
Introduction to Markov Chains

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Markov Chains April 2024 1 / 124



Outline

1 Continuous Time Markov Chains I
Q-Matrices and Their Exponentials
Continuous Time Random Processes
Some Properties of the Exponential Distribution
Poisson Processes
Birth Processes
Jump Chain and Holding Times
Explosion
Forward and Backward Equation

George Voutsadakis (LSSU) Markov Chains April 2024 2 / 124



Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Subsection 1

Q-Matrices and Their Exponentials

George Voutsadakis (LSSU) Markov Chains April 2024 3 / 124



Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Q-Matrices

Let I be a countable set.

A Q-matrix on I is a matrix Q = (qij : i , j ∈ I ) satisfying the
following conditions:

(i) 0 ≤ −qii < ∞, for all i ;
(ii) qij ≥ 0, for all i 6= j ;
(iii)

∑
j∈I qij = 0, for all i .

Thus in each row of Q we can choose the off-diagonal entries to be
any nonnegative real numbers, subject only to the constraint that the
off-diagonal row sum is finite:

qi =
∑

j 6=i

qij < ∞.

The diagonal entry qii is then −qi , making the total row sum zero.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Diagrams and Q-Matrices

A convenient way to present the data for a
continuous-time Markov chain is by means
of a diagram.

Each diagram then corresponds to a unique
Q-matrix, in this case

Q =




−2 1 1
1 −1 0
2 1 −3


 .

Thus each off-diagonal entry qij gives the value we attach to the (i , j)
arrow on the diagram, which we shall interpret later as the rate of
going from i to j .

The numbers qi are not shown, but can be worked out from the other
information given.

We shall later interpret qi as the rate of leaving i .
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Interpolating Into a Discrete Sequence

We may think of the discrete parameter space {0, 1, 2, . . .} as
embedded in the continuous parameter space [0,∞).

For p ∈ (0,∞) a natural way to interpolate the discrete sequence
(pn : n = 0, 1, 2, . . .) is by the function

(etq : t ≥ 0), q = log p

Consider a finite set I and a matrix P = (pij : i , j ∈ I ).

We ask for a natural way to fill in the gaps in the discrete sequence

(Pn : n = 0, 1, 2, . . .).
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Interpolating Into a Discrete Sequence (Cont’d)

Consider any matrix Q = (qij : i , j ∈ I ).

The series
∞∑

k=0

Qk

k!

converges componentwise.

We denote its limit by eQ .

If two matrices Q1 and Q2 commute, then

eQ1+Q2 = eQ1eQ2 .

Suppose that we can find a matrix Q with eQ = P .

Then
enQ = (eQ )n = Pn.

So (etQ : t ≥ 0) fills in the gaps in the discrete sequence.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Properties of etQ

Theorem

Let Q be a matrix on a finite set I . Set P(t) = etQ . Then (P(t) : t ≥ 0)
has the following properties:

(i) P(s + t) = P(s)P(t), for all s, t (semigroup property);

(ii) (P(t) : t ≥ 0) is the unique solution to the forward equation

d

dt
P(t) = P(t)Q, P(0) = I ;

(iii) (P(t) : t ≥ 0) is the unique solution to the backward equation

d

dt
P(t) = QP(t), P(0) = I ;

(iv) For k = 0, 1, 2, . . ., we have ( d
dt
)k |t=0 P(t) = Qk .

George Voutsadakis (LSSU) Markov Chains April 2024 8 / 124



Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Properties of etQ

For any s, t ∈ R, sQ and tQ commute.

So esQetQ = e(s+t)Q proving the semigroup property.

The matrix-valued power series

P(t) =

∞∑

k=0

(tQ)k

k!

has infinite radius of convergence.

So each component is differentiable and the derivative is given by
term-by-term differentiation.

We differentiate term-by-term

P ′(t) =

∞∑

k=1

tk−1Qk

(k − 1)!
= P(t)Q = QP(t).

Hence P(t) satisfies the forward and backward equations.

Moreover by repeated term-by-term differentiation we obtain (iv).
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Properties of etQ (Cont’d)

It remains to show that P(t) is the only solution of the forward and
backward equations.

If M(t) satisfies the forward equation, then

d
dt
(M(t)e−tQ) = ( d

dt
M(t))e−tQ +M(t)( d

dt
e−tQ)

= M(t)Qe−tQ +M(t)(−Q)e−tQ

= 0.

So M(t)e−tQ is constant.

Thus, M(t) = P(t).

A similar argument proves uniqueness for the backward equation.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Focusing on Q-Matrices: Notation

The preceding theorem was about matrix exponentials in general.

We look at what happens to Q-matrices.

Recall that a matrix P = (pij : i , j ∈ I ) is stochastic if it satisfies:

(i) 0 ≤ pij < ∞, for all i , j ;
(ii)

∑
j∈I pij = 1 for all i .

We recall the conventions that, in the limit t → 0, the statement:

f (t) = O(t) means that, for some C < ∞, f (t)
t

≤ C , for all sufficiently
small t;
f (t) = o(t) means f (t)

t
→ 0 as t → 0.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Characterization of Q-Matrices

Theorem

A matrix Q on a finite set I is a Q-matrix if and only if P(t) = etQ is a
stochastic matrix for all t ≥ 0.

As t ց 0 we have
P(t) = I + tQ + O(t2).

So qij ≥ 0 for i 6= j if and only if pij(t) ≥ 0, for all i , j and t ≥ 0
sufficiently small.

But P(t) = P( t
n
)n for all n.

So qij ≥ 0 for i 6= j if and only if pij(t) ≥ 0 for all i , j and all t ≥ 0.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Characterization of Q-Matrices (Cont’d)

If Q has zero row sums then so does Qn for every n:
∑

k∈I

q
(n)
ik =

∑

k∈I

∑

j∈I

q
(n−1)
ij qjk =

∑

j∈I

q
(n−1)
ij

∑

k∈I

qjk = 0.

So
∑

j∈I

pij(t) = 1 +
∞∑

n=1

tn

n!

∑

j∈I

q
(n)
ij = 1.

Conversely, suppose, for all t ≥ 0,
∑

j∈I

pij(t) = 1.

Then ∑

j∈I

qij =
d

dt
|t=0

∑

j∈I

pij(t) = 0.
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Interpolating in Processes

Now, if P is a stochastic matrix of the form eQ for some Q-matrix,
we can do some sort of filling-in of gaps at the level of processes.

Fix some large integer m.

Let (Xm
n )n≥0 be discrete-time Markov(λ, eQ/m).

We define a process indexed by { n
m

: n = 0, 1, 2, . . .} by

Xn/m = Xm
n .

Then (Xn : n = 0, 1, 2, . . .) is discrete-time Markov(λ, (eQ/m)m).

Moreover,
(eQ/m)m = eQ = P .

Thus we can find discrete-time Markov chains with arbitrarily fine
grids { n

m
: n = 0, 1, 2, . . .} as time-parameter sets which give rise to

Markov(λ,P) when sampled at integer times.

It should not then be too surprising that there is, as we will see, a
continuous-time process (Xt)t≥0 which also has this property.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Transition Probabilities

We will see that a continuous-time Markov chain (Xt)t≥0 with
Q-matrix Q satisfies

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = pinin+1(tn+1 − tn),

for all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ · · · ≤ tn+1 and all states
i0, . . . , in+1, where pij(t) is the (i , j) entry in etQ .

In particular, the transition probability from i to j in time t is given
by

Pi (Xt = j) := P(Xt = j |X0 = i) = pij(t).
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example

We calculate p11(t) for the continuous-time Markov chain with

Q-matrix Q =




−2 1 1
1 −1 0
2 1 −3


.

We begin by writing down the characteristic equation for Q.

det(x − Q) = 0

det




x + 2 −1 −1
−1 x + 1 0
−2 −1 x + 3


 = 0

(x + 2)(x + 1)(x + 3)− 1− 2(x + 1)− (x + 3) = 0
x3 + 6x2 + 11x + 6− 1− 2x − 2− x − 3 = 0

x3 + 6x2 + 8 = 0
x(x + 2)(x + 4) = 0

x = 0, x = −2, x = −4.

Thus, Q has distinct eigenvalues 0,−2,−4.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example (Cont’d)

Claim: p11(t) has the form

p11(t) = a + be−2t + ce−4t ,

for some constants a, b and c .

We could diagonalize Q by an invertible matrix U:

Q = U




0 0 0
0 −2 0
0 0 −4


U−1.
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example (Cont’d)

Then

etQ =
∑∞

k=0
(tQ)k

k!

= U
∑∞

k=0
1
k!




