Introduction to Markov Chains

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
LSSU Math 500

(1) Discrete Time Markov Chains

- Introduction
- Definition and Basic Properties
- Class Structure
- Hitting Times and Absorption Probabilities
- Strong Markov Property
- Recurrence and Transience
- Recurrence and Transience of Random Walks
- Invariant Distributions
- Convergence to Equilibrium
- Time Reversal
- Ergodic Theorem

Subsection 1

Introduction

Markov Processes and Markov Chains

- We study random processes that retain no memory of where they have been in the past.
- This means that only the current state of the process can influence where it goes next.
- Such a process is called a Markov process.
- We deal exclusively with the case where the process can assume only a finite or countable set of states, when it is referred to as a Markov chain.

Discrete and Continuous Time

- We consider chains both in discrete time

$$
n \in \mathbb{Z}^{+}=\{0,1,2, \ldots\}
$$

and continuous time

$$
t \in \mathbb{R}^{+}=[0, \infty)
$$

- The letters n, m, k will always denote integers.
- The letters t and s will refer to real numbers.
- Thus, we write:
- $\left(X_{n}\right)_{n \geq 0}$ for a discrete-time process;
- $\left(X_{t}\right)_{t \geq 0}$ for a continuous-time process.

Example: Discrete Time

- We move from state 1 to state 2 with probability 1.
- From state 3 , we move either to 1 or to 2 with equal probability $1 / 2$.
- From 2, we jump to 3 with probability $1 / 3$, otherwise stay at 2 .

- We might have drawn a loop from 2 to itself with label $2 / 3$.
- Since the total probability on jumping from 2 must equal 1 , this does not convey any more information.
- So one may leave loops out.

Example: Continuous Time

- When in state 0 , we wait for a random time with exponential distribution of parameter $\lambda \in(0, \infty)$, then jump to 1 .
- Thus the density function of the waiting time T is given by

$$
f_{T}(t)=\lambda e^{-\lambda t}, \quad \text { for } t \geq 0
$$

- We write $T \sim E(\lambda)$ for short.

Example: Poisson Process of Rate λ

- Here, when we get to 1 , we do not stop but, after another independent exponential time of parameter λ, jump to 2 , and so on.
- The resulting process is called the Poisson process of rate λ.

Example: Continuous Time

- In state 3, we take two independent exponential times $T_{1} \sim E(2)$ and $T_{2} \sim E(4)$.
- If T_{1} is the smaller, we go to 1 after time T_{1};
- If T_{2} is the smaller, we go to 2 after time T_{2}.
- The rules for states 1 and 2 are as given in the preceding examples.

- We will show later that:
- The time spent in 3 is exponential of parameter $2+4=6$;
- The probability of jumping from 3 to 1 is $\frac{2}{2+4}=\frac{1}{3}$.

Example: Discrete Time

- The states may be partitioned into communicating classes, namely $\{0\},\{1,2,3\}$ and $\{4,5,6\}$.
- Two of these classes are closed, meaning that you cannot escape.
- The closed classes here are recurrent, meaning that you return again and again to every state.
- The class $\{0\}$ is transient.
- The class $\{4,5,6\}$ is periodic, but $\{1,2,3\}$ is not.

Example: Discrete Time (Cont'd)

- The following hold:
(a) Starting from 0 , the probability of hitting 6 is $\frac{1}{4}$.
(b) Starting from 1, the probability of hitting 3 is 1.
(c) Starting from 1, it takes on average three steps to hit 3.
(d) Starting from 1, the long-run proportion of time spent in 2 is $\frac{3}{8}$.

Example: Discrete Time (Cont'd)

- Let $p_{i j}^{(n)}$ be the probability of being in state j after n steps, when starting from state i.
- Then we also have:
(e) $\lim _{n \rightarrow \infty} p_{01}^{(n)}=\frac{9}{32}$;
(f) $p_{04}^{(n)}$ does not converge as $n \rightarrow \infty$;
(g) $\lim _{n \rightarrow \infty} p_{04}^{(3 n)}=\frac{1}{124}$.

Subsection 2

Definition and Basic Properties

State Spaces and Distributions

- Let I be a countable set.
- Each $i \in I$ is called a state and I is called the state space.
- We say that $\lambda=\left(\lambda_{i}: i \in I\right)$ is a measure on I if $0 \leq \lambda_{i}<\infty$, for all $i \in I$.
- If, in addition the total mass $\sum_{i \in I} \lambda_{i}$ equals 1 , then we call λ a distribution.
- We work throughout with a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- A random variable X with values in I is a function $X: \Omega \rightarrow I$.
- Suppose we set $\lambda_{i}=\mathbb{P}(X=i)=\mathbb{P}(\{\omega: X(\omega)=i\})$.
- Then λ defines a distribution, the distribution of X.
- We think of X as modelling a random state which takes the value i with probability λ_{i}.

Stochastic Matrices

- We say that a matrix $P=\left(p_{i j}: i, j \in I\right)$ is stochastic if every row $\left(p_{i j}: j \in I\right)$ is a distribution.
- There is a one-to-one correspondence between stochastic matrices P and the sort of diagrams described in the Introduction.
Example:

$$
\begin{aligned}
& P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right) ; \\
& P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

Markov Chains

- We say that $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with initial distribution λ and transition matrix P if:
(i) X_{0} has distribution λ;
(ii) For $\mathrm{n} \geq 0$, conditional on $X_{n}=i, X_{n+1}$ has distribution ($p_{i j}: j \in I$) and is independent of X_{0}, \ldots, X_{n-1}.
- More explicitly, these conditions state that, for $n \geq 0$ and $i_{1}, \ldots, i_{n+1} \in I$,
(i) $\mathbb{P}\left(X_{0}=i_{1}\right)=\lambda_{i_{1}}$;
(ii) $\mathbb{P}\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{1}, \ldots, X_{n}=i_{n}\right)=p_{i_{n} i_{n+1}}$.
- We say that $\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$ for short.
- If $\left(X_{n}\right)_{0 \leq n \leq N}$ is a finite sequence of random variables satisfying Conditions (i) and (ii), for $n=0, \ldots, N-1$, then we again say $\left(X_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\lambda, P)$.

Characterization Theorem

Theorem

A discrete-time random process $\left(X_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\lambda, P)$ if and only if for all $i_{0}, i_{1}, \ldots, i_{N} \in I$,

$$
\mathbb{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{N}=i_{N}\right)=\lambda_{i_{0}} p_{i_{0} i_{1}} p_{i_{1} i_{2}} \cdots p_{i_{N-1} i_{N}} .
$$

- Suppose $\left(X_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\lambda, P)$. Then

$$
\begin{aligned}
& \mathbb{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{N}=i_{N}\right) \\
& =\mathbb{P}\left(X_{0}=i_{0}\right) \mathbb{P}\left(X_{1}=i_{1} \mid X_{0}=i_{0}\right) \\
& \quad \cdots \mathbb{P}\left(X_{N}=i_{N} \mid X_{0}=i_{0}, \ldots, X_{N-1}=i_{N-1}\right) \\
& =\lambda_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{N-1} i_{N}} .
\end{aligned}
$$

Characterization Theorem (Converse)

- On the other hand, suppose the equation holds for N. By summing both sides over $i_{N} \in I$ and using $\sum_{j \in I} p_{i j}=1$, we see that the equation holds for $N-1$.
By induction, for all $n=0,1, \ldots, N$,

$$
\mathbb{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=\lambda_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{n-1} i_{n}} .
$$

In particular:

- $\mathbb{P}\left(X_{0}=i_{0}\right)=\lambda_{i_{0}} ;$
- For $n=0,1, \ldots, N-1$,

$$
\begin{aligned}
\mathbb{P}\left(X_{n+1}\right. & \left.=i_{n+1} \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\frac{\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}, X_{n+1}=i_{n+1}\right)}{\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)} \\
& =p_{i_{n} i_{n+1}} .
\end{aligned}
$$

So $\left(X_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\lambda, P)$.

Markov Property

- Write $\delta_{i}=\left(\delta_{i j}: j \in I\right)$ for the unit mass at i, where

$$
\delta_{i j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise }\end{cases}
$$

Theorem (Markov Property)

Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$. Then, conditional on $X_{m}=i,\left(X_{m+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$ and is independent of the random variables X_{0}, \ldots, X_{m}.

- We have to show that, for any event A determined by X_{0}, \ldots, X_{m},

$$
\begin{aligned}
& \mathbb{P}\left(\left\{X_{m}=i_{m}, \ldots, X_{m+n}=i_{m+n}\right\} \cap A \mid X_{m}=i\right) \\
& =\delta_{i i_{m}} p_{i_{m} i_{m+1}} \cdots p_{i_{m+n-1} i_{m+n}} \mathbb{P}\left(A \mid X_{m}=i\right) .
\end{aligned}
$$

Then the result follows by the preceding theorem.

Markov Property (Cont'd)

- First consider the case of elementary events

$$
A=\left\{X_{0}=i_{0}, \ldots, X_{m}=i_{m}\right\}
$$

In that case we have to show

$$
\begin{aligned}
& \frac{\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{m+n}=i_{m+n} \text { and } i=i_{m}\right)}{\mathbb{P}\left(X_{m}=i\right)} \\
& =\delta_{i i_{m}} p_{i_{m} i_{m+1}} \cdots p_{i_{m+n-1} i_{m+n}} \times \frac{\mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{m}=i_{m} \text { and } i=i_{m}\right)}{\mathbb{P}\left(X_{m}=i\right)} .
\end{aligned}
$$

This is true by the preceding theorem.
In general, any event A determined by X_{0}, \ldots, X_{m} may be written as a countable disjoint union of elementary events $A=\bigcup_{k=1}^{\infty} A_{k}$. In this case, the desired identity for A follows by summing up the corresponding identities for A_{k}.

Matrix Notation

- We regard P as a matrix whose entries are indexed by $I \times I$.
- We regard distributions and measures λ as row vectors whose components are indexed by l.
- When I is finite we will often label the states $1,2, \ldots, N$.
- In this case, λ will be an N-vector and P an $N \times N$-matrix.
- For finite objects, matrix multiplication is a familiar operation.

$$
(\lambda P)_{j}=\sum_{i=1}^{N} \lambda_{i} p_{i j}, \quad\left(P^{2}\right)_{i k}=\sum_{j=1}^{N} p_{i j} p_{j k}
$$

Matrix Notation (Cont'd)

- We extend matrix multiplication to the general case.
- We define a new measure λP and a new matrix P^{2} by

$$
(\lambda P)_{j}=\sum_{i \in I} \lambda_{i} p_{i j}, \quad\left(P^{2}\right)_{i k}=\sum_{j \in I} p_{i j} p_{j k}
$$

- We define P^{n} similarly for any n.
- We agree that P^{0} is the identity matrix I, where

$$
(I)_{i j}=\delta_{i j} .
$$

- We write $p_{i j}^{(n)}=\left(P^{n}\right)_{i j}$, for the (i, j) entry in P^{n}.

Conditional Probability \mathbb{P}_{i}

- In the case where $\lambda_{i}>0$ we shall write $\mathbb{P}_{i}(A)$ for the conditional probability $\mathbb{P}\left(A \mid X_{0}=i\right)$.
- By the Markov property at time $m=0$, under $\mathbb{P}_{i},\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$.
- So the behavior of $\left(X_{n}\right)_{n \geq 0}$ under \mathbb{P}_{i} does not depend on λ.

Transition Probabilities

Theorem

Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$. Then, for all $n, m \geq 0$,
(i) $\mathbb{P}\left(X_{n}=j\right)=\left(\lambda P^{n}\right)_{j}$;
(ii) $\mathbb{P}_{i}\left(X_{n}=j\right)=\mathbb{P}\left(X_{n+m}=j \mid X_{m}=i\right)=p_{i j}^{(n)}$.
(i) By a previous theorem,

$$
\begin{aligned}
\mathbb{P}\left(X_{n}=j\right) & =\sum_{i_{0} \in I} \cdots \sum_{i_{n-1} \in I} \mathbb{P}\left(X_{0}=i_{0}, \ldots, X_{n-1}=i_{n-1}, X_{n}=j\right) \\
& =\sum_{i_{0} \in I} \cdots \sum_{i_{n-1} \in I} \lambda_{i_{0}} p_{i_{0} i_{1}} \cdots p_{i_{n-1} j} \\
& =\left(\lambda P^{n}\right)_{j} .
\end{aligned}
$$

(ii) By the Markov property, conditional on $X_{m}=i,\left(X_{m+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$. So we just take $\lambda=\delta_{i}$ in Part (i).

- We call $p_{i j}^{(n)}$ the n-step transition probability from i to j.

Example

- The most general two-state chain has transition matrix of the form

$$
P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right) .
$$

- We exploit the relation $P^{n+1}=P^{n} P$ to write

$$
p_{11}^{(n+1)}=p_{12}^{(n)} \beta+p_{11}^{(n)}(1-\alpha) .
$$

- We also know that

$$
p_{11}^{(n)}+p_{12}^{(n)}=\mathbb{P}_{1}\left(X_{n}=1 \text { or } 2\right)=1 .
$$

Example (Cont'd)

- We wrote

$$
\begin{gathered}
p_{11}^{(n+1)}=p_{12}^{(n)} \beta+p_{11}^{(n)}(1-\alpha), \\
p_{11}^{(n)}+p_{12}^{(n)}=1
\end{gathered}
$$

- By eliminating $p_{12}^{(n)}$ we get a recurrence relation for $p_{11}^{(n)}$,

$$
p_{11}^{(n+1)}=(1-\alpha-\beta) p_{11}^{(n)}+\beta, \quad p_{11}^{(0)}=1 .
$$

- This has a unique solution

$$
p_{11}^{(n)}= \begin{cases}\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^{n}, & \text { for } \alpha+\beta>0 \\ 1, & \text { for } \alpha+\beta=0\end{cases}
$$

Example: Virus Mutation

- Suppose a virus can exist in N different strains.
- In each generation it either stays the same, or with probability α mutates to another strain, which is chosen at random.
- We compute the probability that the strain in the n-th generation is the same as that in the 0 -th generation.
- We could model this process as an N-state chain.
- The $N \times N$ transition matrix P given by

$$
p_{i i}=1-\alpha, \quad p_{i j}=\frac{\alpha}{N-1}, \text { for } i \neq j
$$

- Then the probability we seek is found by computing $p_{11}^{(n)}$.
- In this example there is a much simpler approach, which relies on exploiting the symmetry present in the mutation rules.

