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Discrete Time Markov Chains Introduction

Subsection 1

Introduction
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Discrete Time Markov Chains

o We study random processes that retain no memory of where they
have been in the past.

o This means that only the current state of the process can influence
where it goes next.

o Such a process is called a Markov process.

o We deal exclusively with the case where the process can assume only
a finite or countable set of states, when it is referred to as a Markov
chain.
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Discrete Time Markov Chains

o We consider chains both in discrete time
neZ"=1{01,2,...}
and continuous time
t e Rt =0, 00).

o The letters n, m, k will always denote integers.

o The letters t and s will refer to real numbers.
o Thus, we write:

o (Xn)n>o for a discrete-time process;
o (Xt)e>o for a continuous-time process.
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Discrete Time Markov Chains

o We move from state 1 to state 2 1
with probability 1.

o From state 3, we move either to 1 or L 1
to 2 with equal probability 1/2.

o From 2, we jump to 3 with
probability 1/3, otherwise stay at 2. 3 2

1
3
o We might have drawn a loop from 2 to itself with label 2/3.

o Since the total probability on jumping from 2 must equal 1, this does
not convey any more information.

o So one may leave loops out.
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Discrete Time Markov Chains

o When in state 0, we wait for a random time with exponential
distribution of parameter A € (0,00), then jump to 1.

o Thus the density function of the waiting time T is given by
fr(t) = Ae ™t for t > 0.

o We write T ~ E()) for short.
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Discrete Time Markov Chains

o Here, when we get to 1, we do not stop but, after another
independent exponential time of parameter A, jump to 2, and so on.

o The resulting process is called the Poisson process of rate ).
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Discrete Time Markov Chains

o In state 3, we take two independent 1
exponential times T; ~ E(2) and
T, ~ E(4).
o If Ty is the smaller, we go to 1 after
time T7;
o If T is the smaller, we go to 2 after
time T».

o The rules for states 1 and 2 are as 3
given in the preceding examples.

o We will show later that:

o The time spent in 3 is exponential of parameter 244 =6;

o The probability of jumping from 3 to 1 is 2+4 é
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Discrete Time Markov Chains

0

o The states may be partitioned into communicating classes, namely
{0}, {1,2,3} and {4,5,6}.
o Two of these classes are closed, meaning that you cannot escape.

o The closed classes here are recurrent, meaning that you return again
and again to every state.

o The class {0} is transient.
o The class {4,5,6} is periodic, but {1,2,3} is not.
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Discrete Time Markov Chains

o The following hold:

Starting from 0, the probability of hitting 6 is ‘—11.

Starting from 1, the probability of hitting 3 is 1.

Starting from 1, it takes on average three steps to hit 3.
Starting from 1, the long-run proportion of time spent in 2 is %.
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Discrete Time Markov Chains Introduction

Example: Discrete Time (Cont'd)

o Let p,(") be the probability of being in state j after n steps, when

startlng from state /.

o Then we also have:
(n) _

( ) ||mn—>oop 321

(f) p04) does not converge as n — oo;
3

( ) limp—so0 P( ") — 1;4-
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Discrete Time Markov Chains Definition and Basic Properties

Subsection 2

Definition and Basic Properties
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Discrete Time Markov Chains

o Let / be a countable set.

o Each i € | is called a state and / is called the state space.

o We say that A= (\;: i € /) is a measure on [ if 0 < \; < oo, for all
i€l

o If, in addition the total mass )
distribution.

o We work throughout with a probability space (2, F,P).

ie1 Ai equals 1, then we call A a

A random variable X with values in [ is a function X : Q — /.
Suppose we set \; = P(X = i) = P({w : X(w) = i}).
Then )\ defines a distribution, the distribution of X.

We think of X as modelling a random state which takes the value i
with probability A;.

©

© © o
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Discrete Time Markov Chains

o We say that a matrix P = (pj; : i,j € I) is stochastic if every row
(pjj : j € 1) is a distribution.

o There is a one-to-one correspondence between stochastic matrices P
and the sort of diagrams described in the Introduction.

Example:

0%
, e @ ), I )
“\ 8 1-8) b
010 1
p=(o0 % 1|
1 (2) i 3 1
2 2 2

o=
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Discrete Time Markov Chains

o We say that (X,),>0 is a Markov chain with initial distribution X
and transition matrix P if:

Xo has distribution \;
For n> 0, conditional on X, = i, X,+1 has distribution (p;j : j € /) and
is independent of Xp, ..., X,_1.

o More explicitly, these conditions state that, for n > 0 and

/1,...,/,,+1 el

P(Xo = il) = )\,’1;
IP(X,,Jrl = I'n+1|X0 = il, 500 ,Xn = In) = pinin+1'

o We say that (X,)n>0 is Markov(A, P) for short.

o If (Xh)o<n<n is a finite sequence of random variables satisfying
Conditions (i) and (ii), for n=0,..., N — 1, then we again say
(Xn)o<n<n is Markov(A, P).
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Discrete Time Markov Chains Definition and Basic Properties

Characterization Theorem

A discrete-time random process (X,)o<p<n is Markov(\, P) if and only if
for all iy, iv,...,in €1,

P(XO =g, X1 =1i1,...,. Xy = iN) = )\iopioi1pi1i2 “ Pin_qin:

o Suppose (Xn)o<n<n is Markov(A, P). Then

P(Xo =i, X1 =11,..., Xy = iN)
— P(Xo = io)P(X1 = ir| Xo = o)
- P(Xy = in|Xo = doy -, Xn—1 = in—1)

= XigPioi * * * Pin_1in-
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Discrete Time Markov Chains

o On the other hand, suppose the equation holds for N.

By summing both sides over iy € | and using Zje, pj = 1, we see
that the equation holds for N — 1.

By induction, for all n=0,1,..., N,
IFD(XO = i07X1 = ila v aXn = ’n) = )\iopl'oil * Pin_qin-

In particular:
o P(Xo =io) = Nigi
o Forn=0,1,...,N -1,
P(Xns1 = ins1|Xo = i, - - -, X = i)
P(Xo =iy - -, Xo = iny Xnt1 = iny1)
P(Xo =g, .-, Xp = In)

= pinin+1 °

So (Xn)o<n<n is Markov(A, P).



Discrete Time Markov Chains

o Write 0; = (0;; : j € I) for the unit mass at i, where

s 1 ifi=,
Y71 0, otherwise.

Theorem (Markov Property)
Let (Xh)n>0 be Markov(\, P). Then, conditional on Xy, = i, (Xm+n)n>0 is
Markov(d;, P) and is independent of the random variables Xo, ..., Xp.

o We have to show that, for any event A determined by X, ..., Xn,

]P({X == im,...,Xm+n = ’m+n}mA|Xm = [)
= 6iimpimir71+1 e pim+n—1im+n]P)(A|Xm = I)'

Then the result follows by the preceding theorem.
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Discrete Time Markov Chains

o First consider the case of elementary events
A={Xo =10y, Xm = im}-

In that case we have to show

IP(XOZ"Oy---7Xm+n:im+n and i:im)
P(Xm=i)

e ) ] P(Xo=ioy.-sXm=im ANd i=im)
= Olimg Pimims1 " Pimsn_timin X P(Xm=1) .

This is true by the preceding theorem.

In general, any event A determined by Xy, ..., X, may be written as
a countable disjoint union of elementary events A = (J;; Ax.

In this case, the desired identity for A follows by summing up the
corresponding identities for Ay.
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Discrete Time Markov Chains

o We regard P as a matrix whose entries are indexed by / x /.

o We regard distributions and measures A as row vectors whose
components are indexed by /.

o When [ is finite we will often label the states 1,2,..., N.
o In this case, A will be an N-vector and P an N x N-matrix.
o For finite objects, matrix multiplication is a familiar operation.

N N
(AP); = Z Xipi, (PP = Zpijpjk-
i=1 j=1
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Discrete Time Markov Chains

o We extend matrix multiplication to the general case.

o We define a new measure AP and a new matrix P? by

(AP); = Xipi,  (P?)ic =Y piiPji-

icl jel
o We define P" similarly for any n.

o We agree that P? is the identity matrix /, where

(i = 0j.

o We write p,(j") = (P")j, for the (i,j) entry in P".

George Voutsadakis (LSSU) Markov Chains



Discrete Time Markov Chains

o In the case where \; > 0 we shall write P;(A) for the conditional
probability P(A[Xo = /).

o By the Markov property at time m = 0, under P;, (X,)n>0 is
Markov(d;, P).

o So the behavior of (X;,)s>0 under IP; does not depend on .
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Discrete Time Markov Chains

Let (Xn)n>0 be Markov(A, P). Then, for all n,m > 0,
P(X, =Jj) = (AP");;

IEDi(Xn :J) = IED(Xn-i-m :j|Xm = i) = P,gjn)-

By a previous theorem,

IED(Xn :J) = Zioel tU Zin—lel IP)(XO =gy, Xn-1 = In-1, X :J)
= Zioel e Zi,,_lel AigPigiy = * Pin—1j
= (AP7);.