0k 0 0
0 (−2t)k 0
0 0 (−4t)k


U−1

= U




1 0 0
0 e−2t 0
0 0 e−4t


U−1.

So p11(t) must be of the form

p11(t) = a + be−2t + ce−4t .
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example (Cont’d)

To determine the constants we use

1 = p11(0) = a + b + c ,

− 2 = q11 = p′11(0) = − 2b − 4c ,

7 = q
(2)
11 = p′′11(0) = 4b + 16c .

So we get





a+ b + c = 1
−2b − 4c = −2
4b + 16c = 7

⇒





a + b + c = 1
b + 2c = 1

8c = 3
⇒





a = 3
8

b = 1
4

c = 3
8

So p11(t) =
3
8 +

1
4e

−2t + 3
8e

−4t .
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example

We calculate pij(t) for the continuous time Markov chain with
diagram

The Q-matrix is Q =




−λ λ

−λ λ
. . .

. . .

−λ λ

−λ λ

0




, where

entries off the diagonal and super-diagonal are all zero.

The exponential of an upper-triangular matrix is upper-triangular.

So pij(t) = 0, for i > j .
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Continuous Time Markov Chains I Q-Matrices and Their Exponentials

Example (Cont’d)

In components the forward equation P ′(t) = P(t)Q reads

p′ii(t) = − λpii (t), pii(0) = 1, for i < N,
p′ij(t) = − λpij(t) + λpi ,j−1(t), pij(0) = 0, for i < j < N,

p′iN(t) = λpiN−1(t), piN(0) = 0, for i < N.

We can solve these equations.
pii(t) = e−λt , for i < N ;
For i < j < N , (eλtpij(t))

′ = eλtpi ,j−1(t).
So, by induction,

pij(t) = e−λt (λt)
j−i

(j − i)!
.

If i = 0, these are the Poisson probabilities of parameter λt.

So, starting from 0, the distribution of the Markov chain at time t is
the same as the distribution of min {Yt ,N}, where Yt is a Poisson
random variable of parameter λt.

George Voutsadakis (LSSU) Markov Chains April 2024 21 / 124
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Subsection 2

Continuous Time Random Processes
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Continuous Time Markov Chains I Continuous Time Random Processes

Continuous Time Random Processes

Let I be a countable set.

A continuous time random process

(Xt)t≥0 = (Xt : 0 ≤ t < ∞)

with values in I is a family of random variables Xt : Ω → I .

A continuous time random process is right continuous if, for all
ω ∈ Ω and t ≥ 0, there exists ε > 0, such that

Xs(ω) = Xt(ω), for all t ≤ s ≤ t + ε.

We restrict our attention to right continuous processes.
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Continuous Time Markov Chains I Continuous Time Random Processes

Finite-Dimensional Distributions

By a standard result of measure theory, the probability of any event
depending on a right continuous process can be determined from its
finite dimensional distributions, i.e., from the probabilities

P(Xt0 = i0,Xt1 = i1, . . . ,Xtn = in),

for n ≥ 0, 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn and i0, . . . , in ∈ I .

Example:

P(Xt = i for some t ∈ [0,∞))

= 1− lim
n→∞

∑

j1,...,jn 6=i

P(Xq1 = ji , . . . ,Xqn = jn),

where q1, q2, . . . is an enumeration of the rationals.
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Continuous Time Markov Chains I Continuous Time Random Processes

Right Continuous Process Type I

The path makes infinitely many jumps, but only finitely many in any
interval [0, t]:
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Continuous Time Markov Chains I Continuous Time Random Processes

Right Continuous Process Type II

The path makes finitely many jumps and then becomes stuck in some
state forever.
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Continuous Time Markov Chains I Continuous Time Random Processes

Right Continuous Process Type III

The process makes infinitely many jumps in a finite interval.

In this case, after the explosion time ζ the process starts up again.

It may explode again, maybe infinitely often, or it may not.
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Continuous Time Markov Chains I Continuous Time Random Processes

Jump Times and Holding Times

We call J0, J1, . . . the jump times of (Xt)t≥0.

They are obtained from (Xt)t≥0 by

J0 = 0, Jn+1 = inf {t ≥ Jn : Xt 6= XJn}, n = 0, 1, . . . ,

where inf ∅ = ∞.

We call S1,S2, . . . the holding times.

They are given, for n = 1, 2, . . ., by

Sn =

{
Jn − Jn−1, if Jn−1 < ∞
∞, otherwise.

Note that right continuity forces Sn > 0, for all n.

If Jn+1 = ∞, for some n, we define X∞ = XJn , the final value,
otherwise X∞ is undefined.
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Continuous Time Markov Chains I Continuous Time Random Processes

Explosion Time and Jump Process

The (first) explosion time ζ is defined by

ζ = sup
n

Jn =

∞∑

n=1

Sn.

The discrete time process (Yn)n≥0 given by Yn = XJn is called the
jump process of (Xt)t≥0, or the jump chain if it is a discrete time
Markov chain.

This is the sequence of values taken by (Xt)t≥0 up to explosion.
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Continuous Time Markov Chains I Continuous Time Random Processes

Minimal Processes

We shall not consider what happens to a process after explosion.

So it is convenient to:

Adjoin to I a new state, ∞ say;
Require that

Xt = ∞, if t ≥ ζ.

Any process satisfying this requirement is called minimal.

The terminology“minimal” does not refer to the state of the process
but to the interval of time over which the process is active.
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Continuous Time Markov Chains I Continuous Time Random Processes

The Process in terms of Holding Times and Jump Process

Note that a minimal process may be reconstructed from its holding
times and jump process.

We, thus, obtain another “countable” specification of the
probabilistic behavior of (Xt)t≥0 by specifying the joint distribution of
S1,S2, . . . and (Yn)n≥0.

Example: The probability that Xt = i is given by

P(Xt = i) =

∞∑

n=0

P(Yn = i and Jn ≤ t < Jn+1).

Moreover,

P(Xt = i for some t ∈ [0,∞)) = P(Yn = i for some n ≥ 0).
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Subsection 3

Some Properties of the Exponential Distribution
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Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Exponential Distributions

A random variable T : Ω → [0,∞] has exponential distribution of
parameter λ, 0 ≤ λ < ∞, if

P(T > t) = e−λt , for all t ≥ 0.

We write T ∼ E (λ) for short.

If λ > 0, then T has density function

fT (t) = λe−λt1t≥0.

The mean of T is given by

E(T ) =

∫ ∞

0
P(T > t)dt =

1

λ
.
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Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Memoryless Property

Theorem (Memoryless Property)

A random variable T : Ω → (0,∞] has an exponential distribution if and
only if it has the following memoryless property:

P(T > s + t|T > s) = P(T > t), for all s, t ≥ 0.

Suppose T ∼ E (λ).

Then
P(T > s + t|T > s) = P(T>s+t)

P(T>s)

= e−λ(s+t)

e−λs

= e−λt

= P(T > t).
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Memoryless Property (Converse)

Suppose T has the memoryless property whenever P(T > s) > 0.

Then g(t) = P(T > t) satisfies

g(s + t) = g(s)g(t), for all s, t ≥ 0.

We assumed T > 0 so that g( 1
n
) > 0, for some n.

Then, by induction

g(1) = g

(
1

n
+ · · ·+

1

n

)
= g

(
1

n

)n

> 0.

So g(1) = e−λ, for some 0 ≤ λ < ∞.
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Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Memoryless Property (Converse Cont’d)

By the same argument, for integers p, q ≥ 1,

g

(
p

q

)
= g

(
1

q

)p

= g(1)p/q .

So g(r) = e−λr , for all rationals r > 0.

For real t > 0, choose rationals r , s > 0 with r ≤ t ≤ s.

Since g is decreasing,

e−λr = g(r) ≥ g(t) ≥ g(s) = e−λs .

But we can choose r and s arbitrarily close to t.

This forces g(t) = e−λt .

So T ∼ E (λ).
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Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Sum of Independent Exponential Random Variables

Theorem

Let S1,S2, . . . be a sequence of independent random variables with
Sn ∼ E (λn) and 0 < λn < ∞, for all n.

(i) If
∑∞

n=1
1
λn

< ∞, then P(
∑∞

n=1 Sn < ∞) = 1.

(ii) If
∑∞

n=1
1
λn

= ∞, then P(
∑∞

n=1 Sn = ∞) = 1.

(i) Suppose
∑∞

n=1
1
λn

< ∞.

By Monotone Convergence,

E

(
∞∑

n=1

Sn

)
=

∞∑

n=1

1

λn
< ∞.

So P(
∑∞

n=1 Sn < ∞) = 1.

George Voutsadakis (LSSU) Markov Chains April 2024 37 / 124



Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Sum of Independent Exponential Random Variables (ii)

(ii) Suppose instead that
∞∑

n=1

1

λn
= ∞.