Example: Virus Mutation (Cont'd)

- At any time a transition is made:
- From the initial state to another with probability α;
- From another state to the initial state with probability $\frac{\alpha}{N-1}$.
- Thus, we have a two-state chain with the depicted diagram.

- By putting $\beta=\frac{\alpha}{N-1}$ in the preceding example, we find

$$
\begin{aligned}
p_{11}^{(n)} & =\frac{\beta}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta}(1-\alpha-\beta)^{n} \\
& =\frac{\alpha}{\alpha-\frac{\alpha}{N-1}}+\frac{\alpha}{\alpha+\frac{\alpha}{N-1}}\left(1-\alpha-\frac{\alpha}{N-1}\right)^{n} \\
& =\frac{1}{N}+\left(1-\frac{1}{N}\right)\left(1-\frac{\alpha N}{N-1}\right)^{n} .
\end{aligned}
$$

Example

- Consider the three-state chain shown.
- It has transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

- We want to find a general formula for $p_{11}^{(n)}$.
- First we compute the eigenvalues of P.
- Its characteristic equation is

$$
\begin{gathered}
\operatorname{det}(x-P)=0 \\
x\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}=0 \\
\frac{1}{4}(x-1)\left(4 x^{2}+1\right)=0 .
\end{gathered}
$$

- So the eigenvalues are $1, \frac{i}{2}$ and $-\frac{i}{2}$.

Example (Cont'd)

- It follows that P is diagonalizable with

$$
P=U\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{i}{2} & 0 \\
0 & 0 & -\frac{i}{2}
\end{array}\right) U^{-1}
$$

for some invertible matrix U.

- So we get $P^{n}=U\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \left(\frac{i}{2}\right)^{n} & 0 \\ 0 & 0 & \left(-\frac{i}{2}\right)^{n}\end{array}\right) U^{-1}$.
- We conclude that $p_{11}^{(n)}$ has the form

$$
p_{11}^{(n)}=a+b\left(\frac{i}{2}\right)^{n}+c\left(-\frac{i}{2}\right)^{n}
$$

for some constants a, b and c.

Example (Cont'd)

- We found that $p_{11}^{(n)}$ has the form

$$
p_{11}^{(n)}=a+b\left(\frac{i}{2}\right)^{n}+c\left(-\frac{i}{2}\right)^{n}
$$

for some constants a, b and c.

- The answer we want is real and

$$
\left(\pm \frac{i}{2}\right)^{n}=\left(\frac{1}{2}\right)^{n} e^{ \pm i n \pi / 2}=\left(\frac{1}{2}\right)^{n}\left(\cos \frac{n \pi}{2} \pm i \sin \frac{n \pi}{2}\right)
$$

- So it makes sense to rewrite $p_{11}^{(n)}$ in the form

$$
p_{11}^{(n)}=\alpha+\left(\frac{1}{2}\right)^{n}\left\{\beta \cos \frac{n \pi}{2}+\gamma \sin \frac{n \pi}{2}\right\}
$$

for constants α, β and γ.

Example (Conclusion)

- The first few values of $p_{11}^{(n)}$ are easy to write down.
- So we get equations to solve for α, β and γ :

$$
\begin{aligned}
& 1=p_{11}^{(0)}=\alpha+\beta \\
& 0=p_{11}^{(1)}=\alpha+\frac{1}{2} \gamma ; \\
& 0=p_{11}^{(2)}=\alpha-\frac{1}{4} \beta
\end{aligned}
$$

- So we get $\alpha=\frac{1}{5}, \beta=\frac{4}{5}, \gamma=-\frac{2}{5}$.
- It follows that

$$
p_{11}^{(n)}=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left\{\frac{4}{5} \cos \frac{n \pi}{2}-\frac{2}{5} \sin \frac{n \pi}{2}\right\} .
$$

The General Method

- The following method may in principle be used to find a formula for $p_{i j}^{(n)}$ for any M-state chain and any states i and j.
(i) Compute the eigenvalues $\lambda_{1}, \ldots, \lambda_{M}$ of P by solving the characteristic equation.
(ii) If the eigenvalues are distinct, then $p_{i j}^{(n)}$ has the form

$$
p_{i j}^{(n)}=a_{1} \lambda_{1}^{n}+\cdots+a_{M} \lambda_{M}^{n}
$$

for some constants a_{1}, \ldots, a_{M} (depending on i and j). If an eigenvalue λ is repeated (once, say) then the general form includes the term $(a n+b) \lambda^{n}$.
(iii) As roots of a polynomial with real coefficients, complex eigenvalues will come in conjugate pairs and these are best written using sine and cosine, as in the preceding example.

Subsection 3

Class Structure

Communicating Classes of a Chain

- We say that i leads to j, written $i \rightarrow j$, if

$$
\mathbb{P}_{i}\left(X_{n}=j \text { for some } n \geq 0\right)>0
$$

- We say i communicates with j, written $i \leftrightarrow j$, if

$$
i \rightarrow j \text { and } j \rightarrow i
$$

A Characterization Theorem

Theorem

For distinct states i and j the following are equivalent:
(i) $i \rightarrow j$;
(ii) $p_{i_{1} i_{2}} p_{i_{2} i_{3}} \cdots p_{i_{n-1} i_{n}}>0$, for some $i_{1}, i_{2}, \ldots, i_{n}$, with $i_{1}=i$ and $i_{n}=j$;
(iii) $p_{i j}^{(n)}>0$, for some $n \geq 0$.

- Observe that

$$
p_{i j}^{(n)} \leq \mathbb{P}_{i}\left(X_{n}=j \text { for some } n \geq 0\right) \leq \sum_{n=0}^{\infty} p_{i j}^{(n)}
$$

This proves the equivalence of (i) and (iii).
We also have $p_{i j}^{(n)}=\sum_{i_{2}, \ldots, i_{n-1}} p_{i i_{2}} p_{i_{2} i_{3}} \cdots p_{i_{n-1} j}$.
So (ii) and (iii) are equivalent.

Closed, Absorbing and Irreducible Classes

- It is clear from (ii) that $i \rightarrow j$ and $j \rightarrow k$ imply $i \rightarrow k$.

Also $i \rightarrow i$ for any state i.
So \leftrightarrow satisfies the conditions for an equivalence relation on I.
Thus \leftrightarrow partitions I into communicating classes.

- We say that a class C is closed if

$$
i \in C \quad \text { and } \quad i \rightarrow j \text { imply } j \in C
$$

Thus, a closed class is one from which there is no escape.

- A state i is absorbing if $\{i\}$ is a closed class.
- A chain or transition matrix P, where the set I of states is a single class, is called irreducible.

Example

- Find the communicating classes associated to the stochastic matrix

$$
P=\left(\begin{array}{cccccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- The solution is obvious from the diagram.
- The classes are $\{1,2,3\},\{4\}$ and $\{5,6\}$.
- Only $\{5,6\}$ is closed.

Subsection 4

Hitting Times and Absorption Probabilities

Hitting Times

- Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition matrix P.
- The hitting time of a subset A of I is the random variable $H^{A}: \Omega \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ given by

$$
H^{A}(\omega)=\inf \left\{n \geq 0: X_{n}(\omega) \in A\right\}
$$

where we agree that the infimum of the empty set \emptyset is ∞.

- The probability starting from i that $\left(X_{n}\right)_{n \geq 0}$ ever hits A is then

$$
h_{i}^{A}=\mathbb{P}_{i}\left(H^{A}<\infty\right)
$$

Absorption Probabilities

- When A is a closed class,

$$
h_{i}^{A}=\mathbb{P}_{i}\left(H^{A}<\infty\right)
$$

is called the absorption probability.

- The mean time taken for $\left(X_{n}\right)_{n \geq 0}$ to reach A is given by

$$
k_{i}^{A}=\mathbb{E}_{i}\left(H^{A}\right)=\sum_{n<\infty} n \mathbb{P}_{i}\left(H^{A}=n\right)+\infty \mathbb{P}_{i}\left(H^{A}=\infty\right)
$$

- We shall often write less formally

$$
h_{i}^{A}=\mathbb{P}_{i}(\text { hit } A), \quad k_{i}^{A}=\mathbb{E}_{i}(\text { time to hit } A) .
$$

- These quantities can be calculated explicitly by means of certain linear equations associated with the transition matrix P.

Example

- Consider the chain with the following diagram:

Starting from 2, we calculate the probability of absorption in 4. We also calculate the time until the chain is absorbed in 1 or 4 . Introduce $h_{i}=\mathbb{P}_{i}($ hit 4$), k_{i}=\mathbb{E}_{i}($ time to hit $\{1,4\})$.
Clearly, $h_{1}=0, h_{4}=1$ and $k_{1}=k_{4}=0$.
Suppose now that we start at 2.
Consider the situation after making one step.

- With probability $\frac{1}{2}$ we jump to 1 ;
- With probability $\frac{1}{2}$ we jump to 3 .

So

$$
\begin{aligned}
& h_{2}=\frac{1}{2} h_{1}+\frac{1}{2} h_{3}, \\
& k_{2}=1+\frac{1}{2} k_{1}+\frac{1}{2} k_{3} .
\end{aligned}
$$

Example (Cont'd)

- We got

$$
\begin{aligned}
& h_{2}=\frac{1}{2} h_{1}+\frac{1}{2} h_{3} \\
& k_{2}=1+\frac{1}{2} k_{1}+\frac{1}{2} k_{3} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& h_{3}=\frac{1}{2} h_{2}+\frac{1}{2} h_{4} \\
& k_{3}=1+\frac{1}{2} k_{2}+\frac{1}{2} k_{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
h_{2} & =\frac{1}{2} h_{3}=\frac{1}{2}\left(\frac{1}{2} h_{2}+\frac{1}{2}\right) \\
k_{2} & =1+\frac{1}{2} k_{3}=1+\frac{1}{2}\left(1+\frac{1}{2} k_{2}\right)
\end{aligned}
$$

So, starting from 2 :
The probability of hitting 4 is $\frac{1}{3}$;
The mean time to absorption is 2 .

Hitting Probabilities

Theorem

The vector of hitting probabilities $h^{A}=\left(h_{i}^{A}: i \in I\right)$ is the minimal non-negative solution to the system of linear equations

$$
\begin{cases}h_{i}^{A}=1, & \text { for } i \in A \\ h_{i}^{A}=\sum_{j \in I} p_{i j} h_{j}^{A} & \text { for } i \notin A\end{cases}
$$

Minimality means that if $x=\left(x_{i}: i \in I\right)$ is another solution with $x_{i} \geq 0$, for all i, then $x_{i} \geq h_{i}^{A}$, for all i.

- First we show that h^{A} satisfies the system.

Suppose $X_{0}=i \in A$. Then $H^{A}=0$. So $h_{i}^{A}=1$.
Suppose $X_{0}=i \notin A$. Then $H^{A} \geq 1$.

Hitting Probabilities (Cont'd)

- By the Markov property,

$$
\mathbb{P}_{i}\left(H^{A}<\infty \mid X_{1}=j\right)=\mathbb{P}_{j}\left(H^{A}<\infty\right)=h_{j}^{A}
$$

Moreover,

$$
\begin{aligned}
h_{i}^{A} & =\mathbb{P}_{i}\left(H^{A}<\infty\right) \\
& =\sum_{j \in I} \mathbb{P}_{i}\left(H^{A}<\infty, X_{1}=j\right) \\
& =\sum_{j \in I} \mathbb{P}_{i}\left(H^{A}<\infty \mid X_{1}=j\right) \mathbb{P}_{i}\left(X_{1}=j\right) \\
& =\sum_{j \in I} p_{i j} h_{j}^{A} .
\end{aligned}
$$

Suppose, now, that $x=\left(x_{i}: i \in I\right)$ is a solution of the system. For $i \in A, h_{i}^{A}=x_{i}=1$.

Hitting Probabilities (Cont'd)

- Suppose $i \notin A$. Then

$$
x_{i}=\sum_{j \in I} p_{i j} x_{j}=\sum_{j \in A} p_{i j}+\sum_{j \notin A} p_{i j} x_{j} .
$$

Substitute for x_{j} to obtain

$$
\begin{aligned}
x_{i} & =\sum_{j \in A} p_{i j}+\sum_{j \notin A} p_{i j}\left(\sum_{k \in A} p_{j k}+\sum_{k \notin A} p_{j k} x_{k}\right) \\
& =\mathbb{P}_{i}\left(X_{1} \in A\right)+\mathbb{P}_{i}\left(X_{1} \notin A, X_{2} \in A\right)+\sum_{j \notin A} \sum_{k \notin A} p_{i j} p_{j k} x_{k} .
\end{aligned}
$$

By repeated substitution for x in the final term we obtain after n steps

$$
\begin{aligned}
x_{i}= & \mathbb{P}_{i}\left(X_{1} \in A\right)+\cdots+\mathbb{P}_{i}\left(X_{1} \notin A, \ldots, X_{n-1} \notin A, X_{n} \in A\right) \\
& +\sum_{j_{1} \notin A} \cdots \sum_{j_{n} \notin A} p_{i_{1} 1} p_{j_{1} j_{2}} \cdots p_{j_{n-1} j_{n}} x_{j_{n}} .
\end{aligned}
$$

Now if x is non-negative, so is the last term on the right.
Moreover, the remaining terms sum to $\mathbb{P}_{i}\left(H^{A} \leq n\right)$.
So $x_{i} \geq \mathbb{P}_{i}\left(H^{A} \leq n\right)$, for all n.
Then $x_{i} \geq \lim _{n \rightarrow \infty} \mathbb{P}_{i}\left(H^{A} \leq n\right)=\mathbb{P}_{i}\left(H^{A}<\infty\right)=h_{i}$.

Example Revisited

- Consider again the chain shown.

The system of linear equations for $h=h^{\{4\}}$ are given by

$$
\begin{aligned}
& h_{4}=1 \\
& h_{2}=\frac{1}{2} h_{1}+\frac{1}{2} h_{3}, \quad h_{3}=\frac{1}{2} h_{2}+\frac{1}{2} h_{4}
\end{aligned}
$$

So

$$
\begin{aligned}
& h_{2}=\frac{1}{2} h_{1}+\frac{1}{2}\left(\frac{1}{2} h_{2}+\frac{1}{2}\right), \\
& h_{2}=\frac{1}{3}+\frac{2}{3} h_{1}, \quad h_{3}=\frac{2}{3}+\frac{1}{3} h_{1} .
\end{aligned}
$$

The value of h_{1} is not determined by the system. However, the minimality condition now makes us take $h_{1}=0$. So we recover $h_{2}=\frac{1}{3}$.

