n) < 1.

So i is not recurrent.

Hence, neither is C .
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A Partial Converse

Theorem

Every finite closed class is recurrent.

Suppose C is closed and finite and that (Xn)n≥0 starts in C .

Then for some i ∈ C we have

0 < P(Xn = i for infinitely many n)

= P(Xn = i for some n)Pi(Xn = i for infinitely many n).
(Strong Markov Property)

This shows that i is not transient.

So C is recurrent by previous theorems.
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Property of Irreducible and Recurrent Chains

Remember that irreducibility means that the chain can get from any
state to any other, with positive probability.

Theorem

Suppose P is irreducible and recurrent. Then for all j ∈ I ,

P(Tj < ∞) = 1.

By the Markov Property we have

P(Tj < ∞) =
∑

i∈I
P(X0 = i)Pi(Tj < ∞).

So it suffices to show that, for all i ∈ I ,

Pi(Tj < ∞) = 1.
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Discrete Time Markov Chains Recurrence and Transience

Property of Irreducible and Recurrent Chains (Cont’d)

Choose m with p
(m)
ji > 0.

By a previous theorem, we have

1 = Pj(Xn = j for infinitely many n)

= Pj(Xn = j for some n ≥ m + 1)

=
∑

k∈I Pj(Xn = j for some n ≥ m + 1|Xm = k)Pj(Xm = k)
Markov
=

∑
k∈I Pk(Tj < ∞)p

(m)
jk .

But
∑

k∈I p
(m)
jk = 1.

So we must have Pi(Tj < ∞) = 1, for all i ∈ I .
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Subsection 7

Recurrence and Transience of Random Walks
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example: Simple Random Walk on Z

The simple random walk on Z has the following diagram.

As usual, we have 0 < p = 1− q < 1.
Suppose we start at 0.

It is clear that we cannot return to 0 after an odd number of steps.

So p
(2n+1)
00 = 0, for all n.

Any given sequence of steps of length 2n from 0 to 0 occurs with
probability pnqn, there being n steps up and n steps down.
The number of such sequences is the number of ways of choosing the n

steps up from 2n. Thus, p
(2n)
00 =

(
2n
n

)
pnqn.

Stirling’s formula provides a good approximation to n! for large n,

n! ∼
√
2πn

(n
e

)n
as n → ∞,

where an ∼ bn means an
bn

→ 1.
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example (Cont’d)

For the n-step transition probabilities we obtain

p
(2n)
00 =

(2n)!

(n!)2
(pq)n ∼ (4pq)n

A
√

n/2
as n → ∞.

In the symmetric case p = q = 1
2 . So 4pq = 1. Then, for some N and

all n ≥ N , we have p
(2n)
00 ≥ 1

2A
√
n
. So

∞∑

n=N

p
(2n)
00 ≥ 1

2A

∞∑

n=N

1√
n
= ∞.

This shows that the random walk is recurrent.
If p 6= q, then 4pq = r < 1. So by a similar argument, for some N

∞∑

n=N

p
(n)
00 ≤ 1

A

∞∑

n=N

rn < ∞.

This shows that the random walk is transient.
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Example: Simple Symmetric Random Walk on Z2

The simple symmetric random walk on Z
2 is shown below.

The transition probabilities are given by

pij =

{
1
4 , if |i − j | = 1,
0, otherwise.
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example: Simple Symmetric Random Walk on Z2 (Cont’d)

Suppose we start at 0.

We call the walk Xn.

We write:

X+
n for the orthogonal projection of Xn on y = x ;

X−
n for the orthogonal projection of Xn on y = −x .
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example: Simple Symmetric Random Walk on Z2 (Cont’d)

X+
n and X−

n are independent symmetric random walks on 2−1/2
Z.

Moreover, Xn = 0 if and only if X+
n = 0 = X−

n .

This makes it clear that for Xn we have (using Stirling’s formula)

p
(2n)
00 =

((
2n

n

)(
1

2

)2n
)2

∼ 2

A2n
as n → ∞.

Then
∑∞

n=1 p
(n)
00 = ∞ by comparison with

∑∞
n=1

1
n
.

So the walk is recurrent.
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Example: Simple Symmetric Random Walk on Z3

The transition probabilities of the simple symmetric random walk on
Z

3 are given by

pij =

{
1
6 , if |i − j | = 1,
0, otherwise.

Thus, the chain jumps to each of its nearest neighbors with equal
probability.

Suppose we start at 0.

We can only return to 0 after an even number 2n of steps.

Of these 2n steps there must be i up, i down, j north, j south, k east
and k west for some i , j , k ≥ 0, with

i + j + k = n.
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example: Simple Symmetric Random Walk on Z3 (Cont’d)

By counting the ways in which this can be done, we obtain

p
(2n)
00 =

∑
i ,j ,k≥0i+j+k=n

(2n)!
(i !j!k!)2

(
1
6

)2n

=
(2n
n

) (
1
2

)2n∑
i ,j ,k≥0

i+j+k=n

(
n

i j k

)2 (1
3

)2n
.

The expression
∑

i ,j ,k≥0
i+j+k=n

(
n

i j k

)
(13)

n is the total probability of all the

ways of placing n balls randomly into three boxes.