By the Markov property, conditional on Xy, = i, (Xm4n)n>0 is
Markov(d;, P). So we just take A = §; in Part (i).

(i)
7]

George Voutsadakis (LSSU) Markov Chains

o We call p;:” the n-step transition probability from i to ;.



Discrete Time Markov Chains Definition and Basic Properties

Example

o The most general two-state chain has
transition matrix of the form

[ 1-« o B
P_< p 1_B>.

o We exploit the relation P"*! = P"P to write

Pl = piD B + PP (1 - ).
o We also know that

P 4+ p) — Py (X, =10r2) =1.
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Discrete Time Markov Chains Definition and Basic Properties

Example (Cont'd)

o We wrote (1) ) )
pi1 = piyB+pir(1—a),

pip + iy =1.

o By eliminating pgg) we get a recurrence relation for p:(lrl'),

Pt =1-a-8pY+8 PP =1

o This has a unique solution

o0 _ | E+ats-a—py, forats>0
H L for a + 3 = 0.

George Voutsadakis (LSSU) Markov Chains April 2024 26 /159



Discrete Time Markov Chains

o Suppose a virus can exist in N different strains.

o In each generation it either stays the same, or with probability «
mutates to another strain, which is chosen at random.

o We compute the probability that the strain in the n-th generation is
the same as that in the 0-th generation.

o We could model this process as an N-state chain.
o The N x N transition matrix P given by
«

Pij = N_1’ for i # j.

pi =1—a,

o Then the probability we seek is found by computing Pg)-

o In this example there is a much simpler approach, which relies on
exploiting the symmetry present in the mutation rules.
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Discrete Time Markov Chains

o At any time a transition is made:

o From the initial state to another with probability «;
o From another state to the initial state with probability 5= .

o Thus, we have a two-state chain with the depicted diagram.

[0}

initial -<>- other

a/(N —1)

o By putting 3 = =5 in the preceding example, we find

P — St assl—a—f)"
= as Tam e w)

= hra-H (i)
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Discrete Time Markov Chains

o Consider the three-state chain shown.

o It has transition matrix

010
p=|o0 11
1o f
2 2

o We want to find a general formula for pg'{).

o First we compute the eigenvalues of P.
o lts characteristic equation is
det(x — P) =0
12 1 _
dee—g)F — 2 =0

I(x—1)(4x2+1)=0.

@ So the eigenvalues are 1, 5 and —3.

George Voutsadakis (LSSU) Markov Chains
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Discrete Time Markov Chains

o It follows that P is diagonalizable with

1 0 0
P=U|l0 4 0 JUT,
0 0 —é
for some invertible matrix U.
1 O 0
o Soweget P"=U| 0 (3)" 0 Ut
0 O (—%)”

o We conclude that pﬂ) has the form

n i\" i\"
pgl):a-l-b(i) +c(—§) ;

for some constants a, b and c.
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Discrete Time Markov Chains

o We found that pg'{) has the form

n I' n I' n
P:{l):a+b(§) +C(—§) )

for some constants a, b and c.

o The answer we want is real and

LY 2 (LY i _ (L "(cos”—”iisinﬂ)
2) ~\2 S \2 2 2/

o So it makes sense to rewrite pgq)

1\” nm . nm
pﬁ):a+(§) {ﬁc057+75m7}

for constants «a, 8 and ~.

in the form
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Discrete Time Markov Chains

o The first few values of PH) are easy to write down.

o So we get equations to solve for «, 5 and ~:

—
Il

Pl =a+B;

° Sowegetaz%,ﬁz%,fy:—%.
o It follows that

my 1 o 1\" 4COS nm 25_n nm
== = —CoS — — —sin— ¢.
P =571 2) 52 " 55"
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Discrete Time Markov Chains

o The following method may in principle be used to find a formula for

p

(

b

" for any M-state chain and any states / and j.

Compute the eigenvalues A1, ..., Ay of P by solving the characteristic
equation.
If the eigenvalues are distinct, then pfj") has the form

p’(Jn) — 31/\'11 + ...+ aMA,I(/I?

for some constants aj, ..., ay (depending on i and j).

If an eigenvalue X is repeated (once, say) then the general form
includes the term (an + b)A".

As roots of a polynomial with real coefficients, complex eigenvalues will
come in conjugate pairs and these are best written using sine and
cosine, as in the preceding example.
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Discrete Time Markov Chains [FClass Structure

Subsection 3

Class Structure
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Discrete Time Markov Chains [FClass Structure

Communicating Classes of a Chain

o We say that i leads to j, written i — j, if
Pi(X, = j for some n > 0) > 0.
o We say i communicates with j, written i + j, if

i—j and j—i.
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Discrete Time Markov Chains

For distinct states i and j the following are equivalent:

i = J;
PiyirPinis * * * Pin_1in > 0, for some iy, o, ..., ip, with ii =i and i, = j;
p,g.") > 0, for some n > 0.

o Observe that

P < Bi(Xy = j for some n > 0) < 3 pf.
n=0

This proves the equivalence of (i) and (iii).

(n) _
We also have p;” =3, i PinPiis " Pip_yj-

So (ii) and (iii) are equivalent.
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Discrete Time Markov Chains

o It is clear from (ii) that i — j and j — k imply i — k.
Also i — i for any state i.
So > satisfies the conditions for an equivalence relation on /.
Thus <« partitions / into communicating classes.

o We say that a class C is closed if
ieC and i—j imply j e C.

Thus, a closed class is one from which there is no escape.
o A state i is absorbing if {i} is a closed class.

o A chain or transition matrix P, where the set | of states is a single
class, is called irreducible.

George Voutsadakis (LSSU)



Discrete Time Markov Chains

o Find the communicating classes associated to the stochastic matrix

11
5 00 00
0 01 00O
1 1 1
p_| 3 00 33 0
0 005 50
0 000 01
0 00 0 10
o The solution is obvious from the 1 4
diagram.
o The classes are {1,2,3},{4} and .
{5,6}.
o Only {5,6} is closed. 2 5 6
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Subsection 4

Hitting Times and Absorption Probabilities
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Discrete Time Markov Chains

o Let (X,)n>0 be a Markov chain with transition matrix P.

o The hitting time of a subset A of / is the random variable
HA:Q — {0,1,2,...} U {cc} given by

HA(w) = inf {n>0: X,(w) € A},

where we agree that the infimum of the empty set () is co.
o The probability starting from i that (X,),>0 ever hits A is then

h? = P;(HA < c0).
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Discrete Time Markov Chains

o When A is a closed class,
h? = P;(HA < o)

is called the absorption probability.

o The mean time taken for (X,)n>0 to reach A is given by

K =Ei(H*) = ) nPi(H* = n) + 0oP;(H* = o0),

i
n<oo

o We shall often write less formally

h? =P;(hit A), Kk = E;(time to hit A).

1

o These quantities can be calculated explicitly by means of certain
linear equations associated with the transition matrix P.
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Discrete Time Markov Chains

o Consider the chain with the following di- 1 3 1
agram: 1 2 31 3
2

Starting from 2, we calculate the probability of absorption in 4.
We also calculate the time until the chain is absorbed in 1 or 4.
Introduce h; = P;(hit 4), k; = E;(time to hit {1,4}).

Clearly, h1 = 0, h4 =1 and k1 = k4 =0.

Suppose now that we start at 2.

Consider the situation after making one step.

o With probability % we jump to 1;
o With probability 5 we jump to 3.

So
hy = I+ 3hs,
k2 = 1-|—%k1+%k3.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Example (Cont'd)

o We got

hy = I+ 3hs,

k = 1+%k1+%k3.
Similarly,

hs = Lhy+ 3hs,

ks = 1+ 3k + ik
Hence

h, = Lp =l(lh +l)
2 2 31 5\ 2112 12 ) 1

So, starting from 2:
The probability of hitting 4 is %;
The mean time to absorption is 2.
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Discrete Time Markov Chains

The vector of hitting probabilities i = (h? : i € ) is the minimal
non-negative solution to the system of linear equations

WA =1, for i € A,
hft=Yic piphtt for i & A.

Minimality means that if x = (x; : i € /) is another solution with x; > 0,
for all i, then x; > h;“, for all i.

o First we show that h* satisfies the system.

Suppose Xo =i € A. Then HA =0. So h;“ =1.

i¢ A Then HA > 1.