Example: Gambler's Ruin

- Consider the following Markov chain with $0<p=1-q<1$.

The transition probabilities are

$$
p_{00}=1, \quad p_{i, i-1}=q, \quad p_{i, i+1}=p, \quad \text { for } i=1,2, \ldots
$$

Imagine that we enter a casino with a fortune of $\$ i$ and gamble, $\$ 1$ at a time, with:

- Probability p of doubling our stake;
- Probability q of losing it.

The resources of the casino are regarded as infinite.
So there is no upper limit to our fortune.
We compute the probability that we go bust.

Example: Gambler's Ruin (Cont'd)

- Set $h_{i}=\mathbb{P}_{i}($ hit 0$)$.

Then h is the minimal non-negative solution to

$$
\begin{aligned}
h_{0} & =1 \\
h_{i} & =p h_{i+1}+q h_{i-1}, \text { for } i=1,2, \ldots
\end{aligned}
$$

Suppose $p \neq q$.
Then the recurrence has a general solution

$$
h_{i}=A+B\left(\frac{q}{p}\right)^{i}
$$

Example: Gamblers' Ruin (Cont'd)

- For $p \neq q$, we have $h_{i}=A+B\left(\frac{q}{p}\right)^{i}$.
- Suppose $p<q$.

Since $0 \leq h_{i} \leq 1, B=0$. So $h_{i}=1$, for all i.

- Suppose $p>q$.

Since $h_{0}=1$, we get a family of solutions

$$
h_{i}=\left(\frac{q}{p}\right)^{i}+A\left(1-\left(\frac{q}{p}\right)^{i}\right) .
$$

For a non-negative solution we must have $A \geq 0$.
So the minimal nonnegative solution is $h_{i}=\left(\frac{q}{p}\right)^{i}$.

- Suppose $p=q$.

The recurrence relation has a general solution $h_{i}=A+B i$.
Again, $0 \leq h_{i} \leq 1$ forces $B=0$. So $h_{i}=1$, for all i.
Thus, even in a fair casino, we are certain to end up broke. This apparent paradox is called gamblers' ruin.

Example: Birth-and-Death Chain

- Consider the following Markov chain.

For $i=1,2, \ldots$, we have $0<p_{i}=1-q_{i}<1$.
As in the preceding example, 0 is an absorbing state.
We wish to calculate the absorption probability starting from i.
Such a chain may serve as a model for the size of a population.
p_{i} is the probability of a birth before a death in a population of size i.
Then $h_{i}=\mathbb{P}_{i}($ hit 0$)$ is the extinction probability starting from i.
We write down the usual system of equations

$$
\begin{aligned}
h_{0} & =1 \\
h_{i} & =p_{i} h_{i+1}+q_{i} h_{i-1}, \quad i=1,2, \ldots
\end{aligned}
$$

This recurrence relation has variable coefficients.

Example: Birth-and-Death Chain (Cont'd)

- Take $h_{i}=p_{i} h_{i+1}+q_{i} h_{i-1}$.

Rewrite as

$$
p_{i} h_{i}+q_{i} h_{i}=p_{i} h_{i+1}+q_{i} h_{i-1}
$$

Consider $u_{i}=h_{i-1}-h_{i}$.
Then

$$
p_{i} u_{i+1}=q_{i} u_{i}
$$

So

$$
u_{i+1}=\left(\frac{q_{i}}{p_{i}}\right) u_{i}=\left(\frac{q_{i} q_{i-1} \cdots q_{1}}{p_{i} p_{i-1} \cdots p_{1}}\right) u_{1}=\gamma_{i} u_{1}
$$

where $\gamma_{i}:=\frac{q_{i} q_{i-1} \cdots q_{1}}{p_{i} p_{i-1} \cdots p_{1}}$.
Then

$$
u_{1}+\cdots+u_{i}=h_{0}-h_{i}
$$

Example: Birth-and-Death Chain (Cont'd)

- We now have

$$
h_{i}=1-A\left(\gamma_{0}+\cdots+\gamma_{i-1}\right)
$$

where $A=u_{1}$ and $\gamma_{0}=1$, with A still to be determined.

- Suppose $\sum_{i=0}^{\infty} \gamma_{i}=\infty$.

The restriction $0 \leq h_{i} \leq 1$ forces $A=0$.
So $h_{i}=1$, for all i.

- Suppose $\sum_{i=0}^{\infty} \gamma_{i}<\infty$.

Then we can take $A>0$ so long as

$$
1-A\left(\gamma_{0}+\cdots+\gamma_{i-1}\right) \geq 0, \quad \text { for all } i .
$$

Thus, the minimal non-negative solution occurs when $A=\frac{1}{\sum_{i=0}^{\infty} \gamma_{i}}$.
Then

$$
h_{i}=\frac{\sum_{j=i}^{\infty} \gamma_{j}}{\sum_{j=0}^{\infty} \gamma_{j}} .
$$

In this case, for $i=1,2, \ldots$, we have $h_{i}<1$.
So the population survives with positive probability.

Mean Hitting Times

- Recall that

$$
k_{i}^{A}=\mathbb{E}_{i}\left(H^{A}\right)
$$

where H^{A} is the first time $\left(X_{n}\right)_{n \geq 0}$ hits A.

- We use the notation 1_{B} for the indicator function of B.

$$
1_{B}(i)= \begin{cases}1, & \text { if } i \in B \\ 0, & \text { if } i \notin B\end{cases}
$$

Example: $1_{X_{1}=j}$ is:

- Equal to 1 if $X_{1}=j$;
- Equal to 0, otherwise.

Computing Mean Hitting Times

Theorem

The vector of mean hitting times $k^{A}=\left(k_{i}^{A}: i \in I\right)$ is the minimal non-negative solution to the system of linear equations

$$
\begin{cases}k_{i}^{A}=0, & \text { for } i \in A, \\ k_{i}^{A}=1+\sum_{j \notin A} p_{i j} k_{j}^{A}, & \text { for } i \notin A .\end{cases}
$$

- First we show that k^{A} satisfies the system.

Suppose $X_{0}=i \in A$. Then $H^{A}=0$. So $k_{i}^{A}=0$.
Suppose $X_{0}=i \notin A$. Then $H^{A} \geq 1$.
By the Markov property, $\mathbb{E}_{i}\left(H^{A} \mid X_{1}=j\right)=1+\mathbb{E}_{j}\left(H^{A}\right)$.

$$
\begin{aligned}
k_{i}^{A} & =\mathbb{E}_{i}\left(H^{A}\right)=\sum_{j \in I} \mathbb{E}_{i}\left(H^{A} 1_{X_{1}=j}\right) \\
& =\sum_{j \in I} \mathbb{E}_{i}\left(H^{A} \mid X_{1}=j\right) \mathbb{P}_{i}\left(X_{1}=j\right) \\
& =1+\sum_{j \notin A} p_{i j} k_{j}^{A} .
\end{aligned}
$$

Mean Hitting Times (Converse)

- Suppose, now, that $y=\left(y_{i}: i \in I\right)$ is a solution to the given system. Suppose $i \in A$. Then $k_{i}^{A}=y_{i}=0$.
Suppose $i \notin A$. Then

$$
\begin{aligned}
y_{i} & =1+\sum_{j \notin A} p_{i j} y_{j} \\
& =1+\sum_{j \notin A} p_{i j}\left(1+\sum_{k \notin A} p_{j k} y_{k}\right) \\
& =\mathbb{P}_{i}\left(H^{A} \geq 1\right)+\mathbb{P}_{i}\left(H^{A} \geq 2\right)+\sum_{j \notin A} \sum_{k \notin A} p_{i j} p_{j k} y_{k} .
\end{aligned}
$$

By repeated substitution for y, we get after n steps

$$
y_{i}=\mathbb{P}_{i}\left(H^{A} \geq 1\right)+\cdots+\mathbb{P}_{i}\left(H^{A} \geq n\right)+\sum_{j_{1} \notin A} \cdots \sum_{j_{n} \notin A} p_{i j_{1}} p_{j_{1} j_{2}} \cdots p_{j_{n-1} j_{n}} y_{j_{n}}
$$

So, if y is non-negative, $y_{i} \geq \mathbb{P}_{i}\left(H^{A} \geq 1\right)+\cdots+\mathbb{P}_{i}\left(H^{A} \geq n\right)$. Letting $n \rightarrow \infty$,

$$
y_{i} \geq \sum_{n=1}^{\infty} \mathbb{P}_{i}\left(H^{A} \geq n\right)=\mathbb{E}_{i}\left(H^{A}\right)=k_{i}^{A}
$$

Subsection 5

Strong Markov Property

Stopping Times

- Let $T: \Omega \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ be a random variable.
- T is called a stopping time if the event $\{T=n\}$ depends only on $X_{0}, X_{1}, \ldots, X_{n}$, for $n=0,1,2, \ldots$.

Examples:

(a) The first passage time $T_{j}=\inf \left\{n \geq 1: X_{n}=j\right\}$ is a stopping time.

We have $\left\{T_{j}=n\right\}=\left\{X_{1} \neq j, \ldots, X_{n-1} \neq j, X_{n}=j\right\}$.
(b) The first hitting time H^{A} is a stopping time.

We have $\left\{H^{A}=n\right\}=\left\{X_{0} \notin A, \ldots, X_{n-1} \notin A, X_{n} \in A\right\}$.
(c) The last exit time $L^{A}=\sup \left\{n \geq 0: X_{n} \in A\right\}$ is not in general a stopping time because the event $\left\{L^{A}=n\right\}$ depends on whether $\left(X_{n+m}\right)_{m \geq 1}$ visits A or not.

Introducing the Strong Markov Property

- We shall show that the Markov Property holds at stopping times.
- The essential feature is that if:
- T is a stopping time;
- $B \subseteq \Omega$ is determined by $X_{0}, X_{1}, \ldots, X_{T}$;

Then $B \cap\{T=m\}$ is determined by $X_{0}, X_{1}, \ldots, X_{m}$, for all $m=0,1,2, \ldots$.

The Strong Markov Property

Theorem (Strong Markov Property)

Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$ and let T be a stopping time of $\left(X_{n}\right)_{n \geq 0}$. Then, conditional on $T<\infty$ and $X_{T}=i,\left(X_{T+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$ and independent of $X_{0}, X_{1}, \ldots, X_{T}$.

- Suppose B is an event determined by $X_{0}, X_{1}, \ldots, X_{T}$. Then $B \cap\{T=m\}$ is determined by $X_{0}, X_{1}, \ldots, X_{m}$.
So, by the Markov Property at time m,

$$
\begin{aligned}
& \mathbb{P}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\} \cap B \cap\{T=m\} \cap\left\{X_{T}=i\right\}\right) \\
& =\mathbb{P}_{i}\left(X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n}=j_{n}\right) \mathbb{P}\left(B \cap\{T=m\} \cap\left\{X_{T}=i\right\}\right),
\end{aligned}
$$

where we have used the condition $T=m$ to replace m by T.

Strong Markov Property (Cont'd)

- We compute

$$
\begin{aligned}
& \mathbb{P}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\} \cap B \mid T<\infty, X_{T}=i\right) \\
& =\frac{\mathbb{P}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\} \cap B \cap\left\{T<\infty, X_{T}=i\right\}\right)}{\mathbb{P}\left(T<\infty, X_{T}=i\right)} \\
& =\frac{\sum_{m=0}^{\infty} \mathbb{P}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\} \cap B \cap\left\{T=m, X_{T}=i\right\}\right)}{\mathbb{P}\left(T<\infty, X_{T}=i\right)} \\
& =\frac{\sum_{m=0}^{\infty} \mathbb{P}_{i}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\}\right) \mathbb{P}\left(B \cap\{T=m\} \cap\left\{X_{T}=i\right\}\right)}{\mathbb{P}\left(T<\infty, X_{T}=i\right)} \\
& =\frac{\mathbb{P}_{i}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\}\right) \sum_{m=0}^{\infty} \mathbb{P}\left(B \cap\{T=m\} \cap\left\{X_{T}=i\right\}\right)}{\mathbb{P}\left(T<\infty, X_{T}=i\right)} \\
& =\frac{\mathbb{P}_{i}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\}\right) \mathbb{P}\left(B \cap\{T<\infty\} \cap\left\{X_{T}=i\right\}\right)}{\mathbb{P}\left(T<\infty, X_{T}=i\right)} \\
& =\mathbb{P}_{i}\left(\left\{X_{T}=j_{0}, X_{T+1}=j_{1}, \ldots, X_{T+n}=j_{n}\right\}\right) \mathbb{P}\left(B \mid T<\infty, X_{T}=i\right) .
\end{aligned}
$$

Example

- Consider the Markov chain $\left(X_{n}\right)_{n \geq 0}$ shown below.

Here, $0<p=1-q<1$.
We know from a previous example the probability of hitting 0 starting from 1.
We obtain the complete distribution of the time to hit 0 starting from 1 in terms of its probability generating function.
Set $H_{j}=\inf \left\{n \geq 0: X_{n}=j\right\}$.
For $0 \leq s<1$, let

$$
\phi(s)=\mathbb{E}_{1}\left(s^{H_{0}}\right)=\sum_{n<\infty} s^{n} \mathbb{P}_{1}\left(H_{0}=n\right)
$$

Example (Cont'd)

- Suppose we start at 2.

Apply the Strong Markov Property at H_{1}.
Denote by \widetilde{H}_{0} the time taken after H_{1} to get to 0 .

- It is independent of H_{1};
- It has the (unconditioned) distribution of H_{1}.