So we have ∑

i ,j ,k≥0
i+j+k=n

(
n

i j k

)(
1

3

)n

= 1.
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Discrete Time Markov Chains Recurrence and Transience of Random Walks

Example: Simple Symmetric Random Walk on Z3 (Cont’d)

For the case where n = 3m, we have, for all i , j , k ,

(
n

i j k

)
=

n!

i !j!k!
≤
(

n

m m m

)
.

So, using Stirling’s formula,

p
(2n)
00 ≤

(
2n

n

)(
1

2

)2n (
n

m m m

)(
1

3

)n

∼ 1

2A3

(
6

n

)3/2

as n → ∞.

Hence,
∑∞

m=0 p
(6m)
00 < ∞, by comparison with

∑∞
n=0 n

−3/2.

But we have, for all m:

p
(6m)
00 ≥ ( 16 )

2p
(6m−2)
00 ;

p
(6m)
00 ≥ ( 16 )

4p
(6m−4)
00 .

So we must have
∑∞

n=0 p
(n)
00 < ∞. So the walk is transient.
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Subsection 8

Invariant Distributions
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Discrete Time Markov Chains Invariant Distributions

Invariant Distributions

Recall that a measure λ is any row vector (λi : i ∈ I ) with
non-negative entries.

We say λ is invariant if λP = λ.

Alternative terms are equilibrium and stationary.
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The Stationary Property

The first result explains the term stationary.

Theorem

Let (Xn)n≥0 be Markov(λ,P) and suppose that λ is invariant for P . Then
(Xm+n)n≥0 is also Markov(λ,P).

By a previous theorem, P(Xm = i) = (λPm)i = λi , for all i .

Moreover, conditional on Xm+n = i :

Xm+n+1 is independent of Xm,Xm+1, . . . ,Xm+n;
It has distribution (pij : j ∈ I ).
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The Equilibrium Property

The next result explains the term equilibrium.

Theorem

Let I be finite. Suppose that, for some i ∈ I ,

p
(n)
ij → πj as n → ∞, for all j ∈ I .

Then π = (πj : j ∈ I ) is an invariant distribution.

We have

∑

j∈I
πj =

∑

j∈I
lim
n→∞

p
(n)
ij = lim

n→∞

∑

j∈I
p
(n)
ij = 1.

Here, finiteness of I justifies interchange of summation and limit
operations.
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The Equilibrium Property (Cont’d)

We saw that
∑

j∈I πj = 1.

We also have
πj = limn→∞ p

(n)
ij

= limn→∞
∑

k∈I p
(n)
ik pkj

=
∑

k∈I limn→∞ p
(n)
ik pkj

=
∑

k∈I πkpkj ,

where, again, finiteness of I justifies interchange of summation and
limit operations.

Hence, π is an invariant distribution.

Notice that for any of the random walks discussed in the preceding

subsection, we have p
(n)
ij → 0 as n → ∞, for all i , j ∈ I .

The limit is certainly invariant, but it is not a distribution!
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Example

Consider the two-state Markov chain with transition matrix

P =

(
1− α α
β 1− β

)
.

Ignore the trivial cases α = β = 0 and α = β = 1.

By a previous example,

Pn →
(

β
α+β

α
α+β

β
α+β

α
α+β

)
as n → ∞.

So, by the preceding theorem, the distribution ( β
α+β ,

α
α+β ) must be

invariant.

There are, of course, easier ways to discover this.
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Example

Consider the Markov chain (Xn)n≥0 with
the diagram shown.

Then

P =




0 1 0

0 1
2

1
2

1
2 0 1

2


 .

Let π = (π1, π2, π3).

To find an invariant distribution we write down the components of
the vector equation πP = π.

We have

πP = (π1, π2, π3)




0 1 0

0 1
2

1
2

1
2 0 1

2


 =

(
1

2
π3, π1 +

1

2
π2,

1

2
π2 +

1

2
π3

)
.
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Discrete Time Markov Chains Invariant Distributions

Example (Cont’d)

So πP = π gives
π1 =

1
2π3,

π2 = π1 +
1
2π2,

π3 =
1
2π2 +

1
2π3.

In terms of the chain:

The right sides give the probabilities for X1, when X0 has distribution π;
The equations require X1 also to have distribution π.

The equations are homogeneous so one of them is redundant.

Thus, another equation is required to fix π uniquely,

π1 + π2 + π3 = 1.

Solving, we find that π = (15 ,
2
5 ,

2
5).
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Invariant Distribution for Finite State Space

For a finite state space I , the existence of an invariant row vector
follows by linear algebra.

The row sums of P are all 1.

So the column vector of ones is an eigenvector with eigenvalue 1.

So P must have a row eigenvector with eigenvalue 1.
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Time Spent Between Visits

Fix a state k .

Consider, for each i , the expected time spent in i between visits

to k ,

γki = Ek

Tk−1∑

n=0

1{Xn=i}.

Here the sum of indicator functions serves to count the number of
times n at which Xn = i before the first passage time Tk .
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Properties of Time Spent Between Visits

Theorem

Let P be irreducible and recurrent. Then:

(i) γkk = 1;

(ii) γk = (γki : i ∈ I ) satisfies γkP = γk ;

(iii) 0 < γki < ∞, for all i ∈ I .

(i) This is obvious.