Suppose Xy

George Voutsadakis (LSSU) Markov Chains



Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Hitting Probabilities (Cont'd)

o By the Markov property,

Pi(HA < oo Xy = j) = Pj(H* < 00) = K.
Moreover,

Mt = Pi(HA < )
= Y Pi(HA <00, X1 =)
= e Pi(HA < oolXy = j)Pi(X =)
= e pijth'

Suppose, now, that x = (x; : i € /) is a solution of the system.
Fori€ A h=x =1.
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Discrete Time Markov Chains

o Suppose i € A. Then
=D P =D Pt Y Pix.
jel JEA JEZA
Substitute for x; to obtain

= ZjeA pjj + ngA Pij (> kea Pik + ZkeA PjkXk)
= Pi(X1€eA)+Pi(X1 €A XA+ ngA Zk¢A Pij Pjk Xk -
By repeated substitution for x in the final term we obtain after n steps
xi = Pi(Xi €A+ +Pi(X1 €A,.... X1 €A X, €A)
T2 hgA 2o A Pin Pz PlaetjnXn-

Now if x is non-negative, so is the last term on the right.
Moreover, the remaining terms sum to P;(HA < n).
So x; > P;(HA < n), for all n.
Then x; > lim, o Pi(HA < n) = P;(HA < o0) = h;.



Discrete Time Markov Chains

o Consider again the chain shown. 1

The system of linear equations for h = hi*} are given by

hy = 1,
hy = Im+3ihs, h3=31h+ ihs
> hy = Ih+iGh+1
- @nizEo R
hy = 3+%5h, h3=35+3h.

The value of h; is not determined by the system.
However, the minimality condition now makes us take h; = 0.

So we recover hy, = %

George Voutsadakis (LSSU)



Discrete Time Markov Chains

o Consider the following Markov chain with0 < p=1—¢g < 1.

qg p qg p g p
0 1 i i+ 1

The transition probabilities are

poo = 1, Pii-1 =4, Pii+1 =P, for i = 1L %0 0 05

Imagine that we enter a casino with a fortune of $i and gamble, $1 at
a time, with:

o Probability p of doubling our stake;

o Probability g of losing it.

The resources of the casino are regarded as infinite.
So there is no upper limit to our fortune.
We compute the probability that we go bust.

George Voutsadakis (LSSU)



Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Example: Gambler's Ruin (Cont'd)

o Set h; = P;(hit 0).

Then h is the minimal non-negative solution to

ho = 1,
h; = ph,-+1+qh,-_1, fori=1,2,....

Suppose p # q.
Then the recurrence has a general solution

i
h;=A+B(3) .
p

George Voutsadakis (LSSU) Markov Chains April 2024 49 /159



Discrete Time Markov Chains

o For p # g, we have h; = A+ B(%)i.

o Suppose p < g.

Since0 < h; <1, B=0. So h; =1, for all /.
o Suppose p > q.

Since hg = 1, we get a family of solutions

h = (ﬂ)l +A (1 - (3)) .
P P
For a non-negative solution we must have A > O_.
So the minimal nonnegative solution is h; = ()".
o Suppose p = q.

The recurrence relation has a general solution h; = A+ Bi.
Again, 0 < h; <1 forces B =0. So h; =1, for all /.
Thus, even in a fair casino, we are certain to end up broke.
This apparent paradox is called gamblers’ ruin.
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Discrete Time Markov Chains

o Consider the following Markov chain.

T D1 qi Di G+t Pi+1

0 1 i i+ 1

Fori=1,2,..., wehave0<pi=1—¢g; < 1.

As in the preceding example, 0 is an absorbing state.

We wish to calculate the absorption probability starting from i.

Such a chain may serve as a model for the size of a population.

pi is the probability of a birth before a death in a population of size i.
Then h; = P;(hit 0) is the extinction probability starting from i.

We write down the usual system of equations

ho = 1,
hi = pihiy1+qihic1, i=1,2,....

This recurrence relation has variable coefficients.
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Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Example: Birth-and-Death Chain (Cont'd)

o Take h;i = pjhj11 + qihi_1.
Rewrite as
pihi + qihi = pihit1 + gihi-1.

Consider uj = h;_1 — h;.

Then
Pili+1 = qiu;.
So
qi qigi-1-"-q1
Up1=\|—|uy=\|\—"——)u =riua,
o (Pi) I (PiPi—l"'Pl) v
where ; 1= %‘ﬁ:ﬁ:jfﬁ
Then

up+ -+ up = hg — h;.
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Discrete Time Markov Chains

o We now have
hi=1—A(vwo+ - +7i-1),
where A = u; and 9 = 1, with A still to be determined.
o Suppose Y 2,7 = oo.
The restriction 0 < h; < 1 forces A = 0.
So h; =1, for all .
o Suppose >_iog i < 00.
Then we can take A > 0 so long as

1—A(vw+---+7v-1)>0, foralli.

Thus, the minimal non-negative solution occurs when A = ﬁ
i=0 It
Then
Do
h= 2=
Zj:o Vi
In this case, for i = 1,2, ..., we have h; < 1.

So the population survives with positive probability.



Discrete Time Markov Chains Hitting Times and Absorption Probabilities

Mean Hitting Times

o Recall that
kA =B (HA),

where HA is the first time (X,),>0 hits A.
o We use the notation 1g for the indicator function of B.

. 1, ifieB,
13(’)_{ 0, ifidB.

Example: 1x,—; is:

o Equalto 1if X; = j;
o Equal to 0, otherwise.
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Discrete Time Markov Chains

The vector of mean hitting times kA = (kA : i € /) is the minimal
non-negative solution to the system of linear equations

{kA—O for i € A,
kA 1+ZJ¢APU A foridA.

o First we show that k” satisfies the system.
Suppose Xo =i € A. Then HA =0. So k = 0.
Suppose Xo =i ¢ A. Then HA > 1.
By the Markov property, E;(HA| X1 = j) = 1 + E;(H?).
kiA = ]Ei(HA) = Zje/Ei(HA1X1=j)
= Y Bi(HAX = j)Pi(X1 = J)
= 1+ 94 Pijkf‘
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o Suppose, now, that y = (y; : i € 1) is a solution to the given system.
Suppose i € A. Then k,f“ =y =0.
Suppose i € A. Then
yio = 14+ aapiy;
= 14> 2aPi(1+ X kga Pikyk)
= Pi(HA> 1)+ Pi(HA > 2) + 3" i0n > kga PiiPikYk-
By repeated substitution for y, we get after n steps
Yi=Pi(HA 2 1)+ +Pi(H* > n)+ D> pijbips* PiosinYin-
NgA  ngA
So, if y is non-negative, y; > IF’,-(HA >+ + IF’,-(HA > n).
Letting n — oo, -
yi > > Pi(HA > n) = Ei(H*) = k.
n=1
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Subsection 5

Strong Markov Property
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o Let T:Q—{0,1,2,...} U{oo} be a random variable.

o T is called a stopping time if the event { T = n} depends only on

Xo, X1,..., Xy, forn=0,1,2,....

Examples:
The first passage time T; = inf {n > 1: X, = j} is a stopping time.
We have {T; =n} ={X1 #,..., Xoc1 #ZJ, Xa =j}.
The first hitting time HA is a stopping time.
We have {HA=n} = {Xo € A,..., X, 1 € A X, € A}.
The last exit time LA = sup{n > 0: X, € A} is not in general a
stopping time because the event {L* = n} depends on whether
(Xntm)m>1 Visits A or not.
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Introducing the Strong Markov Property

o We shall show that the Markov Property holds at stopping times.
o The essential feature is that if:

o T is a stopping time;
o B CQ is determined by Xy, X1, ..., XT;

Then BN {T = m} is determined by Xp, Xi,..., Xn, for all
m=0,1,2,....
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Theorem (Strong Markov Property)

Let (X,)n>0 be Markov(\, P) and let T be a stopping time of (X,)n>0.
Then, conditional on T < oo and X7 =i, (X74n)n>0 is Markov(d;, P)
and independent of Xy, X1,..., X7.

o Suppose B is an event determined by Xp, X1, ..., XT.
Then BN {T = m} is determined by Xp, X1,..., Xnm.
So, by the Markov Property at time m,

P{XT =Jjo, X741 =J1,-- » XT4n =Jn} N BNOA{T = m} N {X7 = i})
:]P,'(Xo :jo,Xl :jl,...,X,, :j,,)]P)(Bﬂ{T: m}ﬂ{XT = i}),

where we have used the condition T = m to replace m by T.
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o We compute

P{XT =Jo, X741 =J1,-- s X740 = Jn} N B|T < 00, X7 = i)
_ PUX1=jo, XT01=1, - XT1n=Jn JNBN{ T <00, X7=i})
= P(T <00, X7=1)

_ Yoo PUXT=j0, X7 41=)150 s XTn=Jn JNBO{ T=m, X7=i})
= P(T <oo,X7=1)

_ Yoo Pil{XT=jo, XT11=j15 s XT 40 =jn HP(BN{ T=m}n{X7=i})
= P(T <oo,X7=i)

Pi({XT=jo, XT 415415, XT4n=hn}) dopm o P(BA{ T=m}N{X7=i})
P(T <oo,X7=i)

_ Pi{X7=jo, XT11=J1,-- s XT1n=in PDP(BO{ T <o }N{X7=i})
= P(T <00, X1=i)

=Pi({X7 =Jjo, X741 =Jj1,- - - X740 = Jn})P(B|T < 00, X7 =i).
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o Consider the Markov chain (X,),>0 shown below.

q D a9 p g p
0 1 7 1+1

Here, 0 < p=1—-—qg < 1.
We know from a previous example the probability of hitting O starting
from 1.