So, under \mathbb{P}_{2}, conditional on $H_{1}<\infty$, we have

$$
H_{0}=H_{1}+\widetilde{H}_{0} .
$$

Now we get

$$
\begin{aligned}
\mathbb{E}_{2}\left(s^{H_{0}}\right) & =\mathbb{E}_{2}\left(s^{H_{1}} \mid H_{1}<\infty\right) \mathbb{E}_{2}\left(s^{\widetilde{H}_{0}} \mid H_{1}<\infty\right) \mathbb{P}_{2}\left(H_{1}<\infty\right) \\
& =\mathbb{E}_{2}\left(s^{H_{1}} 1_{H_{1}<\infty}\right) \mathbb{E}_{2}\left(s^{\widetilde{H}_{0}} \mid H_{1}<\infty\right) \\
& =\mathbb{E}_{2}\left(s^{H_{1}}\right)^{2} \\
& =\phi(s)^{2} .
\end{aligned}
$$

Example (Cont'd)

- Next we use the Markov Property at time 1, conditional on $X_{1}=2$. Let \bar{H}_{0} be the time taken after time 1 to get to 0 .
It has the same distribution as H_{0} does under \mathbb{P}_{2}.
Moreover, we have

$$
H_{0}=1+\bar{H}_{0} .
$$

So we get

$$
\begin{aligned}
\phi(s) & =\mathbb{E}_{1}\left(s^{H_{0}}\right) \\
& =p \mathbb{E}_{1}\left(s^{H_{0}} \mid X_{1}=2\right)+q \mathbb{E}_{1}\left(s^{H_{0}} \mid X_{1}=0\right) \\
& =p \mathbb{E}_{1}\left(s^{1+H_{0}} \mid X_{1}=2\right)+q \mathbb{E}_{1}\left(s \mid X_{1}=0\right) \\
& =p s \mathbb{E}_{2}\left(s^{H_{0}}\right)+q s \\
& =p s \phi(s)^{2}+q s .
\end{aligned}
$$

Thus $\phi=\phi(s)$ satisfies $p s \phi^{2}-\phi+q s=0$.

Example (Cont'd)

- We found that $\phi=\phi(s)$ satisfies $p s \phi^{2}-\phi+q s=0$.

So $\phi=\frac{1 \pm \sqrt{1-4 p q s^{2}}}{2 p s}$.
But $\phi(0) \leq 1$ and ϕ is continuous.
So we are forced to take the negative root at $s=0$ and stick with it for all $0 \leq s<1$.
To recover the distribution of H_{0} we expand the square-root as a power series:

$$
\begin{aligned}
\phi(s) & =\frac{1-\sqrt{1-4 p q s^{2}}}{2 p s} \\
& =\frac{1}{2 p s}\left[1-\left(1+\frac{1}{2}\left(-4 p q s^{2}\right)+\frac{1}{2}\left(-\frac{1}{2}\right) \frac{\left(-4 p q s^{2}\right)^{2}}{2!}+\cdots\right)\right] \\
& =q s+p q^{2} s^{3}+\cdots \\
& =s \mathbb{P}_{1}\left(H_{0}=1\right)+s^{2} \mathbb{P}_{1}\left(H_{0}=2\right)+s^{3} \mathbb{P}_{1}\left(H_{0}=3\right)+\cdots
\end{aligned}
$$

The first few probabilities $\mathbb{P}_{1}\left(H_{0}=1\right), \mathbb{P}_{1}\left(H_{0}=2\right), \ldots$ are readily checked from first principles.

Example (Cont'd)

- We found $\phi(s)=s \mathbb{P}_{1}\left(H_{0}=1\right)+s^{2} \mathbb{P}_{1}\left(H_{0}=2\right)+s^{3} \mathbb{P}_{1}\left(H_{0}=3\right)+\cdots$. On letting s $\nearrow 1$, we have $\phi(s) \rightarrow \mathbb{P}_{1}\left(H_{0}<\infty\right)$.
So

$$
\begin{array}{rll}
\mathbb{P}_{1}\left(H_{0}<\infty\right) & = & \frac{1-\sqrt{1-4 p q}}{2 p} \\
& \stackrel{q=1-p}{=} & \frac{1-|2 q-1|}{2 p} \\
& = \begin{cases}1, & \text { if } p \leq q, \\
\frac{q}{p}, & \text { if } p>q .\end{cases}
\end{array}
$$

For the mean hitting time, $\mathbb{E}_{1}\left(H_{0}\right)=\lim _{s \nearrow 1} \phi^{\prime}(s)$.
It is only worth considering the case $p \leq q$, where the mean hitting time has a chance of being finite.
Differentiate $p s \phi^{2}-\phi+q s=0$ to obtain $2 p s \phi \phi^{\prime}+p \phi^{2}-\phi^{\prime}+q=0$.
So $\phi^{\prime}(s)=\frac{p \phi(s)^{2}+q}{1-2 p s \phi(s)} \stackrel{s}{\longrightarrow} \frac{1}{1-2 p}=\frac{1}{q-p}$.

Example

- We consider an application of the Strong Markov Property to a Markov chain $\left(X_{n}\right)_{n \geq 0}$ observed only at certain times.
Suppose that J is some subset of the state-space I.
Suppose we observe the chain only when it takes values in J.
The resulting process $\left(Y_{m}\right)_{m \geq 0}$ may be obtained formally by setting $Y_{m}=X_{T_{m}}$, where

$$
\begin{aligned}
T_{0} & =\inf \left\{n \geq 0: X_{n} \in J\right\} ; \\
T_{m+1} & =\inf \left\{n>T_{m}: X_{n} \in J\right\}, \quad m=0,1,2, \ldots .
\end{aligned}
$$

Let us assume that $\mathbb{P}\left(T_{m}<\infty\right)=1$, for all m.
For each m, T_{m}, the time of the m-th visit to J, is a stopping time.

Example (Cont'd)

- Let, for $j \in J$, the vector $\left(h_{i}^{j}: i \in I\right)$ be the minimal non-negative solution to

$$
h_{i}^{j}=p_{i j}+\sum_{k \notin J} p_{i k} h_{k}^{j}
$$

Set, for $i, j \in J, \bar{p}_{i j}=h_{i}^{j}$.
By the Strong Markov Property, for $i_{1}, \ldots, i_{m+1} \in J$,

$$
\begin{aligned}
& \mathbb{P}\left(Y_{m+1}=i_{m+1} \mid Y_{0}=i_{1}, \ldots, Y_{m}=i_{m}\right) \\
& =\mathbb{P}\left(X_{T_{m+1}}=i_{m+1} \mid X_{T_{0}}=i_{1}, \ldots, X_{T_{m}}=i_{m}\right) \\
& =\mathbb{P}_{i_{m}}\left(X_{T_{1}}=i_{m+1}\right)=\bar{p}_{i_{m} i_{m+1}} .
\end{aligned}
$$

Thus $\left(Y_{m}\right)_{m \geq 0}$ is a Markov chain on J with transition matrix P.

Example

- A second example of a similar type arises if we observe the original chain $\left(X_{n}\right)_{n \geq 0}$ only when it moves.
The resulting process $\left(Z_{m}\right)_{m \geq 0}$ is given by $Z_{m}=X_{S_{m}}$, where $S_{0}=0$ and for $m=0,1,2, \ldots$,

$$
S_{m+1}=\inf \left\{n \in S_{m}: X_{n} \neq X_{S_{m}}\right\} .
$$

Let us assume there are no absorbing states.
Then the random times S_{m} for $m \geq 0$ are stopping times.
By the Strong Markov Property,

$$
\begin{aligned}
& \mathbb{P}\left(Z_{m+1}=i_{m+1} \mid Z_{0}=i_{1}, \ldots, Z_{m}=i_{m}\right) \\
& =\mathbb{P}\left(X_{S_{m+1}}=i_{m+1} \mid X_{S_{0}}=i_{1}, \ldots, X_{S_{m}}=i_{m}\right) \\
& =\mathbb{P}_{i_{m}}\left(X_{S_{1}}=i_{m+1}\right)=\widetilde{p}_{i_{m}} i_{m+1},
\end{aligned}
$$

where $\widetilde{p}_{i i}=0$ and, for $i \neq j, \widetilde{p}_{i j}=\frac{p_{i j}}{\sum_{k \neq i} p_{i k}}$.
Thus $\left(Z_{m}\right)_{m \geq 0}$ is a Markov chain on I with transition matrix \widetilde{P}.

Subsection 6

Recurrence and Transience

Recurrent and Transient States

- Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition matrix P.
- We say that a state i is recurrent if

$$
\mathbb{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)=1
$$

- We say that i is transient if

$$
\mathbb{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)=0
$$

- A recurrent state is one to which you keep coming back.
- A transient state is one which you eventually leave for ever.
- We will show that every state is either recurrent or transient.

Passage Times

- The first passage time to state i is the random variable T_{i} defined by

$$
T_{i}(\omega)=\inf \left\{n \geq 1: X_{n}(\omega)=i\right\}
$$

where $\inf \emptyset=\infty$.

- We now define inductively the r-th passage time $T_{i}^{(r)}$ to state i by

$$
\begin{gathered}
T_{i}^{(0)}(\omega)=0 ; \\
T_{i}^{(1)}(\omega)=T_{i}(\omega) ; \\
T_{i}^{(r+1)}(\omega)=\inf \left\{n \geq T_{i}^{(r)}(\omega)+1: X_{n}(\omega)=i\right\}, r=0,1, \ldots
\end{gathered}
$$

Length of Excursion

- The length of the r-th excursion to i is

$$
S_{i}^{(r)}= \begin{cases}T_{i}^{(r)}-T_{i}^{(r-1)}, & \text { if } T_{i}^{(r-1)}<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Excursion Lengths Given Passage Times

Lemma

For $r=2,3, \ldots$, conditional on $T_{i}^{(r-1)}<\infty, S_{i}^{(r)}$ is independent of $\left\{X_{m}: m \leq T_{i}^{(r-1)}\right\}$ and $\mathbb{P}\left(S_{i}^{(r)}=n \mid T_{i}^{(r-1)}<\infty\right)=\mathbb{P}_{i}\left(T_{i}=n\right)$.

- Apply the strong Markov property at the stopping time $T=T_{i}^{(r-1)}$. It is automatic that $X_{T}=i$ on $T<\infty$.
So, conditional on $T<\infty$:
- $\left(X_{T+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$;
- Independent of $X_{0}, X_{1}, \ldots, X_{T}$.

But

$$
S_{i}^{(r)}=\inf \left\{n \geq 1: X_{T+n}=i\right\}
$$

So $S_{i}^{(r)}$ is the first passage time of $\left(X_{T+n}\right)_{n \geq 0}$ to state i.

Number of Visits and Return Probabilities

- Recall that the indicator function $1_{\left\{X_{1}=j\right\}}$ is the random variable equal to 1 if $X_{1}=j$ and 0 otherwise.
- We introduce the number of visits V_{i} to i.
- It may be written in terms of indicator functions as

$$
V_{i}=\sum_{n=0}^{\infty} 1_{\left\{X_{n}=i\right\}}
$$

- Note that

$$
\begin{aligned}
\mathbb{E}_{i}\left(V_{i}\right) & =\mathbb{E}_{i} \sum_{n=0}^{\infty} 1_{\left\{X_{n}=i\right\}} \\
& =\sum_{n=0}^{\infty} \mathbb{E}_{i}\left(1_{\left\{X_{n}=i\right\}}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}_{i}\left(X_{n}=i\right) \\
& =\sum_{n=0}^{\infty} p_{i i}^{(n)}
\end{aligned}
$$

- Define the return probability $f_{i}=\mathbb{P}_{i}\left(T_{i}<\infty\right)$.

Number of Visits in terms of Return Probabilities

Lemma

For $r=0,1,2, \ldots$, we have $\mathbb{P}_{i}\left(V_{i}>r\right)=f_{i}^{r}$.

- Observe that if $X_{0}=i$, then $\left\{V_{i}>r\right\}=\left\{T_{i}^{(r)}<\infty\right\}$.

When $r=0$ the result is true.
Suppose inductively that it is true for r.
Then

$$
\begin{aligned}
\mathbb{P}_{i}\left(V_{i}>r+1\right) & =\mathbb{P}_{i}\left(T_{i}^{(r+1)}<\infty\right) \\
& =\mathbb{P}_{i}\left(T_{i}^{(r)}<\infty \text { and } S_{i}^{(r+1)}<\infty\right) \\
& =\mathbb{P}_{i}\left(S_{i}^{(r+1)}<\infty \mid T_{i}^{(r)}<\infty\right) \mathbb{P}_{i}\left(T_{i}^{(r)}<\infty\right) \\
& \stackrel{\text { prec. lem. }}{=} \\
& f_{i} f_{i}^{r} \\
& =f_{i}^{r+1} .
\end{aligned}
$$

Expectation of Nonnegative Integer Random Variable

- Recall that one can compute the expectation of a non-negative integer-valued random variable as follows:

$$
\begin{aligned}
\mathbb{E}(V) & =\sum_{v=1}^{\infty} v \mathbb{P}(V=v) \\
& =\sum_{v=1}^{\infty} \sum_{r=0}^{v-1} \mathbb{P}(V=v) \\
& =\sum_{r=0}^{\infty} \sum_{v=r+1}^{\infty} \mathbb{P}(V=v) \\
& =\sum_{r=0}^{\infty} \mathbb{P}(V>r) .
\end{aligned}
$$

Criterion for Recurrence or Transience

Theorem

The following dichotomy holds:
(i) if $\mathbb{P}_{i}\left(T_{i}<\infty\right)=1$, then i is recurrent and $\sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty$;
(ii) if $\mathbb{P}_{i}\left(T_{i}<\infty\right)<1$, then i is transient and $\sum_{n=0}^{\infty} p_{i i}^{(n)}<\infty$.

In particular, every state is either transient or recurrent.

- If $\mathbb{P}_{i}\left(T_{i}<\infty\right)=1$, then, by the preceding lemma,

$$
\mathbb{P}_{i}\left(V_{i}=\infty\right)=\lim _{r \rightarrow \infty} \mathbb{P}_{i}\left(V_{i}>r\right)=1
$$

So i is recurrent and

$$
\sum_{n=0}^{\infty} p_{i i}^{(n)}=\mathbb{E}_{i}\left(V_{i}\right)=\infty
$$

Criterion for Recurrence or Transience (Cont'd)

- On the other hand, suppose $f_{i}=\mathbb{P}_{i}\left(T_{i}<\infty\right)<1$.

Then by the preceding lemma

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{i i}^{(n)} & =\mathbb{E}_{i}\left(V_{i}\right) \\
& =\sum_{r=0}^{\infty} \mathbb{P}_{i}\left(V_{i}>r\right) \\
& =\sum_{r=0}^{\infty} f_{i}^{r} \\
& =\frac{1}{1-f_{i}} \\
& <\infty
\end{aligned}
$$

So $\mathbb{P}_{i}\left(V_{i}=\infty\right)=0$ and i is transient.

Class Property of Recurrence and Transience

Theorem

Let C be a communicating class. Then either all states in C are transient or all are recurrent.

- Take any pair of states $i, j \in C$ and suppose that i is transient. By hypothesis, there exist $n, m \geq 0$ with $p_{i j}^{(n)}>0$ and $p_{j i}^{(m)}>0$. Moreover, for all $r \geq 0$,

$$
p_{i i}^{(n+r+m)} \geq p_{i j}^{(n)} p_{j j}^{(r)} p_{j i}^{(m)}
$$

So, by the preceding theorem,

$$
\sum_{r=0}^{\infty} p_{j j}^{(r)} \leq \frac{1}{p_{i j}^{(n)} p_{j i}^{(m)}} \sum_{r=0}^{\infty} p_{i i}^{(n+r+m)}<\infty
$$

Hence j is also transient.