(ii) For n = 1, 2, . . ., the event {n ≤ Tk} depends only on
X0,X1, . . . ,Xn−1. So, by the Markov property at n− 1,

Pk(Xn−1 = i ,Xn = j and n ≤ Tk) = Pk(Xn−1 = i and n ≤ Tk)pij .

Since P is recurrent, under Pk , we have:

Tk < ∞;
X0 = XTk

= k with probability one.
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Discrete Time Markov Chains Invariant Distributions

Properties of Time Spent Between Visits (Cont’d)

Therefore,

γkj = Ek

∑Tk

n=1 1{Xn=j}

= Ek

∑∞
n=1 1{Xn=j and n≤Tk}

=
∑∞

n=1 Pk(Xn = j and n ≤ Tk)

=
∑

i∈I
∑∞

n=1 Pk(Xn−1 = i ,Xn = j and n ≤ Tk)

=
∑

i∈I pij
∑∞

n=1 Pk(Xn−1 = i and n ≤ Tk)

=
∑

i∈I pijEk

∑∞
m=0 1{Xm=i and m≤Tk−1}

=
∑

i∈I pijEk

∑Tk−1
m=0 1{Xm=i}

=
∑

i∈I γ
k
i pij .

(iii) By hypothesis, P is irreducible. So, for each state i , there exist

n,m ≥ 0, with p
(n)
ik , p

(m)
ki > 0. Then, using Parts (i) and (ii),

γki ≥ γkk p
(m)
ki > 0. And, also, γki p

(n)
ik ≤ γkk = 1.
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Invariant Measures and Time Spent Between Visits

Theorem

Let P be irreducible and let λ be an invariant measure for P with λk = 1.
Then λ ≥ γk . If, in addition, P is recurrent, then λ = γk .

For each j ∈ I , we have

λj =
∑

i1∈I λi1pi1j

=
∑

i1 6=k λi1pi1j + pkj

=
∑

i1,i2 6=k λi2pi2i1pi1j + (pkj +
∑

i1 6=k pki1pi1j)

...
=

∑
i1,...,in 6=k λinpinin−1 · · · pi1j

+ (pkj +
∑

i1 6=k pki1pi1j + · · ·+∑i1,...,in−1 6=k pkin−1
· · · pi2i1pi1j).
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Invariant Measures and Time Between Visits (Cont’d)

So for j 6= k , we obtain

λj ≥ Pk(X1 = j and Tk ≥ 1) + Pk(X2 = j and Tk ≥ 2)
+ · · ·+ Pk(Xn = j and Tk ≥ n)

→ γkj as n → ∞.

So λ ≥ γk .

If P is recurrent, then γk is invariant by the preceding theorem.

So µ = λ− γk is also invariant and µ ≥ 0.

Since P is irreducible, given i ∈ I , we have p
(n)
ik > 0, for some n.

So
0 = µk =

∑

j∈I
µjp

(n)
jk ≥ µip

(n)
ik .

We conclude µi = 0.
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Positive Recurrence and Null Recurrence

Recall that a state i is recurrent if

Pi(Xn = i for infinitely many n) = 1.

We showed that this is equivalent to Pi (Ti < ∞) = 1.

If, in addition, the expected return time

mi = Ei(Ti )

is finite, then we say i is positive recurrent.

A recurrent state which fails to have this stronger property is called
null recurrent.
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Positive Recurrence in Irreducible Chains

Theorem

Let P be irreducible. Then the following are equivalent:

(i) Every state is positive recurrent;

(ii) Some state i is positive recurrent;

(iii) P has an invariant distribution, π say.

Moreover, when (iii) holds we have mi =
1
πi
, for all i .

(i)⇒(ii) is obvious.

(ii)⇒(iii) If i is positive recurrent, it is certainly recurrent.

So P is recurrent.

By a previous theorem, γi is then invariant.

But
∑

j∈I γ
i
j = mi < ∞.

So πj =
γi
j

mi
defines an invariant distribution.
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Positive Recurrence in Irreducible Chains (Cont’d)

(iii)⇒(i) Take any state k .

Now P is irreducible and
∑

i∈I πi = 1.

So we have πk =
∑

i∈I πip
(n)
ik > 0, for some n.

Set
λi =

πi
πk

.

Then λ is an invariant measure with λk = 1.

So by the preceding theorem, λ ≥ γk .

Hence,

mk =
∑

i∈I
γki ≤

∑

i∈I

πi
πk

=
1

πk
< ∞.

So k is positive recurrent.

To complete the proof we revisit the argument for (iii)⇒(i).

Now we know that P is recurrent.

Then λ = γk and the preceding inequality is in fact an equality.
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Example: Simple Symmetric Random Walk on Z

The simple symmetric random walk on Z is clearly irreducible.

By a previous example, it is also recurrent.

Consider the measure πi = 1, for all i .

Then

πi =
1

2
πi−1 +

1

2
πi+1.

So π is invariant.

By a previous theorem, any invariant measure is a scalar multiple of π.

But
∑

i∈Z πi = ∞.

So there can be no invariant distribution.

Thus, the walk is null recurrent, by the preceding theorem.
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Example

The existence of an invariant measure does not guarantee recurrence.

Consider, the simple symmetric random walk on Z
3.

By a previous example, it is transient.