We obtain the complete distribution of the time to hit 0 starting from
1 in terms of its probability generating function.

Set Hy =inf{n>0: X, =}
For 0 <s <1, let

¢(s) = Eq(s™) = Z s"P1(Ho = n).

n<oo
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o Suppose we start at 2.
Apply the Strong Markov Property at Hj.

Denote by ﬁo the time taken after H; to get to 0.
o It is independent of Hy;
o It has the (unconditioned) distribution of Hj.

So, under P, conditional on H; < oo, we have

Ho = Hy + Ho.
Now we get
Ey(sf) = Ex(sM|H; < co)Ex(s0|Hy < 00)Pa(Hy < o)
= Eao(s™ 1py<o0)Ea(s™| Hy < c0)
= Ey(sM)?

2
= ¢(s)"
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o Next we use the Markov Property at time 1, conditional on X3 = 2.
Let Hy be the time taken after time 1 to get to 0.
It has the same distribution as Hy does under P5.
Moreover, we have o
Ho =1+ Hy.

So we get

¢(s) = Ei(s™)

pE1(s™|X; = 2) 4 qEy1(s™| X, = 0)
pEl(SH_HO’Xl = 2) ol qE1(5’X1 = 0)
psEz(sM) + gs

= ps¢(s)® + gs.

Thus ¢ = ¢(s) satisfies ps¢? — ¢ + gs = 0.
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o We found that ¢ = ¢(s) satisfies ps¢? — ¢ + gs = 0.
So ¢ = 144/1—4pgs?

2ps
But ¢(0) < lpand ¢ is continuous.
So we are forced to take the negative root at s = 0 and stick with it
forall 0 <s < 1.
To recover the distribution of Hy we expand the square-root as a
power series:

o(s) = Vit

2ps

—4 2)2
= gl — (1+3(~4pas?) + 3(-1) 5+ )]
= gs+pg>s>+---

= sPi(Ho=1)+s?Pi(Ho=2)+s°P1(Ho=3)+ - .

The first few probabilities P1(Hy = 1), P1(Ho = 2), ... are readily
checked from first principles.
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o We found ¢(S) = SPl(Ho = 1) aF 52]P)1(H0 = 2) aF 53]P)1(H0 = 3) aF
On letting s 1, we have ¢(s) — P1(Hp < 00).

So
P1(Ho < o0) 1=vi~ipq

- p
g=1-p 1-|2g—1|
- 2

P
{1, if p<gq,

q -
5 if p>gq.

For the mean hitting time, E;(Hp) = Ii/rplqb’(s).
S

It is only worth considering the case p < g, where the mean hitting
time has a chance of being finite.

Differentiate ps¢® — ¢ + gs = 0 to obtain 2psp¢’ + pp? — ¢ +q = 0.
So ¢/(s) = pp(s)’+q /AL 1 _ 1

1-2ps¢(s) 1-2p = q-—
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o We consider an application of the Strong Markov Property to a
Markov chain (X,)n>0 observed only at certain times.

Suppose that J is some subset of the state-space /.
Suppose we observe the chain only when it takes values in J.

The resulting process (Ym)m>0 may be obtained formally by setting
Ym = XT,,, where

To = inf{n>0:X,ecJ};
Tmi1 = inf{n>Tp:X,€J}, m=0,1,2,....

Let us assume that P(T,, < co) = 1, for all m.
For each m, T,,, the time of the m-th visit to J, is a stopping time.
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o Let, for j € J, the vector (K. : i € I) be the minimal non-negative
solution to

i = oy -+ Zpikh] ;
ke J
Set, for i,j € J, pjj = h{
By the Strong Markov Property, for iy, ..., imi1 € J,
IP(Ym—|—1 = im+1|YO =i,y Ym= im)
= IED()<Tm+1 = im+1|XT0 =i1,... ,XTm = im)
= Pi, (X1 = imt1) = Pipipar-

Thus (Ym)m>o0 is a Markov chain on J with transition matrix P.
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o A second example of a similar type arises if we observe the original
chain (X,)n>0 only when it moves.
The resulting process (Z,)m>o0 is given by Z,, = Xs,,, where Sp =0
and for m=20,1,2,...,

Smt1 =inf{n € Sp: X, # Xs,,}.

Let us assume there are no absorbing states.
Then the random times S, for m > 0 are stopping times.
By the Strong Markov Property,

]P)(Zm+1 = im—|—1|ZO = il, ey Zm = Im)
= ]P)(XSWr1 = im+1|X50 =i,...,Xs, = im)
= (%8 = ) = B

Pij
Dkt Pik

Thus (Zm)m>o0 is @ Markov chain on | with transition matrix P.

where p;; = 0 and, for i # j, pjj =
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Subsection 6

Recurrence and Transience
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o Let (X,)n>0 be a Markov chain with transition matrix P.

o We say that a state i/ is recurrent if

P;(X, = i for infinitely many n) = 1.
o We say that i is transient if

P;(X, = i for infinitely many n) = 0.

o A recurrent state is one to which you keep coming back.
o A transient state is one which you eventually leave for ever.

o We will show that every state is either recurrent or transient.
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o The first passage time to state / is the random variable T; defined
by
Ti(w) =inf{n>1: X,(w) =i},
where inf () = oo.

o We now define inductively the r-th passage time T,-(r) to state i by

T w) =0;
T (w) = Tiw);
Tl.(rH)(w) =inf{n> T,-(r)(w) +1: Xp(w) =i}, r=0,1,....
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Length of Excursion

o The length of the r-th excursion to i is

s _ ) T =TI i 1Y <o,
! 0, otherwise.

0 ig® 1@

Si(l) 57(2) Si(S) 51(4)
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Lemma

For r = 2,3, ..., conditional on T(r_l) < 00, S(r) is independent of
{Xm:m < T(’ 1)} and P(S") = n|TU™Y < 00) = P(T; = n).

I

o Apply the strong Markov property at the stopping time T = T,-(r_l).
It is automatic that Xy =ion T < .
So, conditional on T < oo:

o (X74n)n>0 is Markov(d;, P);
o Independent of Xy, X1,...,XT.

But
S(r) inf{n>1:Xry,=1i}.

So S,.(r) is the first passage time of (X74,)n>0 to state i.
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o Recall that the indicator function 17x,_; is the random variable equal
to 1 if Xy = and 0 otherwise.

o We introduce the number of visits V; to i.

o It may be written in terms of indicator functions as

Vi= Z Lix,=i1-
n=0

o Note that

Ei(Vi) = Eidololix,=i}
Ym0 Ei(lix,=i1)
> om0 Pi( X = i)
= > P,(in)-

o Define the return probability f; = P;(T; < o).
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Number of Visits in terms of Return Probabilities

For r =0,1,2,..., we have P;(V; > r) = f'.

o Observe that if Xo =/, then {V; > r} = {Ti(r) < oo}
When r = 0 the result is true.
Suppose inductively that it is true for r.
Then

Pi(Vi>r+1) = P(T'Y < o0)
IP’,-(TI.(r) < o0 and 5,-(r+1) < 00)
Pi(S" ™ < 00| T < 00)P(T" < o)
prec. lem.
e ffr

_ r+1
Fr1,
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Expectation of Nonnegative Integer Random Variable

o Recall that one can compute the expectation of a non-negative
integer-valued random variable as follows:

E(V) = XVLvB(V=v)
= TILYSP(V=v)

= Zio Ziozr-u P(V =v)
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The following dichotomy holds:

if Pj(T; < 00) =1, then i is recurrent and > 7, p,(,") 00;

if Pi(T; < o0) < 1, then i is transient and > o2 Opl(,") < 0.