Then
∞∏

n=1

(
1 +

1

λn

)
= ∞.

By Monotone Convergence and independence

E(exp {−
∑∞

n=1 Sn}) =
∏∞

n=1 E(exp {−Sn})

=
∏∞

n=1(1 +
1
λn
)−1

= 0.

So P(
∑∞

n=1 Sn = ∞) = 1.
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Infimum of Independent Exponential Random Variables

Theorem

Let I be countable and let Tk , k ∈ I , be independent random variables
with Tk ∼ E (qk) and 0 < q :=

∑
k∈I qk < ∞. Set T = infk Tk . Then this

infimum is attained at a unique random value K of k , with probability 1.
Moreover, T and K are independent, with T ∼ E (q) and P(K = k) = qk

q
.

Set K = k if Tk < Tj , for all j 6= k , otherwise let K be undefined.
Then

P(K = k and T ≥ t) = P(Tk ≥ t and Tj > Tk for all j 6= k)
=

∫∞
t

qke
−qk sP(Tj > s for all j 6= k)ds

=
∫∞
t

qke
−qk s

∏
j 6=k e

−qj sds

=
∫∞
t

qke
−qsds = qk

q
e−qt .

Hence, P(K = k for some k) = 1.

Moreover, T and K have the claimed joint distribution.

George Voutsadakis (LSSU) Markov Chains April 2024 39 / 124



Continuous Time Markov Chains I Some Properties of the Exponential Distribution

Two Independent Exponential Random Variables

Theorem

For independent random variables S ∼ E (λ) and R ∼ E (µ) and for t ≥ 0,
we have

µP(S ≤ t < S + R) = λP(R ≤ t < R + S).

We have

µP(S ≤ t < S + R) = µ
∫ t

0

∫∞
t−s

λµe−λse−µrdrds

= λµ
∫ t

0 e−λse−µ(t−s)ds.

Symmetrically,

λP(R ≤ t < R + S) = µλ

∫ t

0
e−µr e−λ(t−r)dr .

A change of variables shows that the integrals are equal.

This establishes the identity.
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Subsection 4

Poisson Processes
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Continuous Time Markov Chains I Poisson Processes

Poisson Processes

A right-continuous process (Xt)t≥0 with values in {0, 1, 2, . . .} is a
Poisson process of rate λ, 0 < λ < ∞, if its holding times
S1,S2, . . . are independent exponential random variables of parameter
λ and its jump chain is given by Yn = n.

The associated Q-matrix is given by Q =




−λ λ

−λ λ
. . .

. . .


.

By a previous theorem (or the Strong Law of Large Numbers) we
have P(Jn → ∞) = 1.

So there is no explosion and the law of (Xt)t≥0 is uniquely
determined.
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Construction

A simple way to construct a Poisson process of rate λ is to:

Take a sequence S1, S2, . . . of independent exponential random
variables of parameter λ;
Set J0 = 0, Jn = S1 + . . .+ Sn;
Set Xt = n if Jn ≤ t < Jn+1.

The diagram illustrates a typical path.
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Markov Property of Poisson Processes

Theorem (Markov Property)

Let (Xt)t≥0 be a Poisson process of rate λ. Then, for any s ≥ 0,
(Xs+t − Xs)t≥0 is also a Poisson process of rate λ, independent of
(Xr : r ≤ s).

It suffices to prove the claim conditional on Xs = i , for each i ≥ 0.

Set X̃t = Xs+t − Xs . We have

{Xs = i} = {Ji ≤ s < Ji+1} = {Ji ≤ s} ∩ {Si+1 > s − Ji}.

On this event Xr =
∑i

j=1 1{Sj≤r}, for r ≤ s.

Moreover, the holding times S̃1, S̃2, . . . of (X̃t)t≥0 are given by

S̃1 = Si+1 − (s − Ji),

S̃n = Si+n, n ≥ 2.
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Markov Property of Poisson Processes (Cont’d)

Recall that the holding times S1,S2, . . . are independent E (λ).

Condition on S1, . . . ,Si and {Xs = i}.

Take into account:

The memoryless property of Si+1;
Independence.

Then S̃1, S̃2, . . . are themselves independent E (λ).

Hence, conditional on {Xs = i}, S̃1, S̃2, . . . are independent E (λ), and
independent of S1, . . . ,Si .

So, conditional on {Xs = i}, (X̃t)t≥0 is a Poisson process of rate λ

and independent of (Xr : r ≤ s).
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Strong Markov Property

We shall see later, by an argument in essentially the same spirit, that
the result also holds with s replaced by any stopping time T of
(Xt)t≥0.

Theorem (Strong Markov Property)

Let (Xt)t≥0 be a Poisson process of rate λ and let T be a stopping time of
(Xt)t≥0. Then, conditional on T < ∞, (XT+t − XT )t≥0 is also a Poisson
process of rate λ, independent of (Xs : s ≤ T ).
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Stationary and Independent Increments

Let (Xt)t≥0 be a real-valued process.

Consider its increment Xt − Xs over any interval (s, t].

We say that (Xt)t≥0 has stationary increments if the distribution of
Xs+t − Xs depends only on t ≥ 0.

We say that (Xt)t≥0 has independent increments if its increments
over any finite collection of disjoint intervals are independent.
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Fundamental Theorem for Poisson Processes

Theorem

Let (Xt)t≥0 be an increasing, right-continuous integer-valued process
starting from 0. Let 0 < λ < ∞. Then the following three conditions are
equivalent:

(a) (Jump Chain/Holding Time Definition) The holding times
S1,S2, . . . of (Xt)t≥0 are independent exponential random variables of
parameter λ and the jump chain is given by Yn = n for all n;

(b) (Infinitesimal Definition) (Xt)t≥0 has independent increments and,
as h ց 0, uniformly in t,

P(Xt+h − Xt = 0) = 1− λh + o(h),
P(Xt+h − Xt = 1) = λh+ o(h);

(c) (Transition Probability Definition) (Xt)t≥0 has stationary
independent increments and, for each t, Xt has Poisson distribution
of parameter λ.
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Proof of the Theorem ((a)⇒(b))

Suppose Condition (a) holds.

By the Markov property, for any t, h ≥ 0, Xt+h − Xt has the same
distribution as Xh and is independent of (Xs : s ≤ t).

So (Xt)t≥0 has independent increments.

As h ց 0,

P(Xt+h − Xt ≥ 1) = P(Xh ≥ 1)
= P(J1 ≤ h)
= 1− e−λh = λh+ o(h);

P(Xt+h − Xt ≥ 2) = P(Xh ≥ 2)
= P(J2 ≤ h)
≤ P(S1 ≤ h and S2 ≤ h)
= (1− e−λh)2 = o(h).

This implies Condition (b).
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Proof of the Theorem ((b)⇒(c))

Suppose Condition (b) holds.

For i = 2, 3, . . ., P(Xt+h − Xt = i) = o(h) as h ց 0, uniformly in t.

Set pj(t) = P(Xt = j).

Then, for j = 1, 2, . . .,

pj(t + h) = P(Xt+h = j)

=
∑j

i=0P(Xt+h − Xt = i)P(Xt = j − i)
= (1− λh + o(h))pj (t) + (λh + o(h))pj−1(t) + o(h).

So
pj(t + h)− pj(t)

h
= −λpj(t) + λpj−1(t) + O(h).

This estimate is uniform in t.

So we can put t = s − h to obtain, for all s ≥ h,

pj(s)− pj(s − h)

h
= −λpj(s − h) + λpj−1(s − h) + O(h).
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Proof of the Theorem ((b)⇒(c) Cont’d)

We found:
pj (t+h)−pj (t)

h
= −λpj(t) + λpj−1(t) + O(h);

pj (s)−pj (s−h)
h

= −λpj(s − h) + λpj−1(s − h) + O(h), for s ≥ h.

Now let h ց 0 to see that:
pj(t) is continuous;
pj(t) is differentiable and satisfies

p′j(t) = −λpj(t) + λpj−1(t).

By a simpler argument we also find

p′0(t) = −λp0(t).

Since X0 = 0, we have initial conditions

p0(0) = 1, pj(0) = 0, for j = 1, 2, . . . .
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Proof of the Theorem ((b)⇒(c) Cont’d)

As we saw in a previous example, the preceding system of equations
has a unique solution given by

pj(t) = e−λt (λt)
j

j!
, j = 0, 1, 2, . . . .

Hence Xt ∼ P(λt).

If (Xt)t≥0 satisfies Condition (b), then certainly (Xt)t≥0 has
independent increments.

Also (Xs+t − Xs)t≥0 satisfies Condition (b).