It has invariant measure π given by πi = 1, for all i .
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Example

Consider the asymmetric random walk on Z with transition
probabilities

pi ,i−1 = q < p = pi ,i+1.

In components, the invariant measure equation πP = π reads

πi = πi−1p + πi+1q.

This is a recurrence relation for π.

It has general solution

πi = A+ B

(
p

q

)i

.

In this case, there is a two-parameter family of invariant measures.

This shows that uniqueness up to scalar multiples does not hold.
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Example

Consider a success-run chain on Z
+, whose transition probabilities

are given by
pi ,i+1 = pi , pi0 = qi = 1− pi .

Then the components of the invariant measure equation πP = π read

π0 =
∑∞

i=0 qiπi ,
πi = pi−1πi−1, for i ≥ 1.
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Discrete Time Markov Chains Invariant Distributions

Example (Cont’d)

We have
π0 =

∑∞
i=0 qiπi ,

πi = pi−1πi−1, for i ≥ 1.

Suppose we choose pi converging sufficiently rapidly to 1 so that

p =

∞∏

i=0

pi > 0.

Then for any invariant measure π we have

π0 =

∞∑

i=0

(1− pi )pi−1 · · · p0π0 = (1− p)π0.

This equation forces either π0 = 0 or π0 = ∞.

So there is no non-zero invariant measure.

George Voutsadakis (LSSU) Markov Chains April 2024 115 / 159



Discrete Time Markov Chains Convergence to Equilibrium

Subsection 9

Convergence to Equilibrium
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Discrete Time Markov Chains Convergence to Equilibrium

Limiting Behavior of n-Step Probabilities

We saw that, if the state space is finite, and, for some i , the limit πi
of pnij as n → ∞ exists, for all j , then π must be an invariant
distribution.

But the limit does not always exist.

Example: Consider the two-state chain with transition matrix

P =

(
0 1
1 0

)
.

Then P2 = I .

So P2n = I and P2n+1 = P , for all n.

Thus p
(n)
ij fails to converge for all i , j .
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Discrete Time Markov Chains Convergence to Equilibrium

Aperiodic States

We call a state i aperiodic if p
(n)
ii > 0, for all sufficiently large n.

It is easy to show that i is aperiodic if and only if the set

{n ≥ 0 : p
(n)
ii > 0} has no common divisor other than 1.

Lemma

Suppose P is irreducible and has an aperiodic state i . Then, for all states j

and k , p
(n)
jk > 0 for all sufficiently large n. In particular, all states are

aperiodic.

By irreducibility, there exist r , s ≥ 0, with p
(r)
ji , p

(s)
ik > 0.

Then, for all sufficiently large n,

p
(r+n+s)
jk ≥ p

(r)
ji p

(n)
ii p

(s)
ik > 0.

George Voutsadakis (LSSU) Markov Chains April 2024 118 / 159



Discrete Time Markov Chains Convergence to Equilibrium

Convergence to Equilibrium

Theorem (Convergence to Equilibrium)

Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution π. Let λ be any distribution. Suppose that (Xn)n≥0 is
Markov(λ,P). Then

P(Xn = j) → πj as n → ∞, for all j .

In particular, p
(n)
ij → πj as n → ∞, for all i , j .

We use a coupling argument.

Let (Yn)n≥0 be Markov(π,P) and independent of (Xn)n≥0.

Fix a reference state b and set

T = inf {n ≥ 1 : Xn = Yn = b}.
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Discrete Time Markov Chains Convergence to Equilibrium

Convergence to Equilibrium (Step 1)

Step 1: We show P(T < ∞) = 1.

The process Wn = (Xn,Yn) is a Markov chain on I × I with:

Transition probabilities p̃(i ,k)(j,ℓ) = pijpkℓ;
Initial distribution µ(i ,k) = λiπk .

Since P is aperiodic, for all states i , j , k , ℓ, we have

p̃
(n)
(i ,k)(j ,ℓ) = p

(n)
ij p

(n)
kℓ > 0,

for all sufficiently large n. So P̃ is irreducible.

Also, P̃ has an invariant distribution given by π̃(i ,k) = πiπk .

By a previous theorem, P̃ is positive recurrent.

But T is the first passage time of Wn to (b, b).

By a previous theorem, P(T < ∞) = 1.
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Discrete Time Markov Chains Convergence to Equilibrium

Convergence to Equilibrium (Step 2)

Step 2: Set

Zn =

{
Xn, if n < T

Yn, if n ≥ T .

We show (Zn)n≥0 is Markov(λ,P).

The strong Markov property applies to (Wn)n≥0 at time T .

So (XT+n,YT+n)n≥0 is:

Markov(δ(b,b), P̃);
Independent of (X0,Y0), (X1,Y1), . . ., (XT ,YT ).
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Convergence to Equilibrium (Step 2 Cont’d)

By symmetry, we can replace the process (XT+n,YT+n)n≥0 by
(YT+n,XT+n)n≥0.

This is also:

Markov(δ(b,b), P̃);
Independent of (X0,Y0), (X1,Y1), . . ., (XT ,YT ).

Hence W ′
n = (Zn,Z

′
n) is Markov(µ, P̃), where

Z ′
n =

{
Yn, if n < T ,
Xn, if n ≥ T .