In particular, every state is either transient or recurrent.
o If Pi(T; < o0) =1, then, by the preceding lemma,
Pi(Vi=00) = lim Pi(Vi>r)=1.
r—o00

So i is recurrent and
ZP(") Ei(Vi) =
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Criterion for Recurrence or Transience (Cont'd)

o On the other hand, suppose f; = P;(T; < ) < 1.
Then by the preceding lemma

SRy = Ei(V)
= Y Pi(Vi>r)
— TR f

_ 1
= 1=

N
91

So P;(V; = c0) = 0 and i is transient.
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Let C be a communicating class. Then either all states in C are transient
or all are recurrent.

o Take any pair of states /,j € C and suppose that i is transient.
(n) (m)
By hypothesis, there exist n, m > 0 with p;~ > 0 and p; > 0.
Moreover, for all r > 0,

p(n+r+m) > pl(n) (r) ,(m)

ii p_]J p_[l
So, by the preceding theorem,
S (nrm)
n+r+m
ij (n) (m) 2 Pii < oo
ij pj, r=0

Hence j is also transient.

o As a result, we may speak of a recurrent or transient class.
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Closure of Recurrent Classes

Every recurrent class is closed.

o Let C be a class which is not closed.
Then there exist i € C, j ¢ C and m > 1, with P;(X,, = j) > 0.

But we have
Pi({Xm = j} N {X, = i for infinitely many n}) = 0.
It follows that
Pi(X, = i for infinitely many n) < 1.

So i is not recurrent.

Hence, neither is C.
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A Partial Converse

Every finite closed class is recurrent.

o Suppose C is closed and finite and that (X,)n>0 starts in C.

Then for some i € C we have

0 < P(X, =i for infinitely many n)

= P(X, =i for some n)P;(X, = i for infinitely many n).
(Strong Markov Property)

This shows that 7 is not transient.

So C is recurrent by previous theorems.
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o Remember that irreducibility means that the chain can get from any
state to any other, with positive probability.

Suppose P is irreducible and recurrent. Then for all j € /,

P(T; < 00) = 1.

o By the Markov Property we have

P(T; < o0) = > P(Xo = i)Pi(T; < ).
icl
So it suffices to show that, for all / € [/,

]P,'(Tj < OO) =1.
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(m)

o Choose m with p; " > 0.

By a previous theorem, we have

1 = Pj(X, = for infinitely many n)
= Pj(X, = for some n > m+1)
> ke Bi(Xp = j for some n > m+ 1| Xy, = k)P;( Xy, = k)
e Y ket Pu(Tj < oo)pJ(,:n).

So we must have P;(T; < oo) =1, forall i € /.
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Subsection 7

Recurrence and Transience of Random Walks
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o The simple random walk on Z has the following diagram.

As usual, we have 0 < p=1—g < 1.
Suppose we start at 0.
o It is clear that we cannot return to 0 after an odd number of steps.
So p2") = 0, for all n.
Poo '
o Any given sequence of steps of length 2n from 0 to 0 occurs with
probability p”q", there being n steps up and n steps down.
The number of such sequences is the number of ways of choosing the n
steps up from 2n. Thus, pla”) = (2 p"q".
Stirling’s formula provides a good approximation to n! for large n,

n\n
nl ~+2mn (—) as n — oo,
e

where a, ~ b, means 22 — 1.
n
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o For the n-step transition probabilities we obtain

p(()gn) _ Ei':));( )"~ Mas n — oo.

Ay/n/2

o In the symmetric case p = q = % So 4pg = 1. Then, for some N and

all n > N, we have p(()%") > 2A1\/E' So
o0 o0
CORLIL o U S
2P 2 0a 2

This shows that the random walk is recurrent.
o If p# q, then 4pg = r < 1. So by a similar argument, for some N

ipég)g%ir"<oo.
n=N n=N

This shows that the random walk is transient.
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Recurrence and Transience of Random Walks

Example: Simple Symmetric Random Walk on Z?

o The simple symmetric random walk on 7?2

e

is shown below.

.

e

o The transition probabilities are given by

George Voutsadakis (LSSU)
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Example: Simple Symmetric Random Walk on Z?2 (Cont'd)

o Suppose we start at 0.

We call the walk X,,.
We write:

o X, for the orthogonal projection of X, on y = x;
o X, for the orthogonal projection of X, on y = —x.
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o X and X are independent symmetric random walks on 2-1/27,
Moreover, X, = 0 if and only if X;m =0 = X, .
This makes it clear that for X, we have (using Stirling's formula)

2n 2
P(2n) = <<2n> (1> ) o i as n — oo
00 n 2 A2n '

Then "7, p((,g) = 0o by comparison with >0 ; 1.

So the walk is recurrent.
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o The transition probabilities of the simple symmetric random walk on

73 are given by
pij:{ (%) if |i —j] =1,
, otherwise.
Thus, the chain jumps to each of its nearest neighbors with equal
probability.
Suppose we start at 0.
We can only return to 0 after an even number 2n of steps.

Of these 2n steps there must be i up, i down, j north, j south, k east
and k west for some i, j, k > 0, with

i+j+k=n.
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o By counting the ways in which this can be done, we obtain

! 2
Pc(J%n) = D lijk>0i+j+k=n '(i(!?!?!l)z (%) ’
CN BT w0 (707 (3
i+j+k=n

The expression Y ;x>0 (,J”k)(%)" is the total probability of all the
i+j+k=n
ways of placing n balls randomly into three boxes.

> (i) =2

ij,k>0
i+j+k=n

So we have
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o For the case where n = 3m, we have, for all i, k,

(n) . ( . )
ij k ikl mmm

So, using Stirling's formula,

@n) _ (20 (1N (o N L6\
Poo " =1\ 2 mmm) \ 3 2A3 \ n oo

Hence, > v 0p00 ™ < o, by comparison with S 32,

But we have, for all m:

o pl&™ > (L)2plm2);

o p™ > (2)*pl" Y.
So we must have Y77, pég) < 00. So the walk is transient.
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Subsection 8

Invariant Distributions
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Invariant Distributions

o Recall that a measure X is any row vector (\; : i € /) with
non-negative entries.

o We say A is invariant if AP = A.

o Alternative terms are equilibrium and stationary.
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The Stationary Property

o The first result explains the term stationary.

Let (Xn)n>0 be Markov(\, P) and suppose that A is invariant for P. Then
(Xm+n)n>0 is also Markov(A, P).

o By a previous theorem, P(X,, = i) = (AP™); = A;, for all /.
Moreover, conditional on X1, = i:

o Xmint1 is independent of Xy, Ximi1, - oy Xins
o It has distribution (pj; : j € /).
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o The next result explains the term equilibrium.

Let / be finite. Suppose that, for some i € /,

p,(J)—Hrjasn—)oo, for all j € /.

Then 7 = (mj : j € 1) is an invariant distribution.
o We have
T (n) _
Sr= X Jim A = im Sk -
_/GI _[e’ _]GI

Here, finiteness of | justifies interchange of summation and limit
operations.
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o We saw that } ., m; = 1.

We also have )

— li (n
T = My 00 P,'j
5 n

= limpse Zke/ P,gk)ij

_ li (n) i

= Zkel IMp— o0 Pj " Pkj

= Zke/ Tk Pkj »
where, again, finiteness of / justifies interchange of summation and
limit operations.
Hence, 7 is an invariant distribution.

o Notice that for any of the random walks discussed in the preceding

) 0asn— oo, foralli,jel.

The limit is certainly invariant, but it is not a distribution!

subsection, we have p
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o Consider the two-state Markov chain with transition matrix

[ 1-« 0"
P_< p 1—5)'

Ignore the trivial cases a = =0and a =3 = 1.

By a previous example,
B _a
P" — 0‘23‘5 atB | as n— oo.
(63
at+B atp

So, by the preceding theorem, the distribution (a’%ﬁ, o55) must be
invariant.

o There are, of course, easier ways to discover this.
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o Consider the Markov chain (X,),>0 with 1
the diagram shown.
Then 1
010 2 1
p=1o0 11
15 1
2 2
3 1 2
Let 7 = (w1, ™2, 73). 2

To find an invariant distribution we write down the components of
the vector equation 7P = .

We have

TP = (7T1,7T2,7T3)

(L1011
— 27T3,7T1 27'('2,2772 2773 .

N O O
O NI =
NI=NI= O
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o So wP = 7 gives

1
T = 573,
1
Ty = T + 572,
1 1
m3 = 572 -+ 5T3.

In terms of the chain:

o The right sides give the probabilities for X;, when Xy has distribution ;
o The equations require Xj also to have distribution 7.

The equations are homogeneous so one of them is redundant.