So the above argument shows Xs+t − Xs ∼ P(λt), for any s.

This implies Condition (c).
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Proof of the Theorem ((c)⇒(a))

There is a process satisfying Condition (a).

Moreover, we have shown that it must then satisfy Condition (c).

But Condition (c) determines the finite dimensional distributions of
(Xt)t≥0.

Hence it determines the distribution of jump chain and holding times.

So, if one process satisfying Condition (c) also satisfies Condition (a),
so must every process satisfying Condition (c).
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The Forward Equations for the Poisson Process

Consider the possibility of starting the process from i at time 0.

We write Pi as a reminder.

Set pij(t) = Pi(Xt = j).

By spatial homogeneity, pij(t) = pj−i(t).

So we could rewrite the differential equations as

p′i0(t) = −λpi0(t), pi0(0) = δi0,

p′ij(t) = λpi ,j−1(t)− λpij(t), pij(0) = δij .

In matrix form, for Q as above,

P ′(t) = P(t)Q, P(0) = I .
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Sum of Independent Poisson Processes

Theorem

If (Xt)t≥0 and (Yt)t≥0 are independent Poisson processes of rates λ and
µ, respectively, then (Xt + Yt)t≥0 is a Poisson process of rate λ+ µ.

We shall use the infinitesimal definition, according to which:

(Xt)t≥0 and (Yt )t≥0 have independent increments;
As h ց 0, uniformly in t,

P(Xt+h − Xt = 0) = 1− λh + o(h),
P(Xt+h − Xt = 1) = λh + o(h),

P(Yt+h − Yt = 0) = 1− µh + o(h),
P(Yt+h − Yt = 1) = µh + o(h).

Set Zt = Xt + Yt .

By hypothesis, (Xt)t≥0 and (Yt)t≥0 are independent.

So (Zt)t≥0 has independent increments.
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Sum of Independent Poisson Processes (Cont’d)

As h ց 0, uniformly in t,

P(Zt+h − Zt = 0) = P(Xt+h − Xt = 0)P(Yt+h − Yt = 0)
= (1− λh + o(h))(1 − µh+ o(h))
= 1− (λ+ µ)h + o(h);

P(Zt+h − Zt = 1) = P(Xt+h − Xt = 1)P(Yt+h − Yt = 0)
+ P(Xt+h − Xt = 0)P(Yt+h − Yt = 1)

= (λh + o(h))(1 − µh + o(h))
+ (1− λh + o(h))(µh + o(h))

= (λ+ µ)h + o(h).

Hence (Zt)t≥0 is a Poisson process of rate λ+ µ.
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Jumps of Poisson Process and Uniform Distribution

Theorem

Let (Xt)t≥0 be a Poisson process. Then, conditional on (Xt)t≥0 having
exactly one jump in the interval [s, s + t], the time at which that jump
occurs is uniformly distributed on [s, s + t].

We shall use the finite-dimensional distribution definition.

By stationarity of increments, it suffices to consider the case s = 0.

Then, for 0 ≤ u ≤ t,

P(J1 ≤ u|Xt = 1) = P(J1≤u and Xt=1)
P(Xt=1)

= P(Xu=1 and Xt−Xu=0)
P(Xt=1)

= λue−λue−λ(t−u)

λte−λt

= u
t
.
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Joint Density Function of Jump Times

Theorem

Let (Xt)t≥0 be a Poisson process. Then, conditional on the event
{Xt = n}, the jump times J1, . . . , Jn have joint density function

f (t1, . . . , tn) = n!t−n1{0≤t1≤···≤tn≤t}.

Thus, conditional on {Xt = n}, the jump times J1, . . . , Jn have the same
distribution as an ordered sample of size n from the uniform distribution
on [0, t].

The holding times S1, . . . ,Sn+1 have joint density function

λn+1e−λ(s1+···+sn+1)1{s1,...,sn+1≥0}.

So the jump times J1, . . . , Jn+1 have joint density function

λn+1e−λtn+11{0≤t1≤···≤tn+1}.
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Joint Density Function of Jump Times (Cont’d)

The jump times J1, . . . , Jn+1 have joint density function

λn+1e−λtn+11{0≤t1≤···≤tn+1}.

So, for A ⊆ R
n, we have

P((J1, . . . , Jn) ∈ A and Xt = n)

= P((J1, . . . , Jn) ∈ A and Jn ≤ t < Jn+1)

= e−λtλn
∫
(t1,...,tn)∈A

1{0≤t1≤···≤tn≤t}dt1 · · · dtn.

Now P(Xt = n) = e−λt (λt)
n

n! .

So we obtain

P((J1, . . . , Jn) ∈ A|Xt = n) =

∫

A

n!t−n1{0≤t1≤···≤tn≤t}dt1···dtn .

So f (t1, . . . , tn) is as claimed.
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Example: Robins and Blackbirds

Robins and blackbirds make brief visits to my birdtable.

The probability that in any small interval of duration h a robin will
arrive is found to be ρh + o(h).

The corresponding probability for blackbirds is βh + o(h).

What is the probability that the first two birds I see are both robins?

What is the distribution of the total number of birds seen in time t?

Given that this number is n, what is the distribution of the number of
blackbirds seen in time t?
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Example: Robins and Blackbirds (Solution)

By the infinitesimal characterization:

The number of robins seen by time t is a Poisson process (Rt)t≥0 of
rate ρ;
The number of blackbirds is a Poisson process (Bt)t≥0 of rate β.

The times spent waiting for the first robin or blackbird are
independent exponential random variables:

S1 of parameter ρ;
T1 of parameter β.

So a robin arrives first with probability ρ
ρ+β .

By the memoryless property of T1, the probability that the first two

birds are robins is ρ2

(ρ+β)2
.

By a previous theorem,the total number of birds seen in an interval of
duration t has Poisson distribution of parameter (ρ+ β)t.
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Example: Robins and Blackbirds (Solution Cont’d)

Finally

P(Bt = k |Rt + Bt = n) = P(Bt=k and Rt=n−k)
P(Rt+Bt=n)

=
e−ββk

k!
e−ρρn−k

(n−k)!

e−(ρ+β)(ρ+β)n

n!

=
(
n
k

)
( β
ρ+β )

k( ρ
ρ+β )

n−k .

So if n birds are seen in time t, then the distribution of the number of
blackbirds is binomial of parameters n and β

ρ+β .
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Subsection 5

Birth Processes
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Birth Processes

A birth process is a generalization of a Poisson process in which the
parameter λ is allowed to depend on the current state of the process.

The data for a birth process consist of birth rates

0 ≤ qj < ∞, j = 0, 1, 2, . . . .

We begin with a definition in terms of jump chain and holding times.

A minimal right-continuous process (Xt)t≥0 with values in
{0, 1, 2, . . .} ∪ {∞} is a birth process of rates (qj : j ≥ 0) if,
conditional on X0 = i :

Its holding times S1, S2, . . . are independent exponential random
variables of parameters qi , qi+1, . . ., respectively;
Its jump chain is given by Yn = i + n.
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Birth Processes (Q-Matrix)

The Q-matrix is

Q =




−q0 q0
−q1 q1

−q2 q2
. . .

. . .




.
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Example (Simple Birth Process)

Consider a population in which each individual gives birth after an
exponential time of parameter λ, all independently.

If i individuals are present then the first birth will occur after an
exponential time of parameter iλ.

Then we have i + 1 individuals and, by the memoryless property, the
process begins afresh.

Thus the size of the population performs a birth process with rates

qi = iλ.

Let Xt denote the number of individuals at time t.

Suppose X0 = 1.

Write T for the time of the first birth.
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Example (Simple Birth Process Cont’d)

Now we have

E(Xt) = E(Xt1T≤t) + E(Xt1T>t)

=
∫ t

0 λe−λs
E(Xt |T = s)ds +

∫∞
t

λe−λs
E(Xt |T = s)ds

=
∫ t

0 λe−λs
E(Xt |T = s)ds +

∫∞
t

λe−λsds

=
∫ t

0 λe−λs
E(Xt |T = s)ds + e−λt .

Put µ(t) = E(Xt).

Then
E(Xt |T = s) = 2µ(t − s).

So

µ(t) =

∫ t

0
2λe−λsµ(t − s)ds + e−λt .
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Example (Simple Birth Process Cont’d)

We found µ(t) =
∫ t

0 2λe−λsµ(t − s)ds + e−λt .

Setting r = t − s,

µ(t) =
∫ t

0 2λeλ(r−t)µ(r)dr + e−λt

= 2λe−λt
∫ t

0 eλrµ(r)dr + e−λt .

So

eλtµ(t) = 2λ

∫ t

0
eλrµ(r)dr + 1.