In particular, (Zn)n≥0 is Markov(λ,P).
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Convergence to Equilibrium (Step 3)

Step 3: We have

P(Zn = j) = P(Xn = j and n < T ) + P(Yn = j and n ≥ T ).

So

|P(Xn = j)− πj | = |P(Zn = j)− P(Yn = j)|
= |P(Xn = j and n < T )

− P(Yn = j and n < T )|
≤ P(n < T ).

The result follows since P(n < T ) → 0 as n → ∞.
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Example: Non-Aperiodic Transitions

To understand this proof one should see what goes wrong when P is
not aperiodic.

Example: Consider the two-state chain with transition matrix

P =

(
0 1
1 0

)
.

It has (12 ,
1
2) as its unique invariant distribution.

We start:

(Xn)n≥0 from 0;
(Yn)n≥0 with equal probability from 0 or 1.

Suppose Y0 = 1.

Because of periodicity, (Xn)n≥0 and (Yn)n≥0 will never meet.

So, in this case, the proof fails.
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Decomposition of the State Space

Theorem

Let P be irreducible. There is an integer d ≥ 1 and a partition
I = C0 ∪ C1 ∪ · · · ∪ Cd−1, such that (setting Cnd+r = Cr ):

(i) p
(n)
ij > 0 only if i ∈ Cr and j ∈ Cr+n, for some r ;

(ii) p
(nd)
ij > 0 for all sufficiently large n, for all i , j ∈ Cr , for all r .

Fix a state k and consider S = {n ≥ 0 : p
(n)
kk > 0}.

Choose n1, n2 ∈ S , with:
n1 < n2;
d := n2 − n1 is as small as possible.

Define for r = 0, . . . , d − 1,

Cr = {i ∈ I : p
(nd+r)
ki > 0 for some n ≥ 0}.

By irreducibility, C0 ∪ · · · ∪ Cd−1 = I .
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Decomposition of the State Space (Cont’d)

Suppose, for some r , s ∈ {0, 1, . . . , d − 1}, we have:

p
(nd+r)
ki > 0;

p
(nd+s)
ki > 0.

Choose m ≥ 0 so that p
(m)
ik > 0.

Then we have:

p
(nd+r+m)
kk > 0;

p
(nd+s+m)
kk > 0.

So r = s by minimality of d .

Hence we have a partition.
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Decomposition of the State Space (Part (i))

Now we prove Part (i).

Suppose p
(n)
ij > 0 and i ∈ Cr . Choose m so that p

(md+r)
ki > 0.

Then p
(md+r+n)
kj > 0. So j ∈ Cr+n, as claimed.

By taking i = j = k , we see that d must divide every element of S .

In particular d must divide n1.

For nd ≥ n21, we can write

nd = qn1 + r ,

for integers q ≥ n1 and 0 ≤ r ≤ n1 − 1.

Since d divides n1, we then have r = md , for some integer m.

Then nd = (q −m)n1 +mn2.

Hence
p
(nd)
kk ≥ (p

(n1)
kk )q−m(p

(n2)
kk )m > 0.

So nd ∈ S .
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Decomposition of the State Space (Part (ii))

Now we prove Part (ii).

For i , j ∈ Cr , choose m1 and m2 so that:

p
(m1)
ik > 0;

p
(m2)
kj > 0.

Then, if nd ≥ n21,

p
(m1+nd+m2)
ij ≥ p

(m1)
ik p

(nd)
kk p

(m2)
kj > 0.

But, by Part (i), m1 +m2 is then necessarily a multiple of d .

This concludes the proof.

We call d the period of P .

The theorem shows, in particular, for all i ∈ I , that d is the greatest

common divisor of the set {n ≥ 0 : p
(n)
ii > 0}.
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Description of Limiting Behavior for Irreducible Chains

Theorem

Let P be irreducible of period d and let C0,C1, . . . ,Cd−1 be the partition
obtained in the preceding theorem. Let λ be a distribution with∑

i∈C0
λi = 1. Suppose that (Xn)n≥0 is Markov(λ,P). Then for

r = 0, 1, . . . , d − 1 and j ∈ Cr we have

P(Xnd+r = j) → d

mj

as n → ∞,

where mj is the expected return time to j . In particular, for i ∈ C0 and
j ∈ Cr we have

p
(nd+r)
ij → d

mj
as n → ∞.
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Limiting Behavior for Irreducible Chains (Step 1)

Step 1: We reduce to the aperiodic case.

Set ν = λP r . By the preceding theorem,
∑

i∈Cr
νi = 1.

Set Yn = Xnd+r . Then (Yn)n≥0 is Markov(ν,Pd ).

By the preceding theorem, Pd is irreducible and aperiodic on Cr .

For j ∈ Cr the expected return time of (Yn)n≥0 to j is
mj

d
.

Assume the theorem holds in the aperiodic case.

Then

P(Xnd+r = j) = P(Yn = j) → d

mj
as n → ∞.

So the theorem holds in general.
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Limiting Behavior for Irreducible Chains (Step 2)

Step 2: Assume that P is aperiodic.

If P is positive recurrent, then

1

mj

= πj ,

where π is the unique invariant distribution.

So the result follows from a previous theorem.

Otherwise, mj = ∞.

Then we have to show that

P(Xn = j) → 0 as n → ∞.

If P is transient this is easy.