Thus, another equation is required to fix 7w uniquely,
T + o + 3 = 1.

).

Solving, we find that 7 = (%, %,

(6,118}
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o For a finite state space /, the existence of an invariant row vector
follows by linear algebra.
The row sums of P are all 1.
So the column vector of ones is an eigenvector with eigenvalue 1.

So P must have a row eigenvector with eigenvalue 1.
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o Fix a state k.

o Consider, for each i, the expected time spent in / between visits

to k,
Te—1

VK = Ey Z Lix,=i}-
n=0

o Here the sum of indicator functions serves to count the number of
times n at which X,, = i before the first passage time Ty.
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Let P be irreducible and recurrent. Then:
=1
7k = (yK: i € 1) satisfies YkP = ~k;
O<’yf‘<oo, for all / € [.

This is obvious.

For n=1,2,..., the event {n < Ty} depends only on
Xo, X1,---,Xn_1. So, by the Markov property at n — 1,

Pk(Xn—l = f,Xn =j and n < Tk) = Pk(Xn—l =iand n < Tk)p,'j.

Since P is recurrent, under Py, we have:
o Ty < oo
o Xo = X7, = k with probability one.
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o Therefore,

o= Bk Lix—g

= Ex 2211 1{X,,:j and n<T,}

= > Pu(Xp=jand n < Ty)

= Yt me1 Pu(Xp—1 =i, Xp=j and n < T))

> ier Pij 2ne1 Pu(Xn-1=1iand n < Tj)

= el Pifk Xm0 Lix,—i and m<T,-1}

= Yier PiBA Xm0 Lixemi)

= Yie Py
By hypothesis, P is irreducible. So, for each state i, there exist
n,m > 0, with pff),p,((;n) > 0. Then, using Parts (i) and (ii),
fyf‘ > fy,’jp,(f) > 0. And, also, fyf‘p,(,f) < fy,’j = 1l.
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Invariant Measures and Time Spent Between Visits

Theorem

Let P be irreducible and let A be an invariant measure for P with Ay = 1.
Then \ > 7k. If, in addition, P is recurrent, then A\ = 7".

o For each j € I, we have
A= Yier MiPiyj
= Yk AaPij t Pk
D it stk AoPiritPivj + (Pij + D5, 2k Phiy Pirj)

Zil,...,i,,;ék NipPigin_1 *** Pitj
+ (Pj + Dk PrinPij D i i itk Phiny " Pioiy Pirj)-
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o So for j = k, we obtain

)\j > ]P)k(Xl =jand Ty > 1) -I-]P)k(Xg =jand T, > 2)
4o 4 Py(Xy=j and T > n)

—  qfas n— oo

So A > fyk.
If P is recurrent, then ~¥ is invariant by the preceding theorem.
So ;= A — ¥ is also invariant and p > 0.

Since P is irreducible, given i € I, we have pf:) > 0, for some n.

So
0=pk= > wpy > pipy.
Jjel
We conclude pj = 0.
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o Recall that a state / is recurrent if
P;(X, = i for infinitely many n) = 1.

o We showed that this is equivalent to P;( T; < c0) = 1.
o If, in addition, the expected return time

m; = E,’( T,')

is finite, then we say / is positive recurrent.

o A recurrent state which fails to have this stronger property is called
null recurrent.
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Let P be irreducible. Then the following are equivalent:
Every state is positive recurrent;
Some state i is positive recurrent;
P has an invariant distribution, 7 say.

Moreover, when (iii) holds we have m; = 1, for all i.
!

(i)=(ii) is obvious.
(ii)=(iii) If i is positive recurrent, it is certainly recurrent.
So P is recurrent.

i

By a previous theorem, ' is then invariant.

But Zje/'Yj = m; < 0.

v 0 ] ] S
So mj = -+ defines an invariant distribution.
1
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(iii)=(i) Take any state k.
Now P is irreducible and ;7 = 1.
So we have Ty = > ., w;pf:) > 0, for some n.

Set
i

Tk
Then X is an invariant measure with Ay = 1.
So by the preceding theorem, A > .

Hence,
my = Zv, gz :—<oo

i€l IEI

So k is positive recurrent.

To complete the proof we revisit the argument for (iii)=(i).
Now we know that P is recurrent.

Then A = ~¥ and the preceding inequality is in fact an equality.
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o The simple symmetric random walk on Z is clearly irreducible.
By a previous example, it is also recurrent.
Consider the measure 7; = 1, for all J.

Then
1 1
Ti = 5Ti-1+ 5Mit1-
So 7 is invariant.
By a previous theorem, any invariant measure is a scalar multiple of 7.
But ) ey mi = 00.
So there can be no invariant distribution.

Thus, the walk is null recurrent, by the preceding theorem.
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Example

o The existence of an invariant measure does not guarantee recurrence.
Consider, the simple symmetric random walk on Z3.
By a previous example, it is transient.

It has invariant measure 7 given by m; = 1, for all J.
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o Consider the asymmetric random walk on Z with transition
probabilities

Pii—-1=q < p = pjit1-

In components, the invariant measure equation 7P = 7 reads

T = Tj—1P + Ti4+1g.

This is a recurrence relation for .

i
7r,-=A+B<E) .
q

In this case, there is a two-parameter family of invariant measures.

It has general solution

This shows that uniqueness up to scalar multiples does not hold.
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Example

o Consider a success-run chain on Z*, whose transition probabilities
are given by
pii+1 = Pi, Pio=4qi=1—p;.

Po P1 b2

Then the components of the invariant measure equation 7P = 7 read

o0
™ = Zi:o qiTj,
T = pi-1mi-1, fori>1.
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o We have -
o = Y ieo9qiTi
T = pi-1mi-1, fori>1.

Suppose we choose p; converging sufficiently rapidly to 1 so that

(oe)
p=]]pr>0
i=0

Then for any invariant measure ™ we have

oo
mo= Y (1—pi)pi-1---poro = (1 — p)mo.
i=0

This equation forces either mg = 0 or mg = o0.

So there is no non-zero invariant measure.
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Subsection 9

Convergence to Equilibrium
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o We saw that, if the state space is finite, and, for some /, the limit 7;
of pi as n — oo exists, for all j, then m must be an invariant
distribution.

o But the limit does not always exist.

Example: Consider the two-state chain with transition matrix

P:(‘l)(l))

Then P? = |.
So P?" = | and P?"t! = P, for all n.
Thus p,g-") fails to converge for all 7, .
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o We call a state / aperiodic if p,(,-") > 0, for all sufficiently large n.

o It is easy to show that / is aperiodic if and only if the set
{n>0: p(") > 0} has no common divisor other than 1.

ii

Lemma
Suppose P is irreducible and has an aperiodic state j. Then, for all states j
and k, p},f) > 0 for all sufficiently large n. In particular, all states are
aperiodic.

o By irreducibility, there exist r,s > 0, with p/), p{s) > 0.

Then, for all sufficiently large n,

Py = PRl > 0.
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Theorem (Convergence to Equilibrium)

Let P be irreducible and aperiodic, and suppose that P has an invariant
distribution 7. Let A be any distribution. Suppose that (X,)n,>0 is
Markov(A, P). Then

P(X, =j) — mj as n — oo, for all j.
In particular, pfj") — mj as n — o0, for all 7, j.

o We use a coupling argument.

Let (Yn)n>0 be Markov(m, P) and independent of (X;)n>o0.
Fix a reference state b and set

T=inf{n>1:X,=Y,=>b}
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o Step 1: We show P(T < o0) = 1.
The process W, = (Xp, Yn) is a Markov chain on [ x | with:

o Transition probabilities p(; x)(j,c) = PijPke;
o Initial distribution fu(; k) = Aimk.

Since P is aperiodic, for all states i, j, k, ¢, we have

~(n) (n) (n )
PG,y = Pii Pre =

for all sufficiently large n. So P is irreducible.

Also, P has an invariant distribution given by 7(; ) = m;mk.
By a previous theorem, Pis positive recurrent.

But T is the first passage time of W, to (b, b).

By a previous theorem, P(T < o0) = 1.
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Convergence to Equilibrium (Step 2)

o Step 2: Set 1

S _ [ Xay fn<T X,
"Z\ Y, ifn>T. b

We show (Z,,)n>0 is Markov(\, P). " \/\/

The strong Markov property applies to (W,),>0 at time T.
So (X74n, YT4n)n>0 is:

o Markov(d(,), P);
o Independent of (Xo, Yo), (Xl, Yl), ey (XT, YT)
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o By symmetry, we can replace the process (X74n, Y74n)n>0 by
(YT4n XT4n)n>o0-
This is also:
° Markov(é(b,b),ls);
o Independent of (Xp, Yo), (X1, Y1), ..., (XT, Y7T).