By differentiating we obtain

λeλtµ(t) + eλtµ′(t) = 2λeλtµ(t)

µ′(t) = λµ(t).

So the mean population size grows exponentially,

E(Xt) = eλt .
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Explosion in Birth Processes

Much of the theory associated with the Poisson process goes through
for birth processes with little change.

But some calculations can no longer be made so explicitly.

The most interesting new phenomenon
present in birth processes is the
possibility of explosion.

For certain choices of birth rates, a
typical path will make infinitely many
jumps in a finite time.

The convention of setting the process to equal ∞ after explosion is
particularly appropriate for birth processes!
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Explosion Time of Birth Processes and Markov Property

Theorem

Let (Xt)t≥0 be a birth process of rates (qj : j ≥ 0), starting from 0.

(i) If
∑∞

j=0
1
qj

< ∞, then P(ζ < ∞) = 1.

(ii) If
∑∞

j=0
1
qj

= ∞, then P(ζ = ∞) = 1.

We apply a previous theorem to the sequence of holding times
S1,S2, . . ..

Theorem (Markov Property)

Let (Xt)t≥0 be a birth process of rates (qj : j ≥ 0). Then, conditional on
Xs = i , (Xs+t)t≥0 is a birth process of rates (qj : j ≥ 0) starting from i

and independent of (Xr : r ≤ s).
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Setting for the Fundamental Theorem of Birth Processes

We shall shortly prove a theorem on birth processes which generalizes
the key theorem on Poisson processes.

The Poisson probabilities arose as the unique solution of a system of
differential equations, essentially the forward equations.

Now we can still write down the forward equation

P ′(t) = P(t)Q, P(0) = I .

In components

p′i0(t) = −pi0(t)q0, pi0(0) = δi0;

For j = 1, 2, . . .,

p′ij(t) = pi ,j−1(t)qj−1 − pij(t)qj , pij(0) = δij .

These equations still have a unique solution.

But it is not as explicit as before.
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Setting for the Fundamental Theorem (Cont’d)

We must have
pi0(t) = δi0e

−q0t .

This can be substituted in the equation

p′i1(t) = pi0(t)q0 − pi1(t)q1, pi1(0) = δi1.

This equation can be solved to give

pi1(t) = δi1e
−q1t + δi0

∫ t

0
q0e

−q0se−q1(t−s)ds.

Now we can substitute for pi1(t) in the next equation up the
hierarchy and find an explicit expression for pi2(t), and so on.

George Voutsadakis (LSSU) Markov Chains April 2024 72 / 124



Continuous Time Markov Chains I Birth Processes

Key Theorem of Birth Processes

Theorem

Let (Xt)t≥0 be an increasing, right-continuous process with values in
{0, 1, 2, . . .} ∪ {∞}. Let 0 ≤ qj < ∞, for all j ≥ 0. Then the following
three conditions are equivalent:

(a) (Jump Chain/Holding Time Definition) Conditional on X0 = i , the
holding times S1,S2, . . . are independent exponential random variables
of parameters qi , qi+1, . . ., respectively, and the jump chain is given
by Yn = i + n for all n;

(b) (Infinitesimal Definition) For all t, h ≥ 0, conditional on Xt = i ,
Xt+h is independent of (Xs : s ≤ t) and, as h ց 0, uniformly in t,

P(Xt+h = i |Xt = i) = 1− qih + o(h),
P(Xt+h = i + 1|Xt = i) = qih + o(h);
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Key Theorem of Birth Processes (Cont’d)

Theorem

(c) (Transition Probability Definition) For all n = 0, 1, 2, . . ., all times
0 ≤ t0 ≤ · · · ≤ tn+1 and all states i0, . . . , in+1,

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = pinin+1(tn+1 − tn),

where (pij(t) : i , j = 0, 1, 2, . . .) is the unique solution of the forward
equations.

If (Xt)t≥0 satisfies any of these conditions then it is called a birth process
of rates (qj : j ≥ 0).

Suppose Condition (a) holds.

By the Markov Property, for any t, h ≥ 0, conditional on Xt = i , Xt+h

is independent of (Xs : s ≤ t).
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Proof ((a)⇒(b))

As h ց 0, uniformly in t,

P(Xt+h ≥ i + 1|Xt = i) = P(Xh ≥ i + 1|X0 = i)

= P(J1 ≤ h|X0 = i)

= 1− e−qih

= qih + o(h).

Moreover,

P(Xt+h ≥ i + 2|Xt = i) = P(Xh ≥ i + 2|X0 = i)

= P(J2 ≤ h|X0 = i)

≤ P(S1 ≤ h and S2 ≤ h|X0 = i)

= (1− e−qih)(1− e−qi+1h)

= o(h).

This implies Condition (b).
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Proof ((b)⇒(c))

If (b) holds, then, for k = i + 2, i + 3, . . ., as h ց 0, uniformly in t

P(Xt+h = k |Xt = i) = o(h).

Set
pij(t) = P(Xt = j |X0 = i).

Then, for j = 1, 2, . . .,

pij(t + h) = P(Xt+h = j |X0 = i)

=
∑j

k=i P(Xt = k |X0 = i)P(Xt+h = j |Xt = k)

= pij(t)(1 − qjh + o(h)) + pi ,j−1(t)(qj−1h + o(h)) + o(h).

So
pij(t + h)− pij(t)

h
= pi ,j−1(t)qj−1 − pij(t)qj + O(h).
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Proof ((b)⇒(c) Cont’d)

As in the proof of a previous theorem, we can deduce that:

pij(t) is differentiable;
Satisfies the differential equation

p′ij(t) = pi ,j−1(t)qj−1 − pij(t)qj .

By a simpler argument we also find

p′i0(t) = −pi0(t)q0.

Thus
(pij(t) : i , j = 0, 1, 2, . . .)

must be the unique solution to the forward equations.
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Proof ((b)⇒(c) Cont’d)

If (Xt)t≥0 satisfies Condition (b), then certainly

P(Xtn+1 = in+1|X0 = i0, . . . ,Xtn = in) = P(Xtn+1 = in+1|Xtn = in).

But also (Xtn+t )t≥0 satisfies Condition (b).

So, by uniqueness for the forward equations, we have

P(Xtn+1 = in+1|Xtn = in) = pin in+1(tn+1 − tn).

Hence (Xt)t≥0 satisfies Condition (c).

(c)⇒(a) This mimics the proof of the implication (c)⇒(a) of the
theorem for Markov processes.
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Subsection 6

Jump Chain and Holding Times
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Q-Matrices Revisited

Let I be a countable set.

The basic data for a continuous-time Markov chain on I are given in
the form of a Q-matrix.

Recall that a Q-matrix on I is any matrix Q = (qij : i , j ∈ I ) which
satisfies the following conditions:

(i) 0 ≤ −qii < ∞, for all i ;
(ii) qij ≥ 0, for all i 6= j ;
(iii)

∑
j∈I qij = 0, for all i .

We will sometimes find it convenient to write qi or q(i) as an
alternative notation for −qii .
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From a Q-Matrix to a Stochastic Matrix

We are going to describe a simple procedure for obtaining from a
Q-matrix Q a stochastic matrix Π.

The jump matrix Π = (πij : i , j ∈ I ) of Q is defined by

πij =

{ qij
qi
, if j 6= i and qi 6= 0,

0, if j 6= i and qi = 0,
πii =

{
0, if qi 6= 0,
1, if qi = 0.

This procedure is best thought of row by row:

For each i ∈ I , we take, where possible, the off-diagonal entries in the
i-th row of Q and scale them so they add up to 1, putting a 0 on the
diagonal.
This is only impossible when the off-diagonal entries are all 0.
Then we leave them alone and put a 1 on the diagonal.
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Example

The Q-matrix

Q =




−2 1 1
1 −1 0
2 1 −3




has the diagram on the right.

The jump matrix Π of Q is given by

Π =




0 1
2

1
2

1 0 0
2
3

1
3 0


 .

It has the diagram on the right.
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Markov Chains

Recall that a minimal process is one which is set equal to ∞ after
any explosion.

A minimal right-continuous process (Xt)t≥0 on I is a Markov chain
with initial distribution λ and generator matrix Q if:

Its jump chain (Yn)n≥0 is discrete-time Markov(λ,Π);
For each n ≥ 1, conditional on Y0, . . . ,Yn−1, its holding times
S1, . . . , Sn are independent exponential random variables of parameters
q(Y0), . . . , q(Yn−1), respectively.

We say (Xt)t≥0 is Markov(λ,Q) for short.
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Construction of a Markov Chain

We can construct such a process as follows:

Let (Yn)n≥0 be discrete-time Markov(λ,Π);
Let T1,T2, . . . be independent exponential random variables of
parameter 1, independent of (Yn)n≥0.