So we are left with the null recurrent case.
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Limiting Behavior for Irreducible Chains (Step 3)

Step 3: Assume that P is aperiodic and null recurrent. Then

∞∑

k=0

Pj(Tj > k) = Ej(Tj) = ∞.

Given ε > 0, choose K so that

K−1∑

k=0

Pj(Tj > k) ≥ 2

ε
.

Then, for n ≥ K − 1,

1 ≥ ∑n
k=n−K+1 P(Xk = j and Xm 6= j for m = k + 1, . . . , n)

=
∑n

k=n−K+1 P(Xk = j)Pj(Tj > n− k)

=
∑K−1

k=0 P(Xn−k = j)Pj(Tj > k).

So we must have P(Xn−k = j) ≤ ε
2 , for some k ∈ {0, 1, . . . ,K − 1}.
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Limiting Behavior for Irreducible Chains (Step 3 Cont’d)

Return now to the coupling argument used in a previous theorem.

Let (Yn)n≥0 be Markov(µ,P), where µ is to be chosen later.

Set Wn = (Xn,Yn).

As before, aperiodicity of (Xn)n≥0 ensures irreducibility of (Wn)n≥0.

Assume, first, (Wn)n≥0 is transient.

Take µ = λ.

We obtain
P(Xn = j)2 = P(Wn = (j , j)) → 0.

Assume then that (Wn)n≥0 is recurrent.

Then we have P(T < ∞) = 1.

The coupling argument shows that

|P(Xn = j)− P(Yn = j)| → 0 as n → ∞.
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Limiting Behavior for Irreducible Chains (Step 3 Cont’d)

Take µ = λPk , for k = 1, . . . ,K − 1.

Then
P(Yn = j) = P(Xn+k = j).

We can find N, such that for n ≥ N and k = 1, . . . ,K − 1,

|P(Xn = j)− P(Xn+k = j)| ≤ ε

2
.

But for any n, we can find k ∈ {0, 1, . . . ,K − 1}, such that

P(Xn+k = j) ≤ ε

2
.

Hence, for n ≥ N, P(Xn = j) ≤ ε.

Since ε > 0 was arbitrary, we get P(Xn = j) → 0 as n → ∞.
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Discrete Time Markov Chains Time Reversal

Subsection 10

Time Reversal
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Discrete Time Markov Chains Time Reversal

Introducing Time Reversal

For Markov chains, the past and future are independent given the
present.

This property is symmetrical in time and suggests looking at Markov
chains with time running backwards.

On the other hand, convergence to equilibrium shows behavior which
is asymmetrical in time.

A highly organized state such as a point mass decays to a disorganized
one, the invariant distribution.
This is an example of entropy increasing.

It suggests that if we want complete time-symmetry we must begin in
equilibrium.

We show that a Markov chain in equilibrium, run backwards, is again a
Markov chain.
The transition matrix may however be different.
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Time Reversal of an Irreducible Markov Chain

Theorem

Let P be irreducible and have an invariant distribution π. Suppose that
(Xn)0≤n≤N is Markov(π,P) and set Yn = XN−n. Then (Yn)0≤n≤N is

Markov(π, P̂), where P̂ = (p̂ij) is given by

πj p̂ji = πipij , for all i , j ,

and P̂ is also irreducible with invariant distribution π.

First we check that P̂ is a stochastic matrix:
∑

i∈I
p̂ji =

1

πj

∑

i∈I
πipij = 1. (π invariant for P)

Next we check that π is invariant for P̂ :
∑

j∈I
πj p̂ji =

∑

j∈I
πipij = πi . (P stochastic)
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Time Reversal of an Irreducible Markov Chain (Cont’d)

We have
P(Y0 = i0,Y1 = i1, . . . ,YN = iN)

= P(X0 = iN ,X1 = iN−1, . . . ,XN = i0)

= πiNpiN iN−1
· · · pi1i0

= πi p̂i0i1 · · · p̂iN−1iN .

So, by a previous theorem, (Yn)0≤n≤N is Markov(π, P̂).

Since P is irreducible, for each pair of states i , j , there is a chain of
states i1 = i , i2, . . . , in−1, in = j , with pi1i2 · · · pin−1in > 0.

Then
p̂inin−1 · · · p̂i2i1 =

πi1pi1i2 · · · pin−1in

πin
> 0.

So P̂ is also irreducible.

The chain (Yn)0≤n≤N is called the time-reversal of (Xn)0≤n≤N .
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Detailed Balance

A stochastic matrix P and a measure λ are said to be in detailed

balance if
λipij = λjpji , for all i , j .

When a solution λ to the detailed balance equations exists, it is often
easier to find by the detailed balance equations than by the equation
λ = λP .

Lemma

If P and λ are in detailed balance, then λ is invariant for P .

We have
(λP)i =

∑

j∈I
λjpji =

∑

j∈I
λipij = λi .
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Reversible Markov Chains

Let (Xn)n≥0 be Markov(λ,P), with P irreducible.

We say that (Xn)n≥0 is reversible if, for all N ≥ 1, (XN−n)0≤n≤N is
also Markov(λ,P).

Theorem

Let P be an irreducible stochastic matrix and let λ be a distribution.
Suppose that (Xn)n≥0 is Markov(λ,P). Then the following are equivalent:

(a) (Xn)n≥0 is reversible;

(b) P and λ are in detailed balance.