Hence W) = (Z,, Z})) is Markov(u, P), where

Z, =

n

Y,, ifn<T,
X,, ifn>T.

In particular, (Z,)n>0 is Markov(\, P).
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Convergence to Equilibrium (Step 3)

o Step 3: We have
P(Z,=j)=P(Xp=jand n< T)+P(Y,=jand n>T).
So

P(Xn=J) =mj| = [P(Zn =J) = P(Ya =)
= |P(X,=jandn<T)
—P(Y,=jand n < T)|
< P(n<T).

The result follows since P(n < T) — 0 as n — oc.
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o To understand this proof one should see what goes wrong when P is
not aperiodic.

Example: Consider the two-state chain with transition matrix

01
p= ( 01 > |
It has (3,1) as its unique invariant distribution.
We start:

o (Xp)n>o0 from 0;
o (Yn)n>0 with equal probability from 0 or 1.

Suppose Yy = 1.
Because of periodicity, (Xp)n>0 and (Y,)n>0 will never meet.

So, in this case, the proof fails.
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Let P be irreducible. There is an integer d > 1 and a partition
I =CUGC U---UCy_1, such that (setting Cpgi, = C;):

p,g-") > Qonlyifie C andj € Coyp, for some r;

p,-(jnd) > 0 for all sufficiently large n, for all i,j € C,, for all r.

o Fix a state k and consider S ={n >0 p,((z) > 0}.
Choose ny, ny € S, with:
o m < ny;
o d:= np — ny is as small as possible.

Define for r=0,...,d — 1,
C={iel: p,((;'dH) > 0 for some n > 0}.

By irreducibility, CoU---U Cy_1 = I.
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Decomposition of the State Space (Cont'd)

o Suppose, for some r,s € {0,1,...,d — 1}, we have:
(nd+r)

o P > 0;
[} p,((7d+s) > 0.

Choose m > 0 so that p,s:") > 0.

Then we have:
(nd+r+m)

° Pu > 0;
° p,((zd+s+m) > 0.
So r = s by minimality of d.

Hence we have a partition.
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o Now we prove Part (i).

Suppose P,g-n) >0 and i € C,. Choose m so that p,(é."d”) > 0.
Then p{™ ™™ > 0. So j € G,.p, as claimed.

By taking i = j = k, we see that d must divide every element of S.
In particular d must divide n;.
For nd > nf, we can write

nd = qny +r,

for integers g > nypand 0 < r < n; — 1.
Since d divides nj, we then have r = md, for some integer m.
Then nd = (¢ — m)ny + mns.
Hence
Pl = () (Pl > 0.
Sond € S.
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o Now we prove Part (ii).
For i,j € C,, choose m; and m» so that:
° pl(linl) > 0;
° p,(gmz) > 0.

Then, if nd > n%,

pl(Jm1+nd+m2) > P,(ml)P(nd) (m2) <> 0.
But, by Part (i), m; + mo is then necessarily a multiple of d.
This concludes the proof.
o We call d the period of P.
o The theorem shows, in particular, for all i/ € /I, that d is the greatest
common divisor of the set {n >0 : p(") > 0}.
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Theorem
Let P be irreducible of period d and let Cy, Cq,..., Cy_1 be the partition
obtained in the preceding theorem. Let A\ be a distribution with

E,E(_-O Ai = 1. Suppose that (X,),>0 is Markov(\, P). Then for
r=0,1,...,d —1 and j € C, we have

P(Xngsr =J) — 4 as n — oo,
(nnjy

where m; is the expected return time to j. In particular, for i € Cy and
j € C, we have

p(nd—i—r)

d
i — — as n — oo.

m;j
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o Step 1: We reduce to the aperiodic case.
Set v = AP". By the preceding theorem, >, v; = 1.
Set Y, = Xngir- Then (Y,)n>0 is Markov(v, P9).
By the preceding theorem, P9 is irreducible and aperiodic on C,.
For j € C, the expected return time of (Y,)s>0 to j is %.
Assume the theorem holds in the aperiodic case.
Then
P(Xpgsr = j) = P(Ys = ) — mij —

So the theorem holds in general.
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o Step 2: Assume that P is aperiodic.

If P is positive recurrent, then

1 — o

m
where 7 is the unique invariant distribution.
So the result follows from a previous theorem.
Otherwise, mj = co.

Then we have to show that
P(X,=j) — 0 as n — oc.

If P is transient this is easy.

So we are left with the null recurrent case.
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o Step 3: Assume that P is aperiodic and null recurrent. Then
> Bi(T; > k) = E{(T)) = .
k=0
Given € > 0, choose K so that

Then, for n > K — 1,
1 > Yk P(Xk=jand Xy #jfor m=k+1,...,n)

= Dken-k1 PXe =)Pi(Tj > n— k)
= YIS0 P(Xa—k = )BT} > k).
So we must have P(X,_x = j) < 5, for some k € {0,1,...,K —1}.
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o Return now to the coupling argument used in a previous theorem.
Let (Yn)n>0 be Markov(u, P), where p is to be chosen later.
Set W, = (Xp, Ya).
As before, aperiodicity of (X,)n>0 ensures irreducibility of (W,)n>0.
Assume, first, (W,)n>0 is transient.
Take p = .

We obtain
P(Xn = j)* = P(W, = (j,j)) = 0.

Assume then that (W,)n>0 is recurrent.
Then we have P(T < o0) = 1.
The coupling argument shows that

IP(X, =) — P(Y, = j)| = 0 as n — .
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o Take = AP¥, for k=1,...,K — 1.
Then
IED(Yn=j) =IP)(Xn—l-k =J)
We can find N, such that for n > N and k=1,... K —1,

IP(Xn =J) = P(Xngk =J)| <

N ™

But for any n, we can find k € {0,1,..., K — 1}, such that
N _ €
P(Xntk =J) < 2

Hence, for n > N, P(X, =) <e.
Since € > 0 was arbitrary, we get P(X, =j) — 0 as n — oo.
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Subsection 10

Time Reversal
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o For Markov chains, the past and future are independent given the
present.

o This property is symmetrical in time and suggests looking at Markov
chains with time running backwards.

@ On the other hand, convergence to equilibrium shows behavior which
is asymmetrical in time.

o A highly organized state such as a point mass decays to a disorganized
one, the invariant distribution.
o This is an example of entropy increasing.
o It suggests that if we want complete time-symmetry we must begin in
equilibrium.
o We show that a Markov chain in equilibrium, run backwards, is again a

Markov chain.
o The transition matrix may however be different.
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Theorem

Let P be irreducible and have an invariant distribution 7. Suppose that
(Xn)o<n<n is Markov(m, P) and set Y, = Xy_,. Then (Y,)o<n<n is
Markov(m, P), where P = (pj;) is given by

TjPji = TiPij, for all i,j,

and P is also irreducible with invariant distribution 7.
o First we check that P is a stochastic matrix:
~ 1 : .
ij,- = ;J Zmp;j = 1. (7 invariant for P)
i€l iel
Next we check that 7 is invariant for P:
Zﬂjﬁﬁ = Zmpij = m;. (P stochastic)
jel jel
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o We have . ' '
P(Y0=10,Y1=11,...,YN=IN)

= Ty Piynin_1 " Pirip
= TiPigir * * * Pin_1in-
So, by a previous theorem, (Y,)o<n<n is Markov(m, P).
Since P is irreducible, for each pair of states i/, j, there is a chain of
states i1 =i, I2,...,ip—1, in = j, With pyj, -~ - pi i, > 0.
Ul . ~ TPk Pin_in
Pinin—1 *** Pioiy = P > 0.

n

So P is also irreducible.

o The chain (Y)o<n<n is called the time-reversal of (X,)o<n<n.
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o A stochastic matrix P and a measure \ are said to be in detailed
balance if
)\,'p,'j = )\_,'p_,',', for all i,j.

o When a solution A to the detailed balance equations exists, it is often

easier to find by the detailed balance equations than by the equation
A= AP.

Lemma

If P and )\ are in detailed balance, then A is invariant for P.

o We have

(AP)i= D Nipii= Y Aipj = A

Jjel Jjel
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o Let (X,)n>0 be Markov(A, P), with P irreducible.
o We say that (X,)n>0 is reversible if, for all N > 1, (Xn_n)o<n<n is
also Markov(A, P).