- As a result, we may speak of a recurrent or transient class.

Closure of Recurrent Classes

Theorem

Every recurrent class is closed.

- Let C be a class which is not closed.

Then there exist $i \in C, j \notin C$ and $m \geq 1$, with $\mathbb{P}_{i}\left(X_{m}=j\right)>0$. But we have

$$
\mathbb{P}_{i}\left(\left\{X_{m}=j\right\} \cap\left\{X_{n}=i \text { for infinitely many } n\right\}\right)=0
$$

It follows that

$$
\mathbb{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)<1
$$

So i is not recurrent.
Hence, neither is C.

A Partial Converse

Theorem

Every finite closed class is recurrent.

- Suppose C is closed and finite and that $\left(X_{n}\right)_{n \geq 0}$ starts in C.

Then for some $i \in C$ we have

$$
\begin{aligned}
0< & \mathbb{P}\left(X_{n}=i \text { for infinitely many } n\right) \\
= & \mathbb{P}\left(X_{n}=i \text { for some } n\right) \mathbb{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right) . \\
& (\text { Strong Markov Property })
\end{aligned}
$$

This shows that i is not transient.
So C is recurrent by previous theorems.

Property of Irreducible and Recurrent Chains

- Remember that irreducibility means that the chain can get from any state to any other, with positive probability.

Theorem

Suppose P is irreducible and recurrent. Then for all $j \in I$,

$$
\mathbb{P}\left(T_{j}<\infty\right)=1
$$

- By the Markov Property we have

$$
\mathbb{P}\left(T_{j}<\infty\right)=\sum_{i \in I} \mathbb{P}\left(X_{0}=i\right) \mathbb{P}_{i}\left(T_{j}<\infty\right)
$$

So it suffices to show that, for all $i \in I$,

$$
\mathbb{P}_{i}\left(T_{j}<\infty\right)=1
$$

Property of Irreducible and Recurrent Chains (Cont'd)

- Choose m with $p_{j i}^{(m)}>0$.

By a previous theorem, we have
$1=\mathbb{P}_{j}\left(X_{n}=j\right.$ for infinitely many $\left.n\right)$
$=\mathbb{P}_{j}\left(X_{n}=j\right.$ for some $\left.n \geq m+1\right)$
$=\quad \sum_{k \in I} \mathbb{P}_{j}\left(X_{n}=j\right.$ for some $\left.n \geq m+1 \mid X_{m}=k\right) \mathbb{P}_{j}\left(X_{m}=k\right)$
$\stackrel{\text { Markov }}{=} \quad \sum_{k \in I} \mathbb{P}_{k}\left(T_{j}<\infty\right) p_{j k}^{(m)}$.
But $\sum_{k \in I} p_{j k}^{(m)}=1$.
So we must have $\mathbb{P}_{i}\left(T_{j}<\infty\right)=1$, for all $i \in I$.

Subsection 7

Recurrence and Transience of Random Walks

Example: Simple Random Walk on \mathbb{Z}

- The simple random walk on \mathbb{Z} has the following diagram.

As usual, we have $0<p=1-q<1$.
Suppose we start at 0 .

- It is clear that we cannot return to 0 after an odd number of steps.

So $p_{00}^{(2 n+1)}=0$, for all n.

- Any given sequence of steps of length $2 n$ from 0 to 0 occurs with probability $p^{n} q^{n}$, there being n steps up and n steps down.
The number of such sequences is the number of ways of choosing the n steps up from $2 n$. Thus, $p_{00}^{(2 n)}=\binom{2 n}{n} p^{n} q^{n}$.
Stirling's formula provides a good approximation to n ! for large n,

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \text { as } n \rightarrow \infty
$$

where $a_{n} \sim b_{n}$ means $\frac{a_{n}}{b_{n}} \rightarrow 1$.

Example (Cont'd)

- For the n-step transition probabilities we obtain

$$
p_{00}^{(2 n)}=\frac{(2 n)!}{(n!)^{2}}(p q)^{n} \sim \frac{(4 p q)^{n}}{A \sqrt{n / 2}} \text { as } n \rightarrow \infty
$$

- In the symmetric case $p=q=\frac{1}{2}$. So $4 p q=1$. Then, for some N and all $n \geq N$, we have $p_{00}^{(2 n)} \geq \frac{1}{2 A \sqrt{n}}$. So

$$
\sum_{n=N}^{\infty} p_{00}^{(2 n)} \geq \frac{1}{2 A} \sum_{n=N}^{\infty} \frac{1}{\sqrt{n}}=\infty
$$

This shows that the random walk is recurrent.

- If $p \neq q$, then $4 p q=r<1$. So by a similar argument, for some N

$$
\sum_{n=N}^{\infty} p_{00}^{(n)} \leq \frac{1}{A} \sum_{n=N}^{\infty} r^{n}<\infty
$$

This shows that the random walk is transient.

Example: Simple Symmetric Random Walk on \mathbb{Z}^{2}

- The simple symmetric random walk on \mathbb{Z}^{2} is shown below.

- The transition probabilities are given by

$$
p_{i j}= \begin{cases}\frac{1}{4}, & \text { if }|i-j|=1 \\ 0, & \text { otherwise }\end{cases}
$$

Example: Simple Symmetric Random Walk on \mathbb{Z}^{2} (Cont'd)

- Suppose we start at 0 .

We call the walk X_{n}.
We write:

- X_{n}^{+}for the orthogonal projection of X_{n} on $y=x$;
- X_{n}^{-}for the orthogonal projection of X_{n} on $y=-x$.

Example: Simple Symmetric Random Walk on \mathbb{Z}^{2} (Cont'd)

- X_{n}^{+}and X_{n}^{-}are independent symmetric random walks on $2^{-1 / 2} \mathbb{Z}$. Moreover, $X_{n}=0$ if and only if $X_{n}^{+}=0=X_{n}^{-}$.
This makes it clear that for X_{n} we have (using Stirling's formula)

$$
p_{00}^{(2 n)}=\left(\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n}\right)^{2} \sim \frac{2}{A^{2} n} \text { as } n \rightarrow \infty
$$

Then $\sum_{n=1}^{\infty} p_{00}^{(n)}=\infty$ by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
So the walk is recurrent.

Example: Simple Symmetric Random Walk on \mathbb{Z}^{3}

- The transition probabilities of the simple symmetric random walk on \mathbb{Z}^{3} are given by

$$
p_{i j}= \begin{cases}\frac{1}{6}, & \text { if }|i-j|=1 \\ 0, & \text { otherwise }\end{cases}
$$

Thus, the chain jumps to each of its nearest neighbors with equal probability.
Suppose we start at 0 .
We can only return to 0 after an even number $2 n$ of steps.
Of these $2 n$ steps there must be i up, i down, j north, j south, k east and k west for some $i, j, k \geq 0$, with

$$
i+j+k=n
$$

Example: Simple Symmetric Random Walk on \mathbb{Z}^{3} (Cont'd)

- By counting the ways in which this can be done, we obtain

$$
\begin{aligned}
p_{00}^{(2 n)} & =\sum_{i, j, k \geq 0 i+j+k=n} \frac{(2 n)!}{(i!j!k!)^{2}}\left(\frac{1}{6}\right)^{2 n} \\
& =\binom{2 n}{n}\left(\frac{1}{2}\right)^{2 n} \sum_{\substack{i, j, k \geq 0 \\
i+j+k=n}}\binom{n}{i j k}^{2}\left(\frac{1}{3}\right)^{2 n} .
\end{aligned}
$$

The expression $\sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}}\left(\begin{array}{c}n \\ i \\ j k\end{array}\right)\left(\frac{1}{3}\right)^{n}$ is the total probability of all the ways of placing n balls randomly into three boxes.
So we have

$$
\sum_{\substack{i, j, k \geq 0 \\ i+j+k=n}}\binom{n}{i j k}\left(\frac{1}{3}\right)^{n}=1 .
$$

Example: Simple Symmetric Random Walk on \mathbb{Z}^{3} (Cont'd)

- For the case where $n=3 m$, we have, for all i, j, k,

$$
\binom{n}{i j k}=\frac{n!}{i!j!k!} \leq\left(\begin{array}{c}
n \\
m \\
m
\end{array}\right)
$$

So, using Stirling's formula,
$p_{00}^{(2 n)} \leq\binom{ 2 n}{n}\left(\frac{1}{2}\right)^{2 n}\binom{n}{m m m}\left(\frac{1}{3}\right)^{n} \sim \frac{1}{2 A^{3}}\left(\frac{6}{n}\right)^{3 / 2}$ as $n \rightarrow \infty$.
Hence, $\sum_{m=0}^{\infty} p_{00}^{(6 m)}<\infty$, by comparison with $\sum_{n=0}^{\infty} n^{-3 / 2}$.
But we have, for all m :

- $p_{00}^{(6 m)} \geq\left(\frac{1}{6}\right)^{2} p_{00}^{(6 m-2)}$;
- $p_{00}^{(6 m)} \geq\left(\frac{1}{6}\right)^{4} p_{00}^{(6 m-4)}$.

So we must have $\sum_{n=0}^{\infty} p_{00}^{(n)}<\infty$. So the walk is transient.

Subsection 8

Invariant Distributions

Invariant Distributions

- Recall that a measure λ is any row vector $\left(\lambda_{i}: i \in I\right)$ with non-negative entries.
- We say λ is invariant if $\lambda P=\lambda$.
- Alternative terms are equilibrium and stationary.

The Stationary Property

- The first result explains the term stationary.

Theorem

Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$ and suppose that λ is invariant for P. Then $\left(X_{m+n}\right)_{n \geq 0}$ is also $\operatorname{Markov}(\lambda, P)$.

- By a previous theorem, $\mathbb{P}\left(X_{m}=i\right)=\left(\lambda P^{m}\right)_{i}=\lambda_{i}$, for all i. Moreover, conditional on $X_{m+n}=i$:
- X_{m+n+1} is independent of $X_{m}, X_{m+1}, \ldots, X_{m+n}$;
- It has distribution ($p_{i j}: j \in I$).

The Equilibrium Property

- The next result explains the term equilibrium.

Theorem

Let I be finite. Suppose that, for some $i \in I$,

$$
p_{i j}^{(n)} \rightarrow \pi_{j} \text { as } n \rightarrow \infty, \text { for all } j \in 1
$$

Then $\pi=\left(\pi_{j}: j \in I\right)$ is an invariant distribution.

- We have

$$
\sum_{j \in I} \pi_{j}=\sum_{j \in I} \lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} \sum_{j \in I} p_{i j}^{(n)}=1
$$

Here, finiteness of I justifies interchange of summation and limit operations.

The Equilibrium Property (Cont'd)

- We saw that $\sum_{j \in I} \pi_{j}=1$.

We also have

$$
\begin{aligned}
\pi_{j} & =\lim _{n \rightarrow \infty} p_{i j}^{(n)} \\
& =\lim _{n \rightarrow \infty} \sum_{k \in I} p_{i k}^{(n)} p_{k j} \\
& =\sum_{k \in I} \lim _{n \rightarrow \infty} p_{i k}^{(n)} p_{k j} \\
& =\sum_{k \in I} \pi_{k} p_{k j}
\end{aligned}
$$

where, again, finiteness of I justifies interchange of summation and limit operations.
Hence, π is an invariant distribution.

- Notice that for any of the random walks discussed in the preceding subsection, we have $p_{i j}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$, for all $i, j \in I$.
The limit is certainly invariant, but it is not a distribution!

Example

- Consider the two-state Markov chain with transition matrix

$$
P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

Ignore the trivial cases $\alpha=\beta=0$ and $\alpha=\beta=1$.
By a previous example,

$$
P^{n} \rightarrow\left(\begin{array}{cc}
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta} \\
\frac{\beta}{\alpha+\beta} & \frac{\alpha}{\alpha+\beta}
\end{array}\right) \text { as } n \rightarrow \infty \text {. }
$$

So, by the preceding theorem, the distribution $\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$ must be invariant.

- There are, of course, easier ways to discover this.

Example

- Consider the Markov chain $\left(X_{n}\right)_{n \geq 0}$ with the diagram shown.
Then

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

Let $\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)$.

To find an invariant distribution we write down the components of the vector equation $\pi P=\pi$.
We have

$$
\pi P=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)=\left(\frac{1}{2} \pi_{3}, \pi_{1}+\frac{1}{2} \pi_{2}, \frac{1}{2} \pi_{2}+\frac{1}{2} \pi_{3}\right)
$$

Example (Cont'd)

- So $\pi P=\pi$ gives

$$
\begin{aligned}
& \pi_{1}=\frac{1}{2} \pi_{3}, \\
& \pi_{2}=\pi_{1}+\frac{1}{2} \pi_{2}, \\
& \pi_{3}=\frac{1}{2} \pi_{2}+\frac{1}{2} \pi_{3} .
\end{aligned}
$$

In terms of the chain:

- The right sides give the probabilities for X_{1}, when X_{0} has distribution π;
- The equations require X_{1} also to have distribution π.

The equations are homogeneous so one of them is redundant.
Thus, another equation is required to fix π uniquely,

$$
\pi_{1}+\pi_{2}+\pi_{3}=1
$$

Solving, we find that $\pi=\left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right)$.

Invariant Distribution for Finite State Space

- For a finite state space I, the existence of an invariant row vector follows by linear algebra.
The row sums of P are all 1 .
So the column vector of ones is an eigenvector with eigenvalue 1 . So P must have a row eigenvector with eigenvalue 1 .

Time Spent Between Visits

- Fix a state k.
- Consider, for each i, the expected time spent in i between visits to k,

$$
\gamma_{i}^{k}=\mathbb{E}_{k} \sum_{n=0}^{T_{k}-1} 1_{\left\{X_{n}=i\right\}}
$$

- Here the sum of indicator functions serves to count the number of times n at which $X_{n}=i$ before the first passage time T_{k}.