Set:

Sn = Tn

q(Yn−1)
;

Jn = S1 + · · ·+ Sn;

Xt =

{
Yn, if Jn ≤ t < Jn+1 for some n,
∞, otherwise.

.

Then (Xt)t≥0 has the required properties.
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A Second Construction

Begin with:

An initial state X0 = Y0 with distribution λ;
An array (T j

n : n ≥ 1, j ∈ I ) of independent exponential random
variables of parameter 1.

Then, inductively for n = 0, 1, 2, . . ., if Yn = i , set:

S
j
n+1 =

T
j
n+1

qij
, for j 6= i ;

Sn+1 = inf j 6=i S
j
n+1;

Yn+1 =

{
j , if S j

n+1 = Sn+1 < ∞,
i , if Sn+1 = ∞.
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A Second Construction (Cont’d)

Conditional on Yn = i , the random variables S j
n+1 are independent

exponentials of parameter qij for all j 6= i .

So, by a previous theorem, conditional on Yn = i :

Sn+1 is exponential of parameter qi =
∑

j 6=i qij ;
Yn+1 has distribution (πij : j ∈ I );
Sn+1 and Yn+1 are independent, and independent of Y0, . . . ,Yn and
S1, . . . , Sn.

This construction presents a justification for calling:

qi the rate of leaving i ;
qij the rate of going from i to j .
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Introducing a Third Construction

Our third construction of a Markov chain with generator matrix Q

and initial distribution λ is based on the Poisson process.

Imagine the state-space I as a labyrinth of chambers and passages.

Each passage is shut off by a single door which opens briefly from
time to time to allow us through in one direction only.

Suppose the door giving access to chamber j from chamber i opens
at the jump times of a Poisson process of rate qij .

We take every chance we can to move.

Then we will perform a Markov chain with Q-matrix Q.
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A Third Construction

We begin with:
An initial state X0 = Y0 with distribution λ;
A family of independent Poisson processes {(N ij

t )t≥0 : i , j ∈ I , i 6= j},

(N ij
t )t≥0 having rate qij .

We set J0 = 0.

We define inductively for n = 0, 1, 2, . . .,

Jn+1 = inf
{
t > Jn : NYn j

t 6= N
Yn j
Jn

for some j 6= Yn

}
;

Yn+1 =

{
j , if Jn+1 < ∞ and N

Yn j
Jn+1

6= N
Yn j
Jn

,

i , if Jn+1 = ∞.

The first jump time of (N ij
t )t≥0 is exponential of parameter qij .

So, by a previous theorem, conditional on Y0 = i :
J1 is exponential of parameter qi =

∑
j 6=i qij ;

Y1 has distribution (πij : j ∈ I );
J1 and Y1 are independent.
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A Third Construction (Cont’d)

Now suppose T is a stopping time of (Xt)t≥0.

Suppose we condition on X0 and on the processes (Nkℓ
t )t≥0 for

(k , ℓ) 6= (i , j), which are independent of N ij
t .

Then {T ≤ t} depends only on (N ij
s : s ≤ t).

By the Strong Markov Property of the Poisson process,

Ñ
ij
t := N

ij
T+t − N

ij
T

is a Poisson process of rate qij independent of (N
ij
s : s ≤ T ), and

independent of X0 and (Nkℓ
t )t≥0 for (k , ℓ) 6= (i , j).

Hence, conditional on T < ∞ and XT = i , (XT+t)t≥0 has the same
distribution as (Xt)t≥0 and is independent of (Xs : s ≤ T ).
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A Third Construction (Cont’d)

In particular, we can take T = Jn.

We see that, conditional on Jn < ∞ and Yn = i :

Sn+1 is exponential of parameter qi ;
Yn+1 has distribution (πij : j ∈ I );
Sn+1 and Yn+1 are independent, and independent of Y0, . . . ,Yn and
S1, . . . , Sn.

Hence, (Xt)t≥0 is Markov(λ,Q).

Moreover, (Xt)t≥0 has the Strong Markov Property.

The conditioning on which this argument relies requires some further
justification, especially when the state-space is infinite.

So we avoid relying on this third construction in the development of
the theory.
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Subsection 7

Explosion
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Explosion Time

Consider a process with:

Jump times J0, J1, J2, . . .;
Holding times S1, S2, . . ..

The explosion time ζ is given by

ζ = sup
n

Jn =

∞∑

n=1

Sn.
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Sufficient Conditions for Non-Explosion

Theorem

Let (Xt)t≥0 be Markov(λ,Q). Then (Xt)t≥0 does not explode if any one
of the following conditions holds:

(i) I is finite;

(ii) supi∈I qi < ∞;

(iii) X0 = i , and i is recurrent for the jump chain.

Set Tn = q(Yn−1)Sn.

Then T1,T2, . . . are independent E (1) and independent of (Yn)n≥0.

In Cases (i) and (ii), we have:

q = supi qi < ∞;
qζ ≥

∑∞
n=1 Tn = ∞ with probability 1.

In Case (iii), we know that (Yn)n≥0 visits i infinitely often, at times
N1,N2, . . ., say. Then qiζ ≥

∑∞
m=1 TNm+1 = ∞ with probability 1.
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Explosive Q-Matrices

We denote by Pi the conditional probability

Pi(A) = P(A|X0 = i).

It is a simple consequence of the Markov property for (Yn)n≥0 that,
under Pi , the process (Xt)t≥0 is Markov(δi ,Q).

We say that a Q-matrix Q is explosive if, for the associated Markov
chain

Pi(ζ < ∞) > 0, for some i ∈ I .

Otherwise Q is non-explosive.

The result just proved gives simple conditions for non-explosion and
covers many cases of interest.
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Expectation of the Exponential of Explosion Time

Theorem

Let (Xt)t≥0 be a continuous-time Markov chain with generator matrix Q

and write ζ for the explosion time of (Xt)t≥0. Fix θ > 0 and set
zi = Ei(e

−θζ). Then z = (zi : i ∈ I ) satisfies:

(i) |zi | ≤ 1, for all i ;

(ii) Qz = θz .

Moreover, if z̃ also satisfies (i) and (ii), then z̃i ≤ zi , for all i .

Condition on X0 = i .

The time and place of the first jump are independent.

Also, J1 is E (qi ) and Pi(XJ1 = k) = πik .

By the Markov Property of the jump chain at time n = 1, conditional
on XJ1 = k , (XJ1+t)t≥0 is Markov(δk ,Q) and independent of J1.
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Exponential of Explosion Time (Cont’d)

So we have

Ei(e
−θζ |XJ1 = k) = Ei(e

−θJ1e−θ
∑

∞

n=2 Sn |XJ1 = k)

=
∫∞
0 e−θtqie

−qi tdtEk(e
−θζ)

= qi zk
qi+θ .

So
zi =

∑

k 6=i

Pi(XJ1 = k)Ei(e
−θζ |XJ1 = k) =

∑

k 6=i

qiπikzk

qi + θ
.

Recall that qi = −qii and qiπik = qik .

Then
(θ − qii )zi = (θ + qi)

∑

k 6=i

qiπikzk

qi + θ
=
∑

k 6=i

qikzk .

So θzi = qiizi +
∑

k 6=i qikzk =
∑

k∈I qikzk .

So z satisfies (i) and (ii).
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Exponential of Explosion Time (Cont’d)

Note that the same argument also shows that

Ei(e
−θJn+1) =

∑

k 6=i

qiπik

qi + θ
Ek(e

−θJn).

Suppose that z̃ also satisfies Conditions (i) and (ii).

Then, in particular, z̃i ≤ 1 = Ei(e
−θJ0), for all i .

Suppose inductively that z̃i ≤ Ei (e
−θJn).

Then, since z̃ satisfies Condition (ii),

z̃i =
∑

k 6=i

qiπik

qi + θ
z̃k ≤

∑

k 6=i

qiπik

qi + θ
Ei(e

−θJn ) = Ei(e
−θJn+1).

Hence, z̃i ≤ Ei(e
−θJn ), for all n.

By Monotone Convergence, Ei(e
−θJn ) → Ei (e

−θζ) as n → ∞.

So z̃i ≤ zi , for all i .
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Characterization of Non-Explosiveness

Corollary

For each θ > 0, the following are equivalent:

(a) Q is non-explosive;

(b) Qz = θz and |zi | ≤ 1, for all i , imply z = 0.

Suppose Condition (a) holds.

Then Pi(ζ = ∞) = 1.

So Ei(e
−θζ) = 0.

By the theorem, Qz = θz and |z | ≤ 1 imply zi ≤ Ei(e
−θζ).