Both (a) and (b) imply that λ is invariant for P .

Then both (a) and (b) are equivalent to the statement that P̂ = P in
the preceding theorem.
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Example: A Non-Reversible Markov Chain

Consider the Markov chain with diagram as
on the right.
The transition matrix is

P =




0 2
3

1
3

1
3 0 2

3
2
3

1
3 0




and π = (13 ,
1
3 ,

1
3 ) is invariant.

Hence P̂ = PT , the transpose of P .

But P is not symmetric, so P 6= P̂ .

Thus, this chain is not reversible.

A patient observer would see the chain move clockwise in the long
run. Under time-reversal the clock would run backwards!
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Example

Consider the following Markov chain, where 0 < p = 1− q < 1.

The non-zero detailed balance equations read

λipi ,i+1 = λi+1pi+1,i , i = 0, 1, . . . ,M − 1.

So a solution is given by

λ =

((
p

q

)i

: i = 0, . . . ,M

)
.

Normalized, this gives a distribution in detailed balance with P .

Hence, by the theorem, this chain is reversible.
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Example (Comments)

Suppose p were much larger than q.

Then, one might argue that the chain would tend to move to the
right and its time-reversal to the left.

However, this ignores the fact that we reverse the chain in equilibrium.

In this case, the equilibrium would be heavily concentrated near M.

So the chain would spend most of its time near M, making occasional
brief forays to the left.

This behavior is symmetric in time.
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Example: Random Walk on a Graph

A graph G is a countable collection of states, usually called vertices,
some of which are joined by edges.

Thus a graph is a partially drawn Markov chain diagram.

There is a natural way to complete the diagram which gives rise to
the random walk on G .
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Example: Random Walk on a Graph (Cont’d)

The valency vi of vertex i is the number of edges at i .

We assume that every vertex has finite valency.

The random walk on G picks edges with equal
probability. Thus, the transition probabilities
are given by

pij =

{ 1
vi
, if (i , j) is an edge,

0, otherwise.

We assume G is connected, so that P is irreducible.

We may show that P is in detailed balance with v = (vi : i ∈ G ).

Suppose the total valency σ =
∑

i∈G vi is finite.

Then π = v
σ is invariant and P is reversible.
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Example: Random Chessboard Knight

A random knight makes each permissible move with equal probability.
If it starts in a corner, how long on average will it take to return?

This is an example of a random walk on a
graph.

The vertices are the squares of the
chessboard.

The edges are the moves that the knight
can take.

The diagram shows a part of the graph.

We know by a previous theorem and the preceding example that

Ec(Tc) =
1

πc
=

1

vc/σ
=

∑
i vi

vc
.
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Example: Random Chessboard Knight (Cont’d)

We have

Ec(Tc ) =

∑
i vi

vc
.

So all we have to do is identify valencies.

The four corner squares have valency 2.
The eight squares adjacent to the corners have valency 3.
There are 20 squares of valency 4
There are 16 squares of valency 6
The 16 central squares have valency 8.

Hence

Ec(Tc) =
8 + 24 + 80 + 96 + 128

2
= 168.
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Subsection 11

Ergodic Theorem
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Discrete Time Markov Chains Ergodic Theorem

Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Let Y1,Y2, . . . be a sequence of independent, identically distributed,
non-negative random variables with E(Y1) = µ. Then

P

(
Y1 + · · ·+ Yn

n
→ µ as n → ∞

)
= 1.

A proof for µ < ∞ is found in standard probability texts.

The case where µ = ∞ is a simple deduction.

Fix N < ∞. Set Y
(N)
n = Yn ∧ N. Then

Y1+···+Yn

n
≥ Y

(N)
1 +···+Y

(N)
n

n

→ E(Y1 ∧ N), as n → ∞,
with probability one.

As N → ∞ we have E(Y1 ∧ N) ր µ by monotone convergence.

So, with probability 1, Y1+···+Yn

n
→ ∞ as n → ∞.
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Number of Visits Before Time n

We denote by Vi(n) the number of visits to i before n:

Vi(n) =
n−1∑

k=0

1{Xk=i}.

Then Vi (n)
n

is the proportion of time before n spent in state i .
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The Ergodic Theorem

Theorem (Ergodic Theorem)

Let P be irreducible and let λ be any distribution. If (Xn)n≥0 is
Markov(λ,P), then

P

(
Vi(n)

n
→ 1

mi

as n → ∞
)

= 1,

where mi = Ei(Ti ) is the expected return time to state i . Moreover, in the
positive recurrent case, for any bounded function f : I → R, we have

P

(
1

n

n−1∑

k=0

f (Xk) → f as n → ∞
)

= 1,

where f =
∑

i∈I πi fi and where (πi : i ∈ I ) is the unique invariant
distribution.
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Proof of the Ergodic Theorem

If P is transient, then, with probability 1, the total number Vi of
visits to i is finite. So

Vi(n)

n
≤ Vi

n
→ 0 =

1

mi
.

Suppose then that P is recurrent and fix a state i .

For T = Ti we have:

P(T < ∞) = 1, by a previous theorem;
(XT+n)n≥0 is Markov(δi ,P) and independent of X0,X1, . . . ,XT , by the
Strong Markov Property.