Properties of Time Spent Between Visits

Theorem

Let P be irreducible and recurrent. Then:
(i) $\gamma_{k}^{k}=1$;
(ii) $\gamma^{k}=\left(\gamma_{i}^{k}: i \in I\right)$ satisfies $\gamma^{k} P=\gamma^{k}$;
(iii) $0<\gamma_{i}^{k}<\infty$, for all $i \in I$.
(i) This is obvious.
(ii) For $n=1,2, \ldots$, the event $\left\{n \leq T_{k}\right\}$ depends only on $X_{0}, X_{1}, \ldots, X_{n-1}$. So, by the Markov property at $n-1$,

$$
\mathbb{P}_{k}\left(X_{n-1}=i, X_{n}=j \text { and } n \leq T_{k}\right)=\mathbb{P}_{k}\left(X_{n-1}=i \text { and } n \leq T_{k}\right) p_{i j}
$$

Since P is recurrent, under \mathbb{P}_{k}, we have:

- $T_{k}<\infty$;
- $X_{0}=X_{T_{k}}=k$ with probability one.

Properties of Time Spent Between Visits (Cont'd)

- Therefore,

$$
\begin{aligned}
\gamma_{j}^{k} & =\mathbb{E}_{k} \sum_{n=1}^{T_{k}} 1_{\left\{X_{n}=j\right\}} \\
& \left.=\mathbb{E}_{k} \sum_{n=1}^{\infty} 1_{\left\{X_{n}=j\right.} \text { and } n \leq T_{k}\right\} \\
& =\sum_{n=1}^{\infty} \mathbb{P}_{k}\left(X_{n}=j \text { and } n \leq T_{k}\right) \\
& =\sum_{i \in I} \sum_{n=1}^{\infty} \mathbb{P}_{k}\left(X_{n-1}=i, X_{n}=j \text { and } n \leq T_{k}\right) \\
& =\sum_{i \in I} p_{i j} \sum_{n=1}^{\infty} \mathbb{P}_{k}\left(X_{n-1}=i \text { and } n \leq T_{k}\right) \\
& \left.=\sum_{i \in I} p_{i j} \mathbb{E}_{k} \sum_{m=0}^{\infty} 1_{\left\{X_{m}=i\right.} \text { and } m \leq T_{k}-1\right\} \\
& =\sum_{i \in I} p_{i j} \mathbb{E}_{k} \sum_{m=0}^{T_{k}-1} 1_{\left\{X_{m}=i\right\}} \\
& =\sum_{i \in I} \gamma_{i}^{k} p_{i j} .
\end{aligned}
$$

(iii) By hypothesis, P is irreducible. So, for each state i, there exist $n, m \geq 0$, with $p_{i k}^{(n)}, p_{k i}^{(m)}>0$. Then, using Parts (i) and (ii), $\gamma_{i}^{k} \geq \gamma_{k}^{k} p_{k i}^{(m)}>0$. And, also, $\gamma_{i}^{k} p_{i k}^{(n)} \leq \gamma_{k}^{k}=1$.

Invariant Measures and Time Spent Between Visits

Theorem

Let P be irreducible and let λ be an invariant measure for P with $\lambda_{k}=1$. Then $\lambda \geq \gamma^{k}$. If, in addition, P is recurrent, then $\lambda=\gamma^{k}$.

- For each $j \in I$, we have

$$
\begin{aligned}
\lambda_{j}= & \sum_{i_{1} \in I} \lambda_{i_{1}} p_{i_{1} j} \\
= & \sum_{i_{1} \neq k} \lambda_{i_{1}} p_{i_{1} j}+p_{k j} \\
= & \sum_{i_{1}, i_{2} \neq k} \lambda_{i_{2}} p_{i_{2} i_{1}} p_{i_{1} j}+\left(p_{k j}+\sum_{i_{1} \neq k} p_{k i_{1}} p_{i_{1} j}\right) \\
& \vdots \\
= & \sum_{i_{1}, \ldots, i_{n} \neq k} \lambda_{i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{1} j} \\
& +\left(p_{k j}+\sum_{i_{1} \neq k} p_{k i_{1}} p_{i_{1} j}+\cdots+\sum_{i_{1}, \ldots, i_{n-1} \neq k} p_{k i_{n-1}} \cdots p_{i_{2} i_{1}} p_{i_{1}} j\right) .
\end{aligned}
$$

Invariant Measures and Time Between Visits (Cont'd)

- So for $j \neq k$, we obtain

$$
\begin{aligned}
\lambda_{j} \geq & \mathbb{P}_{k}\left(X_{1}=j \text { and } T_{k} \geq 1\right)+\mathbb{P}_{k}\left(X_{2}=j \text { and } T_{k} \geq 2\right) \\
& +\cdots+\mathbb{P}_{k}\left(X_{n}=j \text { and } T_{k} \geq n\right) \\
& \rightarrow \quad \gamma_{j}^{k} \text { as } n \rightarrow \infty
\end{aligned}
$$

So $\lambda \geq \gamma^{k}$.
If P is recurrent, then γ^{k} is invariant by the preceding theorem.
So $\mu=\lambda-\gamma^{k}$ is also invariant and $\mu \geq 0$.
Since P is irreducible, given $i \in I$, we have $p_{i k}^{(n)}>0$, for some n.
So

$$
0=\mu_{k}=\sum_{j \in I} \mu_{j} p_{j k}^{(n)} \geq \mu_{i} p_{i k}^{(n)}
$$

We conclude $\mu_{i}=0$.

Positive Recurrence and Null Recurrence

- Recall that a state i is recurrent if

$$
\mathbb{P}_{i}\left(X_{n}=i \text { for infinitely many } n\right)=1
$$

- We showed that this is equivalent to $\mathbb{P}_{i}\left(T_{i}<\infty\right)=1$.
- If, in addition, the expected return time

$$
m_{i}=\mathbb{E}_{i}\left(T_{i}\right)
$$

is finite, then we say i is positive recurrent.

- A recurrent state which fails to have this stronger property is called null recurrent.

Positive Recurrence in Irreducible Chains

Theorem

Let P be irreducible. Then the following are equivalent:
(i) Every state is positive recurrent;
(ii) Some state i is positive recurrent;
(iii) P has an invariant distribution, π say.

Moreover, when (iii) holds we have $m_{i}=\frac{1}{\pi_{i}}$, for all i.
(i) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (iii) If i is positive recurrent, it is certainly recurrent.

So P is recurrent.
By a previous theorem, γ^{i} is then invariant.
But $\sum_{j \in I} \gamma_{j}^{i}=m_{i}<\infty$.
So $\pi_{j}=\frac{\gamma_{j}^{j}}{m_{i}}$ defines an invariant distribution.

Positive Recurrence in Irreducible Chains (Cont'd)

(iii) \Rightarrow (i) Take any state k.

Now P is irreducible and $\sum_{i \in I} \pi_{i}=1$.
So we have $\pi_{k}=\sum_{i \in I} \pi_{i} p_{i k}^{(n)}>0$, for some n.
Set

$$
\lambda_{i}=\frac{\pi_{i}}{\pi_{k}}
$$

Then λ is an invariant measure with $\lambda_{k}=1$.
So by the preceding theorem, $\lambda \geq \gamma^{k}$.
Hence,

$$
m_{k}=\sum_{i \in I} \gamma_{i}^{k} \leq \sum_{i \in I} \frac{\pi_{i}}{\pi_{k}}=\frac{1}{\pi_{k}}<\infty
$$

So k is positive recurrent.
To complete the proof we revisit the argument for $(\mathrm{iii}) \Rightarrow$ (i).
Now we know that P is recurrent.
Then $\lambda=\gamma^{k}$ and the preceding inequality is in fact an equality.

Example: Simple Symmetric Random Walk on \mathbb{Z}

- The simple symmetric random walk on \mathbb{Z} is clearly irreducible. By a previous example, it is also recurrent.
Consider the measure $\pi_{i}=1$, for all i.
Then

$$
\pi_{i}=\frac{1}{2} \pi_{i-1}+\frac{1}{2} \pi_{i+1} .
$$

So π is invariant.
By a previous theorem, any invariant measure is a scalar multiple of π.
But $\sum_{i \in \mathbb{Z}} \pi_{i}=\infty$.
So there can be no invariant distribution.
Thus, the walk is null recurrent, by the preceding theorem.

Example

- The existence of an invariant measure does not guarantee recurrence. Consider, the simple symmetric random walk on \mathbb{Z}^{3}.
By a previous example, it is transient.
It has invariant measure π given by $\pi_{i}=1$, for all i.

Example

- Consider the asymmetric random walk on \mathbb{Z} with transition probabilities

$$
p_{i, i-1}=q<p=p_{i, i+1} .
$$

In components, the invariant measure equation $\pi P=\pi$ reads

$$
\pi_{i}=\pi_{i-1} p+\pi_{i+1} q
$$

This is a recurrence relation for π.
It has general solution

$$
\pi_{i}=A+B\left(\frac{p}{q}\right)^{i}
$$

In this case, there is a two-parameter family of invariant measures.
This shows that uniqueness up to scalar multiples does not hold.

Example

- Consider a success-run chain on \mathbb{Z}^{+}, whose transition probabilities are given by

$$
p_{i, i+1}=p_{i}, \quad p_{i 0}=q_{i}=1-p_{i}
$$

Then the components of the invariant measure equation $\pi P=\pi$ read

$$
\begin{aligned}
\pi_{0} & =\sum_{i=0}^{\infty} q_{i} \pi_{i} \\
\pi_{i} & =p_{i-1} \pi_{i-1}, \quad \text { for } i \geq 1
\end{aligned}
$$

Example (Cont'd)

- We have

$$
\begin{aligned}
\pi_{0} & =\sum_{i=0}^{\infty} q_{i} \pi_{i} \\
\pi_{i} & =p_{i-1} \pi_{i-1}, \quad \text { for } i \geq 1
\end{aligned}
$$

Suppose we choose p_{i} converging sufficiently rapidly to 1 so that

$$
p=\prod_{i=0}^{\infty} p_{i}>0
$$

Then for any invariant measure π we have

$$
\pi_{0}=\sum_{i=0}^{\infty}\left(1-p_{i}\right) p_{i-1} \cdots p_{0} \pi_{0}=(1-p) \pi_{0}
$$

This equation forces either $\pi_{0}=0$ or $\pi_{0}=\infty$.
So there is no non-zero invariant measure.

Subsection 9

Convergence to Equilibrium

Limiting Behavior of n-Step Probabilities

- We saw that, if the state space is finite, and, for some i, the limit π_{i} of $p_{i j}^{n}$ as $n \rightarrow \infty$ exists, for all j, then π must be an invariant distribution.
- But the limit does not always exist.

Example: Consider the two-state chain with transition matrix

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then $P^{2}=I$.
So $P^{2 n}=I$ and $P^{2 n+1}=P$, for all n.
Thus $p_{i j}^{(n)}$ fails to converge for all i, j.

Aperiodic States

- We call a state i aperiodic if $p_{i i}^{(n)}>0$, for all sufficiently large n.
- It is easy to show that i is aperiodic if and only if the set $\left\{n \geq 0: p_{i i}^{(n)}>0\right\}$ has no common divisor other than 1.

Lemma

Suppose P is irreducible and has an aperiodic state i. Then, for all states j and $k, p_{j k}^{(n)}>0$ for all sufficiently large n. In particular, all states are aperiodic.

- By irreducibility, there exist $r, s \geq 0$, with $p_{j i}^{(r)}, p_{i k}^{(s)}>0$. Then, for all sufficiently large n,

$$
p_{j k}^{(r+n+s)} \geq p_{j i}^{(r)} p_{i i}^{(n)} p_{i k}^{(s)}>0 .
$$

Convergence to Equilibrium

Theorem (Convergence to Equilibrium)

Let P be irreducible and aperiodic, and suppose that P has an invariant distribution π. Let λ be any distribution. Suppose that $\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$. Then

$$
\mathbb{P}\left(X_{n}=j\right) \rightarrow \pi_{j} \text { as } n \rightarrow \infty, \text { for all } j
$$

In particular, $p_{i j}^{(n)} \rightarrow \pi_{j}$ as $n \rightarrow \infty$, for all i, j.

- We use a coupling argument.

Let $\left(Y_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\pi, P)$ and independent of $\left(X_{n}\right)_{n \geq 0}$.
Fix a reference state b and set

$$
T=\inf \left\{n \geq 1: X_{n}=Y_{n}=b\right\}
$$

Convergence to Equilibrium (Step 1)

- Step 1: We show $\mathbb{P}(T<\infty)=1$.

The process $W_{n}=\left(X_{n}, Y_{n}\right)$ is a Markov chain on $I \times I$ with:

- Transition probabilities $\widetilde{p}_{(i, k)(j, \ell)}=p_{i j} p_{k \ell}$;
- Initial distribution $\mu_{(i, k)}=\lambda_{i} \pi_{k}$.

Since P is aperiodic, for all states i, j, k, ℓ, we have

$$
\widetilde{p}_{(i, k)(j, \ell)}^{(n)}=p_{i j}^{(n)} p_{k \ell}^{(n)}>0,
$$

for all sufficiently large n. So \widetilde{P} is irreducible.
Also, \widetilde{P} has an invariant distribution given by $\widetilde{\pi}_{(i, k)}=\pi_{i} \pi_{k}$.
By a previous theorem, \widetilde{P} is positive recurrent.
But T is the first passage time of W_{n} to (b, b).
By a previous theorem, $\mathbb{P}(T<\infty)=1$.

Convergence to Equilibrium (Step 2)

- Step 2: Set

$$
Z_{n}= \begin{cases}X_{n}, & \text { if } n<T \\ Y_{n}, & \text { if } n \geq T\end{cases}
$$

We show $\left(Z_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$.

The strong Markov property applies to $\left(W_{n}\right)_{n \geq 0}$ at time T. So $\left(X_{T+n}, Y_{T+n}\right)_{n \geq 0}$ is:

- $\operatorname{Markov}\left(\delta_{(b, b)}, \widetilde{P}\right)$;
- Independent of $\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \ldots,\left(X_{T}, Y_{T}\right)$.

Convergence to Equilibrium (Step 2 Cont'd)

- By symmetry, we can replace the process $\left(X_{T+n}, Y_{T+n}\right)_{n \geq 0}$ by $\left(Y_{T+n}, X_{T+n}\right)_{n \geq 0}$.
This is also:
- $\operatorname{Markov}\left(\delta_{(b, b)}, \widetilde{P}\right)$;
- Independent of $\left(X_{0}, Y_{0}\right),\left(X_{1}, Y_{1}\right), \ldots,\left(X_{T}, Y_{T}\right)$.

Hence $W_{n}^{\prime}=\left(Z_{n}, Z_{n}^{\prime}\right)$ is $\operatorname{Markov}(\mu, \widetilde{P})$, where

$$
Z_{n}^{\prime}= \begin{cases}Y_{n}, & \text { if } n<T \\ X_{n}, & \text { if } n \geq T\end{cases}
$$

In particular, $\left(Z_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$.