Let P be an irreducible stochastic matrix and let A be a distribution.
Suppose that (X,)s>0 is Markov(A, P). Then the following are equivalent:

(Xa)n>o0 is reversible;

P and X are in detailed balance.

o Both (a) and (b) imply that A is invariant for P.
Then both (a) and (b) are equivalent to the statement that P=Pin
the preceding theorem.
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o Consider the Markov chain with diagram as
on the right.
The transition matrix is

P -

wWINWIE O©
Wik O wIN
O WINWI—

and m = (3,1, 1) is invariant.
Hence P = PT, the transpose of P.
But P is not symmetric, so P # P.
Thus, this chain is not reversible.

A patient observer would see the chain move clockwise in the long
run. Under time-reversal the clock would run backwards!
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o Consider the following Markov chain, where 0 < p=1—¢g < L.

p g p q
0 1 i—1 4 i+1 M-1 M

The non-zero detailed balance equations read
Aipiji+1 = Ait1pit1,i, 1 =0,1,..., M -1

So a solution is given by

‘- (@:()M)

Normalized, this gives a distribution in detailed balance with P.

Hence, by the theorem, this chain is reversible.
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o Suppose p were much larger than gq.

o Then, one might argue that the chain would tend to move to the
right and its time-reversal to the left.

o However, this ignores the fact that we reverse the chain in equilibrium.
o In this case, the equilibrium would be heavily concentrated near M.

o So the chain would spend most of its time near M, making occasional
brief forays to the left.

o This behavior is symmetric in time.
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o A graph G is a countable collection of states, usually called vertices,
some of which are joined by edges.

1 2

4 3

o Thus a graph is a partially drawn Markov chain diagram.

o There is a natural way to complete the diagram which gives rise to
the random walk on G.
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o The valency v; of vertex i is the number of edges at i.

We assume that every vertex has finite valency.

=

The random walk on G picks edges with equal

probability. Thus, the transition probabilities
are given by

o=

pii = { %,-a if (/,/) is an edge,
i =

0, otherwise.

wol—

Wl

4

ol

We assume G is connected, so that P is irreducible.

We may show that P is in detailed balance with v = (v; :

Suppose the total valency o = ), v; is finite.

Then m = Z is invariant and P is reversible.

George Voutsadakis (LSSU)
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o A random knight makes each permissible move with equal probability.
If it starts in a corner, how long on average will it take to return?

o This is an example of a random walk on a
graph.

o The vertices are the squares of the
chessboard.

o The edges are the moves that the knight

A
can take. Jég—% R ,Q%"‘,',,ff%?‘x
o The diagram shows a part of the graph. ¢ ~‘

o We know by a previous theorem and the preceding example that

11 Vi
E(T)=—= 2V

Te Vo Ve
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o We have

o So all we have to do is identify valencies.

The four corner squares have valency 2.

The eight squares adjacent to the corners have valency 3.
There are 20 squares of valency 4

There are 16 squares of valency 6

The 16 central squares have valency 8.

© 06 06 o0 o

o Hence
~ 8+24+80+96+ 128

E(T.) 5

= 168.

George Voutsadakis (LSSU) Markov Chains



Discrete Time Markov Chains Ergodic Theorem

Subsection 11

Ergodic Theorem
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Theorem (Strong Law of Large Numbers)

Let Y1, Ya,... be a sequence of independent, identically distributed,
non-negative random variables with E(Y7) = p. Then

Y+ + Y,
P(%—)uasn—)oo)zl.

o A proof for i < oo is found in standard probability texts.
The case where 1 = oo is a simple deduction.
Fix N < oo. Set YA = Y, A N. Then

Yi++Y, > Yl(N)+"'+Yr$N)
n — n
— E(Y1 AN), as n — oo,
with probability one.

As N — oo we have E(Y1 A N) * pn by monotone convergence.
So, with probability 1, Y24Ys — o0 as n — oo.
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Number of Visits Before Time n

o We denote by Vj(n) the number of visits to i before n:

n—1
Vi(n) = Z Lix,=i}-
k=0

o Then V",(,") is the proportion of time before n spent in state /.
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Theorem (Ergodic Theorem)

Let P be irreducible and let A be any distribution. If (X,)n>0 is

Markov(A, P), then
( (n) asn—)oo>:1,
“m

where m; = E;(T;) is the expected return time to state i. Moreover, in the
positive recurrent case, for any bounded function f : I — R, we have

n—1
( Zf(Xk —>fasn—>oo>—1

k=0

where f =}, mif; and where (; : i € /) is the unique invariant
distribution.
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o If P is transient, then, with probability 1, the total number V; of
visits to /7 is finite. So

<

1

Vi(n)

n

1
—-0=—.
mj

<

S |

Suppose then that P is recurrent and fix a state i.
For T = T; we have:

o P(T < 00) =1, by a previous theorem;
o (X7T4n)n>0 is Markov(d;, P) and independent of Xy, Xi, ..., X7, by the
Strong Markov Property.

The long run proportion of time spent in i is the same for (X745)n>0
and (Xn)nZO-
So it suffices to consider the case A\ = ¢;.
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o Write S(r) for the length of the r-th excursion to i.
By a previous lemma, the non-negative random variables 5(1) 5(2)
are independent and identically distributed with E,(Sir)) = (i

5:'(1) + .+ 5,-(\/"(")_1) is the time of the last visit to i/ before n.

So we have
SO 4 s < g
5,(1) S(V( ) is the time of the first visit to / after n — 1.
So we have
S0 1o SO 5
These give
s +___+5(\4(n)—1) n s NI 5(Vi(m)
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o We got
51(1)+_‘_+5I§\/f(n)—1) o 51(1)+_.‘+51§\/f(n))
Vi(n) = Vi(n) Vi(n)
By the strong law of large numbers

- (5:'(1) 4ot 5I.(")

n

—>m,-asn—>oo)=1.

Since P is recurrent,

n
P i =1
(\/,-(n)_)m asn—>oo)

P(m—)iasn—ﬂm):l.

n mj

This implies

George Voutsadakis (LSSU) Markov Chains



Discrete Time Markov Chains

o Assume now that (X,),>0 has an invariant distribution (7; : i € I).
Let f : / — IR be a bounded function.
Assume without loss of generality that || < 1.
For any J C I/, we have

1257028 F(Xk) — F

| e (2 — )|

Sies A | 4 Y, VR )
Z,EJW‘ D — i+ Yy (A2 + )
23, ¥ — il +2 Yy i

Vi(n)

VANVANRVAN

We proved above that P < — m; as n — oo for all /) =1.
Given € > 0, choose J finite so that 3., m < 3.
Then choose N = N(w) so that, for n> Nw), > .
Then, for n > N(w), we have |1 f(Xk) —fl<e.
This establishes the desired convergence.

George Voutsadakis (LSSU)
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Discrete Time Markov Chains

o Sometimes we need to estimate an unknown transition matrix P on
the basis of observations of the corresponding Markov chain.

o Consider the case where we have N + 1 observations (Xp)o<n<n-
o The log-likelihood function is given by

E(P) = IOg ()\XopXoX;l o PXN_1XN) = Z Nlj |0g pl_l
ijel

up to a constant independent of P, where Nj; is the number of
transitions from i to j.

George Voutsadakis (LSSU)



Discrete Time Markov Chains

o A standard statistical procedure is to find the maximum likelihood
estimate P, which is the choice of P maximizing ¢(P).

© P must satisfy the linear constraint }_; pjj = 1, for each i.

o So we first try to maximize

WP+ nipy
ijel

and then choose (p; : i € 1) to fit the constraints.
o This is the method of Lagrange multipliers.
o Thus we find
> ro L= Xer=i)

Zg:_ol Lix,=i}
which is the proportion of jumps from i which go to j.

George Voutsadakis (LSSU)
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Discrete Time Markov Chains

o We now consider the consistency of this sort of estimate, i.e.,
whether pj; — pj;, with probability 1, as N — oc.

o This is clearly false when i is transient.
o So we shall slightly modify our approach.

o Note that to find pj; we simply have to maximize Zjel Njj log pj
subject to Zj pij = 1, the other terms and constraints being
irrelevant.

o Suppose then that instead of N + 1 observations we make enough
observations to ensure the chain leaves state / a total of N times.

o In the transient case this may involve restarting the chain several
times.

o Denote again by /V;; the number of transitions from i to j.

George Voutsadakis (LSSU)



Discrete Time Markov Chains

o To maximize the likelihood for (pj; : j € I) we still maximize

> Njlog p;
Jjel
subject to }_; pjj = 1.
o This leads to the maximum likelihood estimate pj; = %
o But Njj = Y1 +---+ Yy, where Y, = 1 if the n-th transition from / is
to j, and Y, = 0 otherwise.

o By the strong Markov property Yi,..., Yy are independent and
identically distributed random variables with mean p;;.

o So, by the strong law of large numbers
P(i)\;j—)p,‘jaSN—)OO)=1.

o This shows that pj; is consistent.
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