Hence z ≤ 0. By symmetry z ≥ 0. Hence (b) holds.

Conversely, suppose Condition (b) holds.

Then, by the theorem, Ei(e
−θζ) = 0, for all i .

So Pi(ζ = ∞) = 1.

This proves (a).
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Subsection 8

Forward and Backward Equation
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Strong Markov Property for Birth Processes

Recall that a random variable T with values in [0,∞] is a stopping
time of (Xt)t≥0 if, for each t ∈ [0,∞), the event {T ≤ t} depends
only on (Xs : s ≤ t).

Theorem (Strong Markov Property)

Let (Xt)t≥0 be Markov(λ,Q) and let T be a stopping time of (Xt)t≥0.
Then, conditional on T < ∞ and XT = i , (XT+t)t≥0 is Markov(δi ,Q) and
independent of (Xs : s ≤ T ).

George Voutsadakis (LSSU) Markov Chains April 2024 100 / 124



Continuous Time Markov Chains I Forward and Backward Equation

Key Theorem of Birth Processes

Theorem

Let (Xt)t≥0 be a right-continuous process with values in a finite set I . Let
Q be a Q-matrix on I with jump matrix Π. Then the following are
equivalent:

(a) (Jump Chain/Holding Time Definition) Conditional on X0 = i :

The jump chain (Yn)n≥0 of (Xt)t≥0 is discrete-time Markov(δi ,Π);
For each n ≥ 1, conditional on Y0, . . . ,Yn−1, the holding times
S1, . . . , Sn are independent exponential random variables of parameters
q(Y0), . . . , q(Yn−1), respectively;

(b) (Infinitesimal Definition) For all t, h ≥ 0, conditional on Xt = i ,
Xt+h is independent of (Xs : s ≤ t) and, as h ց 0, uniformly in t, for
all j ,

P(Xt+h = j |Xt = i) = δij + qijh + o(h);
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Key Theorem of Birth Processes (Cont’d)

Theorem (Cont’d)

(c) (Transition Probability Definition) For all n = 0, 1, 2, . . ., all times
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1 and all states i0, . . . , in+1,

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = pinin+1(tn+1 − tn),

where (pij(t) : i , j ∈ I , t ≥ 0) is the solution of the forward equation

P ′(t) = P(t)Q, P(0) = I .

If (Xt)t≥0 satisfies any of these conditions, then it is called a Markov
chain with generator matrix Q. We say that (Xt)t≥0 is Markov(λ,Q)
for short, where λ is the distribution of X0.
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Proof ((a)⇒(b))

Suppose (a) holds. Then, as h ց 0,

Pi(Xh = i) ≥ Pi(J1 > h) = e−qih = 1 + qiih + o(h).

For j 6= i , we have

Pi(Xh = j) ≥ Pi(J1 ≤ h,Y1 = j ,S2 > h)

= (1− e−qih)πije
−qjh

= qijh + o(h).

Thus, for every state j , Pi(Xh = j) ≥ δij + qijh + o(h).

By taking the finite sum over j , we see that these must be equalities.

By the Markov Property, for any t, h ≥ 0, conditional on Xt = i , Xt+h

is independent of (Xs : s ≤ t).

As h ց 0, uniformly in t,

P(Xt+h = j |Xt = i) = Pi (Xh = j) = δij + qijh + o(h).
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Proof ((b)⇒(c))

Set pij(t) = Pi(Xt = j) = P(Xt = j |X0 = i).

If (b) holds, then for all t, h ≥ 0, as h ց 0, uniformly in t,

pij(t + h) =
∑

k∈I Pi(Xt = k)P(Xt+h = j |Xt = k)

=
∑

k∈I pik(t)(δkj + qkjh + o(h)).

Since I is finite, we have

pij(t + h)− pij(t)

h
=
∑

k∈I

pik(t)qkj + O(h).

So, letting h ց 0, we see that pij(t) is differentiable on the right.
By uniformity, we can replace t by t − h and let h ց 0 to get:

pij(t) is continuous on the left;
pij(t) is differentiable on the left, hence differentiable;
pij(t) satisfies the forward equations

p′ij(t) =
∑

k∈I

pik(t)qkj , pij(0) = δij .
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Proof ((b)⇒(c) Cont’d)

By a previous theorem, since I is finite, pij(t) is the unique solution of

p′ij(t) =
∑

k∈I

pik(t)qkj , pij(0) = δij .

Also, if (b) holds, then

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = P(Xtn+1 = in+1|Xtn = in).

Moreover, (b) holds for (Xtn+t)t≥0.

So, by the above argument,

P(Xtn+1 = in+1|Xtn = in) = pin in+1(tn+1 − tn).

This proves (c).
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Proof ((c)⇒(a))

(c)⇒(a) again mimics the one for Poisson processes.

There is a process satisfying Part (a).

We have shown that it must then satisfy Part (c).

But Condition (c) determines the finite-dimensional distributions of

(Xt)t≥0.

Hence it determines the distribution of jump chain and holding times.

So if a process satisfying Part (c) also satisfies Part (a), so must every
process satisfying Part (c).
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Infinite State Spaces

For infinite state space, the backward equation may still be written in
the form

P ′(t) = QP(t), P(0) = I .

We have an infinite system of differential equations

p′ij(t) =
∑

k∈I

qikpkj (t), pij(0) = δij .

So the results on matrix exponentials no longer apply.

A solution to the backward equation is any matrix

(pij(t) : i , j ∈ I )

of differentiable functions satisfying this system of differential
equations.
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Infinite State Spaces

Theorem

Let Q be a Q-matrix. Then the backward equation

P ′(t) = QP(t), P(0) = I ,

has a minimal non-negative solution (P(t) : t ≥ 0). This solution forms a
matrix semigroup

P(s)P(t) = P(s + t), for all s, t ≥ 0.

We shall prove this result by a probabilistic method in combination
with the following result.

Note that, if I is finite, we must have P(t) = etQ .

We call (P(t) : t ≥ 0) the minimal non-negative semigroup
associated to Q, or simply the semigroup of Q.
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Markov Chains with Infinite State Spaces

Theorem

Let (Xt)t≥0 be a minimal right continuous process with values in I . Let Q
be a Q-matrix on I with jump matrix Π and semigroup (P(t) : t ≥ 0).
Then the following conditions are equivalent:

(a) (Jump Chain/Holding Time Definition) Conditional on X0 = i :

The jump chain (Yn)n≥0 of (Xt)t≥0 is discrete time Markov(δi ,Π);
For each n ≥ 1, conditional on Y0, . . . ,Yn−1, the holding times
S1, . . . , Sn are independent exponential random variables of parameters
q(Y0), . . . , q(Yn−1) respectively;

(b) (Transition Probability Definition) For all n = 0, 1, 2, . . ., all times
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1 and all states i0, i1, . . . , in+1,

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = pinin+1(tn+1 − tn).

If (Xt)t≥0 satisfies any of these conditions, it is called a Markov
chain with generator matrix Q. We say (Xt)t≥0 is Markov(λ,Q)
for short, where λ is the distribution of X0.
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Combined Proof of the Theorems (Step 1)

We know that there exists a process (Xt)t≥0 satisfying (a).

Define P(t) by
pij(t) = Pi(Xt = j).

Step 1: P(t) satisfies the backward equation.
Conditional on X0 = i we have:

J1 ∼ E (qi );
XJ1 ∼ (πik : k ∈ I ).

Conditional on J1 = s and XJ1 = k , (Xs+t)t≥0 ∼ Markov(δk ,Q).

So
Pi (Xt = j , t < J1) = e−qi tδij ;

Pi (J1 ≤ t,XJ1 = k ,Xt = j) =
∫ t

0 qie
−qi sπikpkj (t − s)ds.

Therefore,

pij(t) = Pi (Xt = j , t < J1) +
∑

k 6=i Pi(J1 ≤ t,XJ1 = k ,Xt = j)

= e−qi tδij +
∑

k 6=i

∫ t

0 qie
−qi sπikpkj(t − s)ds.
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Combined Proof of the Theorems (Step 1 Cont’d)

We derived

pij(t) = e−qi tδij +
∑

k 6=i

∫ t

0
qie

−qi sπikpkj(t − s)ds.

Change variable u = t − s in each of the integrals.

Interchange sum and integral by Monotone Convergence.

Multiply by eqi t to obtain

eqi tpij(t) = δij +

∫ t

0

∑

k 6=i

qie
qiuπikpkj(u)du.

This equation shows that:

pij(t) is continuous in t for all i , j ;
The integrand is a uniformly converging sum of continuous functions.
So it is continuous.