Convergence to Equilibrium (Step 3)

- Step 3: We have

$$
\mathbb{P}\left(Z_{n}=j\right)=\mathbb{P}\left(X_{n}=j \text { and } n<T\right)+\mathbb{P}\left(Y_{n}=j \text { and } n \geq T\right)
$$

So

$$
\begin{aligned}
\left|\mathbb{P}\left(X_{n}=j\right)-\pi_{j}\right| & =\left|\mathbb{P}\left(Z_{n}=j\right)-P\left(Y_{n}=j\right)\right| \\
= & \mid \mathbb{P}\left(X_{n}=j \text { and } n<T\right) \\
& \quad-\mathbb{P}\left(Y_{n}=j \text { and } n<T\right) \mid \\
\leq & \mathbb{P}(n<T) .
\end{aligned}
$$

The result follows since $\mathbb{P}(n<T) \rightarrow 0$ as $n \rightarrow \infty$.

Example: Non-Aperiodic Transitions

- To understand this proof one should see what goes wrong when P is not aperiodic.

Example: Consider the two-state chain with transition matrix

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

It has $\left(\frac{1}{2}, \frac{1}{2}\right)$ as its unique invariant distribution.
We start:

- $\left(X_{n}\right)_{n \geq 0}$ from $0 ;$
- $\left(Y_{n}\right)_{n \geq 0}$ with equal probability from 0 or 1 .

Suppose $Y_{0}=1$.
Because of periodicity, $\left(X_{n}\right)_{n \geq 0}$ and $\left(Y_{n}\right)_{n \geq 0}$ will never meet.
So, in this case, the proof fails.

Decomposition of the State Space

Theorem

Let P be irreducible. There is an integer $d \geq 1$ and a partition $I=C_{0} \cup C_{1} \cup \cdots \cup C_{d-1}$, such that (setting $C_{n d+r}=C_{r}$):
(i) $p_{i j}^{(n)}>0$ only if $i \in C_{r}$ and $j \in C_{r+n}$, for some r;
(ii) $p_{i j}^{(n d)}>0$ for all sufficiently large n, for all $i, j \in C_{r}$, for all r.

- Fix a state k and consider $S=\left\{n \geq 0: p_{k k}^{(n)}>0\right\}$.

Choose $n_{1}, n_{2} \in S$, with:

- $n_{1}<n_{2}$
- $d:=n_{2}-n_{1}$ is as small as possible.

Define for $r=0, \ldots, d-1$,

$$
C_{r}=\left\{i \in I: p_{k i}^{(n d+r)}>0 \text { for some } n \geq 0\right\} .
$$

By irreducibility, $C_{0} \cup \cdots \cup C_{d-1}=I$.

Decomposition of the State Space (Cont'd)

- Suppose, for some $r, s \in\{0,1, \ldots, d-1\}$, we have:
- $p_{k i}^{(n d+r)}>0$;
- $p_{k i}^{(n d+s)}>0$.

Choose $m \geq 0$ so that $p_{i k}^{(m)}>0$.
Then we have:

- $p_{k k}^{(n d+r+m)}>0 ;$
- $p_{k k}^{(n d+s+m)}>0$.

So $r=s$ by minimality of d. Hence we have a partition.

Decomposition of the State Space (Part (i))

- Now we prove Part (i).

Suppose $p_{i j}^{(n)}>0$ and $i \in C_{r}$. Choose m so that $p_{k i}^{(m d+r)}>0$.
Then $p_{k j}^{(m d+r+n)}>0$. So $j \in C_{r+n}$, as claimed.
By taking $i=j=k$, we see that d must divide every element of S.
In particular d must divide n_{1}.
For $n d \geq n_{1}^{2}$, we can write

$$
n d=q n_{1}+r
$$

for integers $q \geq n_{1}$ and $0 \leq r \leq n_{1}-1$.
Since d divides n_{1}, we then have $r=m d$, for some integer m.
Then $n d=(q-m) n_{1}+m n_{2}$.
Hence

$$
p_{k k}^{(n d)} \geq\left(p_{k k}^{\left(n_{1}\right)}\right)^{q-m}\left(p_{k k}^{\left(n_{2}\right)}\right)^{m}>0 .
$$

So $n d \in S$.

Decomposition of the State Space (Part (ii))

- Now we prove Part (ii).

For $i, j \in C_{r}$, choose m_{1} and m_{2} so that:

$$
\begin{aligned}
& -p_{i k}^{\left(m_{1}\right)}>0 \\
& -p_{k j}^{\left(m_{2}\right)}>0 .
\end{aligned}
$$

Then, if $n d \geq n_{1}^{2}$,

$$
p_{i j}^{\left(m_{1}+n d+m_{2}\right)} \geq p_{i k}^{\left(m_{1}\right)} p_{k k}^{(n d)} p_{k j}^{\left(m_{2}\right)}>0 .
$$

But, by Part (i), $m_{1}+m_{2}$ is then necessarily a multiple of d.
This concludes the proof.

- We call d the period of P.
- The theorem shows, in particular, for all $i \in I$, that d is the greatest common divisor of the set $\left\{n \geq 0: p_{i i}^{(n)}>0\right\}$.

Description of Limiting Behavior for Irreducible Chains

Theorem

Let P be irreducible of period d and let $C_{0}, C_{1}, \ldots, C_{d-1}$ be the partition obtained in the preceding theorem. Let λ be a distribution with $\sum_{i \in C_{0}} \lambda_{i}=1$. Suppose that $\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$. Then for $r=0,1, \ldots, d-1$ and $j \in C_{r}$ we have

$$
\mathbb{P}\left(X_{n d+r}=j\right) \rightarrow \frac{d}{m_{j}} \text { as } n \rightarrow \infty
$$

where m_{j} is the expected return time to j. In particular, for $i \in C_{0}$ and $j \in C_{r}$ we have

$$
p_{i j}^{(n d+r)} \rightarrow \frac{d}{m_{j}} \text { as } n \rightarrow \infty .
$$

Limiting Behavior for Irreducible Chains (Step 1)

- Step 1: We reduce to the aperiodic case.

Set $\nu=\lambda P^{r}$. By the preceding theorem, $\sum_{i \in C_{r}} \nu_{i}=1$.
Set $Y_{n}=X_{n d+r}$. Then $\left(Y_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\nu, P^{d}\right)$.
By the preceding theorem, P^{d} is irreducible and aperiodic on C_{r}. For $j \in C_{r}$ the expected return time of $\left(Y_{n}\right)_{n \geq 0}$ to j is $\frac{m_{j}}{d}$.
Assume the theorem holds in the aperiodic case.
Then

$$
\mathbb{P}\left(X_{n d+r}=j\right)=\mathbb{P}\left(Y_{n}=j\right) \rightarrow \frac{d}{m_{j}} \text { as } n \rightarrow \infty
$$

So the theorem holds in general.

Limiting Behavior for Irreducible Chains (Step 2)

- Step 2: Assume that P is aperiodic.

If P is positive recurrent, then

$$
\frac{1}{m_{j}}=\pi_{j}
$$

where π is the unique invariant distribution.
So the result follows from a previous theorem.
Otherwise, $m_{j}=\infty$.
Then we have to show that

$$
\mathbb{P}\left(X_{n}=j\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

If P is transient this is easy.
So we are left with the null recurrent case.

Limiting Behavior for Irreducible Chains (Step 3)

- Step 3: Assume that P is aperiodic and null recurrent. Then

$$
\sum_{k=0}^{\infty} \mathbb{P}_{j}\left(T_{j}>k\right)=\mathbb{E}_{j}\left(T_{j}\right)=\infty
$$

Given $\varepsilon>0$, choose K so that

$$
\sum_{k=0}^{K-1} \mathbb{P}_{j}\left(T_{j}>k\right) \geq \frac{2}{\varepsilon}
$$

Then, for $n \geq K-1$,

$$
\begin{aligned}
1 & \geq \sum_{k=n-K+1}^{n} \mathbb{P}\left(X_{k}=j \text { and } X_{m} \neq j \text { for } m=k+1, \ldots, n\right) \\
& =\sum_{k=n-K+1}^{n} \mathbb{P}\left(X_{k}=j\right) \mathbb{P}_{j}\left(T_{j}>n-k\right) \\
& =\sum_{k=0}^{K-1} \mathbb{P}\left(X_{n-k}=j\right) \mathbb{P}_{j}\left(T_{j}>k\right) .
\end{aligned}
$$

So we must have $\mathbb{P}\left(X_{n-k}=j\right) \leq \frac{\varepsilon}{2}$, for some $k \in\{0,1, \ldots, K-1\}$.

Limiting Behavior for Irreducible Chains (Step 3 Cont'd)

- Return now to the coupling argument used in a previous theorem. Let $\left(Y_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\mu, P)$, where μ is to be chosen later. Set $W_{n}=\left(X_{n}, Y_{n}\right)$.
As before, aperiodicity of $\left(X_{n}\right)_{n \geq 0}$ ensures irreducibility of $\left(W_{n}\right)_{n \geq 0}$. Assume, first, $\left(W_{n}\right)_{n \geq 0}$ is transient.
Take $\mu=\lambda$.
We obtain

$$
\mathbb{P}\left(X_{n}=j\right)^{2}=\mathbb{P}\left(W_{n}=(j, j)\right) \rightarrow 0
$$

Assume then that $\left(W_{n}\right)_{n \geq 0}$ is recurrent.
Then we have $\mathbb{P}(T<\infty)=1$.
The coupling argument shows that

$$
\left|\mathbb{P}\left(X_{n}=j\right)-\mathbb{P}\left(Y_{n}=j\right)\right| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Limiting Behavior for Irreducible Chains (Step 3 Cont'd)

- Take $\mu=\lambda P^{k}$, for $k=1, \ldots, K-1$.

Then

$$
\mathbb{P}\left(Y_{n}=j\right)=\mathbb{P}\left(X_{n+k}=j\right)
$$

We can find N, such that for $n \geq N$ and $k=1, \ldots, K-1$,

$$
\left|\mathbb{P}\left(X_{n}=j\right)-\mathbb{P}\left(X_{n+k}=j\right)\right| \leq \frac{\varepsilon}{2}
$$

But for any n, we can find $k \in\{0,1, \ldots, K-1\}$, such that

$$
\mathbb{P}\left(X_{n+k}=j\right) \leq \frac{\varepsilon}{2}
$$

Hence, for $n \geq N, \mathbb{P}\left(X_{n}=j\right) \leq \varepsilon$.
Since $\varepsilon>0$ was arbitrary, we get $\mathbb{P}\left(X_{n}=j\right) \rightarrow 0$ as $n \rightarrow \infty$.

Subsection 10

Time Reversal

Introducing Time Reversal

- For Markov chains, the past and future are independent given the present.
- This property is symmetrical in time and suggests looking at Markov chains with time running backwards.
- On the other hand, convergence to equilibrium shows behavior which is asymmetrical in time.
- A highly organized state such as a point mass decays to a disorganized one, the invariant distribution.
- This is an example of entropy increasing.
- It suggests that if we want complete time-symmetry we must begin in equilibrium.
- We show that a Markov chain in equilibrium, run backwards, is again a Markov chain.
- The transition matrix may however be different.

Time Reversal of an Irreducible Markov Chain

Theorem

Let P be irreducible and have an invariant distribution π. Suppose that $\left(X_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\pi, P)$ and set $Y_{n}=X_{N-n}$. Then $\left(Y_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\pi, \widehat{P})$, where $\widehat{P}=\left(\widehat{p}_{i j}\right)$ is given by

$$
\pi_{j} \widehat{p}_{j i}=\pi_{i} p_{i j}, \text { for all } i, j,
$$

and \widehat{P} is also irreducible with invariant distribution π.

- First we check that \widehat{P} is a stochastic matrix:

$$
\sum_{i \in I} \widehat{p}_{j i}=\frac{1}{\pi_{j}} \sum_{i \in I} \pi_{i} p_{i j}=1 . \quad(\pi \text { invariant for } P)
$$

Next we check that π is invariant for \widehat{P} :

$$
\sum_{j \in l} \pi_{j} \widehat{p}_{j i}=\sum_{j \in l} \pi_{i} p_{i j}=\pi_{i} . \quad(P \text { stochastic })
$$

Time Reversal of an Irreducible Markov Chain (Cont'd)

- We have

$$
\begin{aligned}
& \mathbb{P}\left(Y_{0}=i_{0}, Y_{1}=i_{1}, \ldots, Y_{N}=i_{N}\right) \\
& =\mathbb{P}\left(X_{0}=i_{N}, X_{1}=i_{N-1}, \ldots, X_{N}=i_{0}\right) \\
& =\pi_{i_{N}} p_{i_{N} i_{N-1}} \cdots p_{i_{1} i_{0}} \\
& =\pi_{i} \widehat{p}_{i_{0} i_{1}} \cdots \widehat{p}_{i_{N-1} i_{N}} .
\end{aligned}
$$

So, by a previous theorem, $\left(Y_{n}\right)_{0 \leq n \leq N}$ is $\operatorname{Markov}(\pi, \widehat{P})$.
Since P is irreducible, for each pair of states i, j, there is a chain of states $i_{1}=i, i_{2}, \ldots, i_{n-1}, i_{n}=j$, with $p_{i_{1} i_{2}} \cdots p_{i_{n-1} i_{n}}>0$.
Then

$$
\widehat{p}_{i_{n} i_{n-1}} \cdots \widehat{p}_{i_{2} i_{1}}=\frac{\pi_{i_{1}} p_{i_{1} i_{2}} \cdots p_{i_{n-1} i_{n}}}{\pi_{i_{n}}}>0
$$

So \widehat{P} is also irreducible.

- The chain $\left(Y_{n}\right)_{0 \leq n \leq N}$ is called the time-reversal of $\left(X_{n}\right)_{0 \leq n \leq N}$.

Detailed Balance

- A stochastic matrix P and a measure λ are said to be in detailed balance if

$$
\lambda_{i} p_{i j}=\lambda_{j} p_{j i}, \text { for all } i, j
$$

- When a solution λ to the detailed balance equations exists, it is often easier to find by the detailed balance equations than by the equation $\lambda=\lambda P$.

Lemma

If P and λ are in detailed balance, then λ is invariant for P.