The long run proportion of time spent in i is the same for (XT+n)n≥0

and (Xn)n≥0.

So it suffices to consider the case λ = δi .
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Proof of the Ergodic Theorem (Cont’d)

Write S
(r)
i for the length of the r -th excursion to i .

By a previous lemma, the non-negative random variables S
(1)
i ,S

(2)
i , . . .

are independent and identically distributed with Ei(S
(r)
i ) = mi .

S
(1)
i + · · ·+ S

(Vi (n)−1)
i is the time of the last visit to i before n.

So we have
S
(1)
i + · · ·+ S

(Vi (n)−1)
i ≤ n − 1.

S
(1)
i + · · ·+ S

(Vi (n))
i is the time of the first visit to i after n − 1.

So we have
S
(1)
i + · · ·+ S

(Vi (n))
i ≥ n.

These give

S
(1)
i + · · ·+ S

(Vi (n)−1)
i

Vi(n)
≤ n

Vi (n)
≤ S

(1)
i + · · · + S

(Vi (n))
i

Vi(n)
.
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Proof of the Ergodic Theorem (Cont’d)

We got

S
(1)
i + · · ·+ S

(Vi (n)−1)
i

Vi(n)
≤ n

Vi (n)
≤ S

(1)
i + · · · + S

(Vi (n))
i

Vi(n)
.

By the strong law of large numbers

P

(
S
(1)
i + · · · + S

(n)
i

n
→ mi as n → ∞

)
= 1.

Since P is recurrent,

P

(
n

Vi(n)
→ mi as n → ∞

)
= 1.

This implies

P

(
Vi(n)

n
→ 1

mi

as n → ∞
)

= 1.
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Proof of the Ergodic Theorem (Conclusion)

Assume now that (Xn)n≥0 has an invariant distribution (πi : i ∈ I ).

Let f : I → R be a bounded function.

Assume without loss of generality that |f | ≤ 1.

For any J ⊆ I , we have

| 1
n

∑n−1
k=0 f (Xk)− f | = |∑i∈I (

Vi (n)
n

− πi )fi |
≤ ∑

i∈J |
Vi (n)
n

− πi |+
∑

i 6∈J |
Vi (n)
n

− πi |
≤ ∑

i∈J |
Vi (n)
n

− πi |+
∑

i 6∈J(
Vi (n)
n

+ πi)

≤ 2
∑

i∈J |
Vi (n)
n

− πi |+ 2
∑

i 6∈J πi .

We proved above that P
(
Vi (n)
n

→ πi as n → ∞ for all i
)
= 1.

Given ε > 0, choose J finite so that
∑

i 6∈J πi <
ε
4 .

Then choose N = N(ω) so that, for n ≥ N(ω),
∑

i∈J |
Vi (n)
n

− πi | < ε
4 .

Then, for n ≥ N(ω), we have | 1
n

∑n−1
k=0 f (Xk)− f | < ε.

This establishes the desired convergence.
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Estimating Transition Probabilities

Sometimes we need to estimate an unknown transition matrix P on
the basis of observations of the corresponding Markov chain.

Consider the case where we have N + 1 observations (Xn)0≤n≤N .

The log-likelihood function is given by

ℓ(P) = log (λX0
pX0X1

· · · pXN−1XN
) =

∑

i ,j∈I
Nij log pij

up to a constant independent of P , where Nij is the number of
transitions from i to j .
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Estimating Transition Probabilities (Cont’d)

A standard statistical procedure is to find the maximum likelihood

estimate P̂, which is the choice of P maximizing ℓ(P).

P must satisfy the linear constraint
∑

j pij = 1, for each i .

So we first try to maximize

ℓ(P) +
∑

i ,j∈I
µipij

and then choose (µi : i ∈ I ) to fit the constraints.

This is the method of Lagrange multipliers.

Thus we find

p̂ij =

∑N−1
n=0 1{Xn=i ,Xn+1=j}∑N−1

n=0 1{Xn=i}
,

which is the proportion of jumps from i which go to j .
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Consistency of the Estimate

We now consider the consistency of this sort of estimate, i.e.,
whether p̂ij → pij , with probability 1, as N → ∞.

This is clearly false when i is transient.

So we shall slightly modify our approach.

Note that to find p̂ij we simply have to maximize
∑

j∈I Nij log pij
subject to

∑
j pij = 1, the other terms and constraints being

irrelevant.

Suppose then that instead of N + 1 observations we make enough
observations to ensure the chain leaves state i a total of N times.

In the transient case this may involve restarting the chain several
times.

Denote again by Nij the number of transitions from i to j .
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Discrete Time Markov Chains Ergodic Theorem

Consistency of the Estimate (Cont’d)

To maximize the likelihood for (pij : j ∈ I ) we still maximize

∑

j∈I
Nij log pij

subject to
∑

j pij = 1.

This leads to the maximum likelihood estimate p̂ij =
Nij

N
.

But Nij = Y1 + · · ·+YN , where Yn = 1 if the n-th transition from i is
to j , and Yn = 0 otherwise.

By the strong Markov property Y1, . . . ,YN are independent and
identically distributed random variables with mean pij .

So, by the strong law of large numbers

P(p̂ij → pij as N → ∞) = 1.

This shows that p̂ij is consistent.
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