George Voutsadakis (LSSU) Markov Chains April 2024 111 / 124



Continuous Time Markov Chains I Forward and Backward Equation

Combined Proof of the Theorems (Step 1 Cont’d)

Hence, pij(t) is differentiable in t and satisfies

eqi t(qipij(t) + p′ij(t)) =
∑

k 6=i

qie
qi tπikpkj (t).

Recall that qi = −qii and qik = qiπik , for k 6= i .

Then, on rearranging, we obtain

p′ij(t) =
∑

k∈I

qikpkj (t).

So P(t) satisfies the backward equation.

The integral equation

pij(t) = e−qi tδij +
∑

k 6=i

∫ t

0
qie

−qi sπikpkj (t − s)ds

is called the integral form of the backward equation.

George Voutsadakis (LSSU) Markov Chains April 2024 112 / 124



Continuous Time Markov Chains I Forward and Backward Equation

Combined Proof of the Theorems (Step 2)

Step 2: If P̃(t) is another non-negative solution of the backward
equation, then P(t) ≤ P̃(t), hence P(t) is the minimal non-negative
solution.

The argument used to prove the integral form also shows that

Pi(Xt = j , t < Jn+1)

= e−qi tδij +
∑

k 6=i

∫ t

0 qie
−qi sπikPk(Xt−s = j , t − s < Jn)ds.

If P̃(t) satisfies the backward equation, then, by reversing the steps in
the last part of Step 1, it also satisfies the integral form:

p̃ij(t) = e−qi tδij +
∑

k 6=i

∫ t

0
qie

−qi sπik p̃kj(t − s)ds.
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Combined Proof of the Theorems (Step 2 Cont’d)

If P̃(t) ≥ 0, then Pi (Xt = j , t < J0) = 0 ≤ p̃ij(t), for all i , j and t.

Suppose inductively that, for all i , j and t,

Pi(Xt = j , t < Jn) ≤ p̃ij(t).

Then by comparing the preceding equations, for all i , j and t,

Pi(Xt = j , t < Jn+1) ≤ p̃ij(t).

So the induction proceeds.

Hence, for all i , j and t,

pij(t) = lim
n→∞

Pi(Xt = j , t < Jn) ≤ p̃ij(t).
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Combined Proof of the Theorems (Step 3)

Step 3: Since (Xt)t≥0 does not return from ∞, we have,

pij(s + t) = Pi(Xs+t = j)

=
∑

k∈I Pi(Xs+t = j |Xs = k)Pi (Xs = k)

=
∑

k∈I Pi(Xs = k)Pk(Xt = j)

(Markov Property)

=
∑

k∈I pik(s)pkj (t).

Hence (P(t) : t ≥ 0) is a matrix semigroup.

This completes the proof of the first theorem.
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Continuous Time Markov Chains I Forward and Backward Equation

Combined Proof of the Theorems (Step 4)

Step 4: Suppose, as we have throughout, that (Xt)t≥0 satisfies (a).

Then, by the Markov Property

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = Pin(Xtn+1−tn = in+1)

= pinin+1(tn+1 − tn).

So (Xt)t≥0 satisfies (b).

We complete the proof of the second theorem by the usual argument
that (b) must now imply (a) (as done in a previous proof).
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Continuous Time Markov Chains I Forward and Backward Equation

Time Reversal Identity

Lemma

We have

qinP(Jn ≤ t < Jn+1|Y0 = i0,Y1 = i1, . . . ,Yn = in)
= qi0P(Jn ≤ t < Jn+1|Y0 = in, . . . ,Yn−1 = i1,Yn = i0).

Conditional on Y0 = i0, . . . ,Yn = in, the holding times S1, . . . ,Sn+1

are independent with Sk ∼ E (qik−1
).

So the left-hand side is given by
∫

∆(t)
qin exp {−qin(t − s1 − · · · − sn)}

n∏

k=1

qik−1
exp {−qik−1

sk}dsk ,

where

∆(t) = {(s1, . . . , sn) : s1 + · · ·+ sn ≤ t and s1, . . . , sn ≥ 0}.
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Continuous Time Markov Chains I Forward and Backward Equation

Time Reversal Identity (Cont’d)

We have

∫

∆(t)
qin exp {−qin(t − s1 − · · · − sn)}

n∏

k=1

qik−1
exp {−qik−1

sk}dsk .

Substitute
u1 = t − s1 − · · · − sn,

uk = sn−k+2, k = 2, . . . , n.

We get

qinP(Jn ≤ t < Jn+1|Y0 = i0, . . . ,Yn = in)

=
∫
∆(t) qi0 exp {−qi0(t − u1 − · · · − un)}∏n

k=1 qin−k+1
exp {−qin−k+1

uk}duk

= qi0P(Jn ≤ t < Jn+1|Y0 = in, . . . ,Yn−1 = i1,Yn = i0).
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Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation

Theorem

The minimal non-negative solution (P(t) : t ≥ 0) of the backward
equation is also the minimal non-negative solution of the forward equation

P ′(t) = P(t)Q, P(0) = I .

Let (Xt)t≥0 be the minimal Markov chain with generator matrix Q.

By the previous theorem, we know that

pij(t) = Pi(Xt = j)

=
∑∞

n=0

∑
k 6=j Pi(Jn ≤ t < Jn+1,Yn−1 = k ,Yn = j).
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Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation (Cont’d)

By the preceding lemma, for n ≥ 1, we have

Pi(Jn ≤ t < Jn+1|Yn−1 = k ,Yn = j)

= qi
qj
Pj(Jn ≤ t < Jn+1|Y1 = k ,Yn = i)

= qi
qj

∫ t

0 qje
−qj sPk(Jn−1 ≤ t − s < Jn|Yn−1 = i)ds

(by the Markov Property of (Yn)n≥0)

= qi
∫ t

0 e−qj s qk
qi
Pi(Jn−1 ≤ t − s < Jn|Yn−1 = k)ds.
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Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation (Cont’d)

Now we get

pij(t)

= δije
−qi t +

∑∞
n=1

∑
k 6=j

∫ t

0 Pi(Jn−1 ≤ t − s < Jn|Yn−1 = k)

×Pi(Yn−1 = k ,Yn = j)qke
−qj sds

= δije
−qi t +∑∞

n=1

∑
k 6=j

∫ t

0 Pi(Jn−1 ≤ t − s < Jn,Yn−1 = k)qkπkje
−qj sds

= δije
−qi t +

∫ t

0

∑
k 6=j pik(t − s)qkje

−qj sds,

the interchange of sum and integral by Monotone Convergence.

This is the integral form of the forward equation.

Make a change of variable u = t − s in the integral.

Then multiply by eqj t to obtain

pij(t)e
qj t = δij +

∫ t

0

∑

k 6=j

pik(u)qkje
qjudu.
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Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation (Cont’d)

We have seen that eqi tpik(t) is increasing for all i , k .

Hence, one of the following occurs:∑
k 6=j pik(u)qkj converges uniformly, for u ∈ [0, t];∑
k 6=j pik(u)qkj = ∞, for all u ≥ t.

However, the left-hand side in the previous equation is finite for all t.

So the last option would contradict the preceding equation.

So it is the former option that holds.

From the backward equation, pij(t) is continuous for all i , j .

By uniform convergence, the integrand is continuous.

So we may differentiate to obtain

p′ij(t) + pij(t)qj =
∑

k 6=j

pik(t)qkj .

Hence, P(t) solves the forward equation.

George Voutsadakis (LSSU) Markov Chains April 2024 122 / 124



Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation (Minimality)

To establish minimality let us suppose that p̃ij(t) is another solution
of the forward equation.

Then we also have

p̃ij(t) = δije
−qi t +

∑

k 6=j

∫ t

0
p̃ik(t − s)qkje

−qj sds.

A similar argument leading to the formula for pij(t) shows that, for
n ≥ 0,

Pi(Xt = j , t < Jn+1) = δije
−qi t+

∑

k 6=j

∫ t

0
Pi(Xt = j , t < Jn)qkje

−qj sds.
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Continuous Time Markov Chains I Forward and Backward Equation

The Forward Equation (Minimality Cont’d)

If P̃(t) ≥ 0, then, for all i , j and t,

P(Xt = j , t < J0) = 0 ≤ p̃ij(t).

Suppose inductively that, for all i , j and t,

Pi(Xt = j , t < Jn) ≤ p̃ij(t).

Then by comparing the formulas on the preceding slide, we obtain, for
all i , j and t,

Pi(Xt = j , t < Jn+1) ≤ p̃ij(t).

So the induction proceeds.

Hence, for all i , j and t,

pij(t) = lim
n→∞

Pi(Xt = j , t < Jn) ≤ p̃ij(t).
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