- We have

$$
(\lambda P)_{i}=\sum_{j \in I} \lambda_{j} p_{j i}=\sum_{j \in I} \lambda_{i} p_{i j}=\lambda_{i}
$$

Reversible Markov Chains

- Let $\left(X_{n}\right)_{n \geq 0}$ be $\operatorname{Markov}(\lambda, P)$, with P irreducible.
- We say that $\left(X_{n}\right)_{n \geq 0}$ is reversible if, for all $N \geq 1,\left(X_{N-n}\right)_{0 \leq n \leq N}$ is also $\operatorname{Markov}(\lambda, P)$.

Theorem

Let P be an irreducible stochastic matrix and let λ be a distribution. Suppose that $\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$. Then the following are equivalent:
(a) $\left(X_{n}\right)_{n \geq 0}$ is reversible;
(b) P and λ are in detailed balance.

- Both (a) and (b) imply that λ is invariant for P.

Then both (a) and (b) are equivalent to the statement that $\widehat{P}=P$ in the preceding theorem.

Example: A Non-Reversible Markov Chain

- Consider the Markov chain with diagram as on the right.
The transition matrix is

$$
P=\left(\begin{array}{ccc}
0 & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

and $\pi=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is invariant.
Hence $\widehat{P}=P^{T}$, the transpose of P.
But P is not symmetric, so $P \neq \widehat{P}$.
Thus, this chain is not reversible.
A patient observer would see the chain move clockwise in the long run. Under time-reversal the clock would run backwards!

Example

- Consider the following Markov chain, where $0<p=1-q<1$.

The non-zero detailed balance equations read

$$
\lambda_{i} p_{i, i+1}=\lambda_{i+1} p_{i+1, i}, \quad i=0,1, \ldots, M-1
$$

So a solution is given by

$$
\lambda=\left(\left(\frac{p}{q}\right)^{i}: i=0, \ldots, M\right)
$$

Normalized, this gives a distribution in detailed balance with P. Hence, by the theorem, this chain is reversible.

Example (Comments)

- Suppose p were much larger than q.
- Then, one might argue that the chain would tend to move to the right and its time-reversal to the left.
- However, this ignores the fact that we reverse the chain in equilibrium.
- In this case, the equilibrium would be heavily concentrated near M.
- So the chain would spend most of its time near M, making occasional brief forays to the left.
- This behavior is symmetric in time.

Example: Random Walk on a Graph

- A graph G is a countable collection of states, usually called vertices, some of which are joined by edges.

- Thus a graph is a partially drawn Markov chain diagram.
- There is a natural way to complete the diagram which gives rise to the random walk on G.

Example: Random Walk on a Graph (Cont'd)

- The valency v_{i} of vertex i is the number of edges at i.

We assume that every vertex has finite valency.
The random walk on G picks edges with equal probability. Thus, the transition probabilities are given by

$$
p_{i j}= \begin{cases}\frac{1}{v_{i}}, & \text { if }(i, j) \text { is an edge } \\ 0, & \text { otherwise }\end{cases}
$$

We assume G is connected, so that P is irreducible.
We may show that P is in detailed balance with $v=\left(v_{i}: i \in G\right)$.
Suppose the total valency $\sigma=\sum_{i \in G} v_{i}$ is finite.
Then $\pi=\frac{v}{\sigma}$ is invariant and P is reversible.

Example: Random Chessboard Knight

- A random knight makes each permissible move with equal probability. If it starts in a corner, how long on average will it take to return?
- This is an example of a random walk on a graph.
- The vertices are the squares of the chessboard.
- The edges are the moves that the knight can take.
- The diagram shows a part of the graph.

- We know by a previous theorem and the preceding example that

$$
\mathbb{E}_{c}\left(T_{c}\right)=\frac{1}{\pi_{c}}=\frac{1}{v_{c} / \sigma}=\frac{\sum_{i} v_{i}}{v_{c}}
$$

Example: Random Chessboard Knight (Cont'd)

- We have

$$
\mathbb{E}_{c}\left(T_{c}\right)=\frac{\sum_{i} v_{i}}{v_{c}}
$$

- So all we have to do is identify valencies.
- The four corner squares have valency 2.
- The eight squares adjacent to the corners have valency 3.
- There are 20 squares of valency 4
- There are 16 squares of valency 6
- The 16 central squares have valency 8 .
- Hence

$$
\mathbb{E}_{c}\left(T_{c}\right)=\frac{8+24+80+96+128}{2}=168
$$

Subsection 11

Ergodic Theorem

Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Let Y_{1}, Y_{2}, \ldots be a sequence of independent, identically distributed, non-negative random variables with $\mathbb{E}\left(Y_{1}\right)=\mu$. Then

$$
\mathbb{P}\left(\frac{Y_{1}+\cdots+Y_{n}}{n} \rightarrow \mu \text { as } n \rightarrow \infty\right)=1
$$

- A proof for $\mu<\infty$ is found in standard probability texts. The case where $\mu=\infty$ is a simple deduction.
Fix $N<\infty$. Set $Y_{n}^{(N)}=Y_{n} \wedge N$. Then

$$
\begin{aligned}
\frac{Y_{1}+\cdots+Y_{n}}{n} \geq & \frac{Y_{1}^{(N)}+\cdots+Y_{n}^{(N)}}{n} \\
& \rightarrow \mathbb{E}\left(Y_{1} \wedge N\right), \text { as } n \rightarrow \infty, \\
& \text { with probability one. }
\end{aligned}
$$

As $N \rightarrow \infty$ we have $\mathbb{E}\left(Y_{1} \wedge N\right) \nearrow \mu$ by monotone convergence. So, with probability $1, \frac{Y_{1}+\cdots+Y_{n}}{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Number of Visits Before Time n

- We denote by $V_{i}(n)$ the number of visits to i before n :

$$
V_{i}(n)=\sum_{k=0}^{n-1} 1_{\left\{X_{k}=i\right\}}
$$

- Then $\frac{V_{i}(n)}{n}$ is the proportion of time before n spent in state i.

The Ergodic Theorem

Theorem (Ergodic Theorem)

Let P be irreducible and let λ be any distribution. If $\left(X_{n}\right)_{n \geq 0}$ is $\operatorname{Markov}(\lambda, P)$, then

$$
\mathbb{P}\left(\frac{V_{i}(n)}{n} \rightarrow \frac{1}{m_{i}} \text { as } n \rightarrow \infty\right)=1
$$

where $m_{i}=\mathbb{E}_{i}\left(T_{i}\right)$ is the expected return time to state i. Moreover, in the positive recurrent case, for any bounded function $f: I \rightarrow \mathbb{R}$, we have

$$
\mathbb{P}\left(\frac{1}{n} \sum_{k=0}^{n-1} f\left(X_{k}\right) \rightarrow \bar{f} \text { as } n \rightarrow \infty\right)=1
$$

where $\bar{f}=\sum_{i \in I} \pi_{i} f_{i}$ and where $\left(\pi_{i}: i \in I\right)$ is the unique invariant distribution.

Proof of the Ergodic Theorem

- If P is transient, then, with probability 1 , the total number V_{i} of visits to i is finite. So

$$
\frac{V_{i}(n)}{n} \leq \frac{V_{i}}{n} \rightarrow 0=\frac{1}{m_{i}}
$$

Suppose then that P is recurrent and fix a state i.
For $T=T_{i}$ we have:

- $P(T<\infty)=1$, by a previous theorem;
- $\left(X_{T+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$ and independent of $X_{0}, X_{1}, \ldots, X_{T}$, by the Strong Markov Property.
The long run proportion of time spent in i is the same for $\left(X_{T+n}\right)_{n \geq 0}$ and $\left(X_{n}\right)_{n \geq 0}$.
So it suffices to consider the case $\lambda=\delta_{i}$.

Proof of the Ergodic Theorem (Cont'd)

- Write $S_{i}^{(r)}$ for the length of the r-th excursion to i.

By a previous lemma, the non-negative random variables $S_{i}^{(1)}, S_{i}^{(2)}, \ldots$ are independent and identically distributed with $\mathbb{E}_{i}\left(S_{i}^{(r)}\right)=m_{i}$. $S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)-1\right)}$ is the time of the last visit to i before n.
So we have

$$
S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)-1\right)} \leq n-1 .
$$

$S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)\right)}$ is the time of the first visit to i after $n-1$.
So we have

$$
S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)\right)} \geq n .
$$

These give

$$
\frac{S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)-1\right)}}{V_{i}(n)} \leq \frac{n}{V_{i}(n)} \leq \frac{S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)\right)}}{V_{i}(n)}
$$

Proof of the Ergodic Theorem (Cont'd)

- We got

$$
\frac{S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)-1\right)}}{V_{i}(n)} \leq \frac{n}{V_{i}(n)} \leq \frac{S_{i}^{(1)}+\cdots+S_{i}^{\left(V_{i}(n)\right)}}{V_{i}(n)} .
$$

By the strong law of large numbers

$$
\mathbb{P}\left(\frac{S_{i}^{(1)}+\cdots+S_{i}^{(n)}}{n} \rightarrow m_{i} \text { as } n \rightarrow \infty\right)=1
$$

Since P is recurrent,

$$
\mathbb{P}\left(\frac{n}{V_{i}(n)} \rightarrow m_{i} \text { as } n \rightarrow \infty\right)=1
$$

This implies

$$
\mathbb{P}\left(\frac{V_{i}(n)}{n} \rightarrow \frac{1}{m_{i}} \text { as } n \rightarrow \infty\right)=1 .
$$

Proof of the Ergodic Theorem (Conclusion)

- Assume now that $\left(X_{n}\right)_{n \geq 0}$ has an invariant distribution $\left(\pi_{i}: i \in I\right)$. Let $f: I \rightarrow \mathbb{R}$ be a bounded function.
Assume without loss of generality that $|f| \leq 1$.
For any $J \subseteq I$, we have

$$
\begin{aligned}
\left|\frac{1}{n} \sum_{k=0}^{n-1} f\left(X_{k}\right)-\bar{f}\right| & =\left|\sum_{i \in J}\left(\frac{V_{i}(n)}{V_{n}^{n}}-\pi_{i}\right) f_{i}\right| \\
& \leq \sum_{i \in J}\left|\frac{v_{i}(n)}{v_{n}^{n}}-\pi_{i}\right|+\sum_{i \notin J}\left|\frac{V_{i}(n)}{n_{i}^{n}}-\pi_{i}\right| \\
& \leq \sum_{i \in J}\left|\frac{v_{i}(n)}{n}-\pi_{i}\right|+\sum_{i \notin J}\left(\frac{V_{i}(n)}{n}+\pi_{i}\right) \\
& \leq 2 \sum_{i \in J}\left|\frac{V_{i}(n)}{n}-\pi_{i}\right|+2 \sum_{i \notin J} \pi_{i} .
\end{aligned}
$$

We proved above that $\mathbb{P}\left(\frac{V_{i}(n)}{n} \rightarrow \pi_{i}\right.$ as $n \rightarrow \infty$ for all $\left.i\right)=1$. Given $\varepsilon>0$, choose J finite so that $\sum_{i \notin J} \pi_{i}<\frac{\varepsilon}{4}$.
Then choose $N=N(\omega)$ so that, for $n \geq N(\omega), \sum_{i \in J}\left|\frac{V_{i}(n)}{n}-\pi_{i}\right|<\frac{\varepsilon}{4}$. Then, for $n \geq N(\omega)$, we have $\left|\frac{1}{n} \sum_{k=0}^{n-1} f\left(X_{k}\right)-\bar{f}\right|<\varepsilon$.
This establishes the desired convergence.

Estimating Transition Probabilities

- Sometimes we need to estimate an unknown transition matrix P on the basis of observations of the corresponding Markov chain.
- Consider the case where we have $N+1$ observations $\left(X_{n}\right)_{0 \leq n \leq N}$.
- The log-likelihood function is given by

$$
\ell(P)=\log \left(\lambda_{X_{0}} p_{X_{0} X_{1}} \cdots p_{X_{N-1} X_{N}}\right)=\sum_{i, j \in I} N_{i j} \log p_{i j}
$$

up to a constant independent of P, where $N_{i j}$ is the number of transitions from i to j.

Estimating Transition Probabilities (Cont'd)

- A standard statistical procedure is to find the maximum likelihood estimate \widehat{P}, which is the choice of P maximizing $\ell(P)$.
- P must satisfy the linear constraint $\sum_{j} p_{i j}=1$, for each i.
- So we first try to maximize

$$
\ell(P)+\sum_{i, j \in I} \mu_{i} p_{i j}
$$

and then choose ($\mu_{i}: i \in I$) to fit the constraints.

- This is the method of Lagrange multipliers.
- Thus we find

$$
\widehat{p}_{i j}=\frac{\sum_{n=0}^{N-1} 1_{\left\{X_{n}=i, X_{n+1}=j\right\}}}{\sum_{n=0}^{N-1} 1_{\left\{X_{n}=i\right\}}},
$$

which is the proportion of jumps from i which go to j.

Consistency of the Estimate

- We now consider the consistency of this sort of estimate, i.e., whether $\widehat{p}_{i j} \rightarrow p_{i j}$, with probability 1 , as $N \rightarrow \infty$.
- This is clearly false when i is transient.
- So we shall slightly modify our approach.
- Note that to find $\widehat{p}_{i j}$ we simply have to maximize $\sum_{j \in I} N_{i j} \log p_{i j}$ subject to $\sum_{j} p_{i j}=1$, the other terms and constraints being irrelevant.
- Suppose then that instead of $N+1$ observations we make enough observations to ensure the chain leaves state i a total of N times.
- In the transient case this may involve restarting the chain several times.
- Denote again by $N_{i j}$ the number of transitions from i to j.

Consistency of the Estimate (Cont'd)

- To maximize the likelihood for $\left(p_{i j}: j \in I\right)$ we still maximize

$$
\sum_{j \in I} N_{i j} \log p_{i j}
$$

subject to $\sum_{j} p_{i j}=1$.

- This leads to the maximum likelihood estimate $\widehat{p}_{i j}=\frac{N_{i j}}{N}$.
- But $N_{i j}=Y_{1}+\cdots+Y_{N}$, where $Y_{n}=1$ if the n-th transition from i is to j, and $Y_{n}=0$ otherwise.
- By the strong Markov property Y_{1}, \ldots, Y_{N} are independent and identically distributed random variables with mean $p_{i j}$.
- So, by the strong law of large numbers

$$
\mathbb{P}\left(\widehat{p}_{i j} \rightarrow p_{i j} \text { as } N \rightarrow \infty\right)=1 .
$$

- This shows that $\widehat{p}_{i j}$ is consistent.

