Introduction to Markov Chains

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Continuous-time Markov chains II

- Basic Properties
- Class Structure
- Hitting Times and Absorption Probabilities
- Recurrence and Transience
- Invariant Distributions
- Convergence to Equilibrium
- Time Reversal
- Ergodic Theorem

Subsection 1

Basic Properties

Q-Matrices Revisited

- Let *I* be a countable set.
- Recall that a Q-matrix on I is a matrix

$$Q=(q_{ij}:i,j\in I),$$

satisfying the following conditions:

(i)
$$0 \le -q_{ii} < \infty$$
, for all i ;
(ii) $q_{ij} \ge 0$, for all $i \ne j$;
(iii) $\sum_{j \in I} q_{ij} = 0$, for all i .
• We set $q_i = q(i) = -q_{ii}$.

The Jump Matrix

Associated to any Q-matrix is a jump matrix

$$\Pi = (\pi_{ij}: i, j \in I),$$

defined as follows:

• For all *i*, $\pi_{ii} = \begin{cases} 0, & \text{if } q_i \neq 0, \\ 1, & \text{if } q_i = 0. \end{cases}$ • For all $i \neq j$, $\pi_{ij} = \begin{cases} \frac{q_{ij}}{q_i}, & \text{if } q_i \neq 0, \\ 0, & \text{if } q_i = 0. \end{cases}$

Note that Π is a stochastic matrix.

Sub-Stochastic Matrices

• A sub-stochastic matrix on I is a matrix

$$P=(p_{ij}:i,j\in I),$$

with nonnegative entries and such that

$$\sum_{j\in I} p_{ij} \le 1, \quad \text{for all } i.$$

 Associated to any Q-matrix is a semigroup (P(t) : t ≥ 0) of sub-stochastic matrices

$$P(t) = (p_{ij}(t) : i, j \in I).$$

• As the name implies, we have

$$P(s)P(t) = P(s+t)$$
, for all $s, t \ge 0$.

Basic Terms

- We assume familiarity with the following terms introduced in the preceding set:
 - Minimal right-continuous random process;
 - Jump times;
 - Holding times;
 - Jump chain;
 - Explosion.
- Briefly, a right-continuous process

$$(X_t)_{t\geq 0}$$

- Runs through a sequence of states Y_0, Y_1, Y_2, \ldots ;
- Is held in these states for times S_1, S_2, S_3, \ldots , respectively;
- Jumps to the next state at times J_1, J_2, J_3, \ldots
- Thus $J_n = S_1 + \cdots + S_n$.

Basic Terms (Cont'd)

The discrete-time process

 $(Y_n)_{n\geq 0}$

is the *jump chain*.

- $(S_n)_{n\geq 1}$ are the holding times.
- $(J_n)_{n\geq 1}$ are the jump times.
- The explosion time ζ is given by

$$\zeta = \sum_{n=1}^{\infty} S_n = \lim_{n \to \infty} J_n.$$

ullet For a minimal process we take a new state ∞ and insist that

$$X_t = \infty$$
, for all $t \ge \zeta$.

 An important point is that a minimal right-continuous process is determined by its jump chain and holding times.

George Voutsadakis (LSSU)

Markov Chains

Data for Continuous-Time Markov Chain

The data for a continuous-time Markov chain

 $(X_t)_{t\geq 0}$

are:

- A distribution λ ;
- A Q-matrix Q.
- These play the following roles.
 - The distribution λ gives the **initial distribution**, the distribution of X_0 .
 - The Q-matrix is known as the generator matrix of (X_t)_{t≥0}. It determines how the process evolves from its initial state.

First Description of a Continuous-Time Markov Chain

- We established that there are two different, but equivalent, ways to describe how the process evolves.
- The first, in terms of jump chain and holding times, states that:
 - (a) $(Y_n)_{n\geq 0}$ is Markov (λ, Π) ;
 - (b) Conditional on Y₀ = i₀,..., Y_{n-1} = i_{n-1}, the holding times S₁,..., S_n are independent exponential random variables of parameters q_{i0},..., q_{in-1}.
- Put more simply, given that the chain starts at *i*:
 - It waits there for an exponential time of parameter q_i ;
 - Then jumps to a new state, choosing state j with probability π_{ij} .
 - It then starts afresh, forgetting what has happened before.

Second Description of a Continuous-Time Markov Chain

- The second description, in terms of the semigroup, states that the finite dimensional distributions of the process are given by:
 - (c) For all $n = 0, 1, 2, \ldots$, all times $0 \le t_0 \le t_1 \le \cdots \le t_{n+1}$ and all states $i_0, i_1, \ldots, i_{n+1}$,

$$\mathbb{P}(X_{t_{n+1}}=i_{n+1}|X_{t_0}=i_0,\ldots,X_{t_n}=i_n)=p_{i_ni_{n+1}}(t_{n+1}-t_n).$$

- Put more simply, given that the chain starts at *i*:
 - By time t it is found in state j with probability $p_{ij}(t)$;
 - It then starts afresh, forgetting what has happened before.
- In the case where $\tilde{p}_{i\infty}(t) := 1 \sum_{j \in I} p_{ij}(t) > 0$ the chain is found at ∞ with probability $\tilde{p}_{i\infty}(t)$.
- The semigroup P(t) is the **transition matrix** of the chain.
- Its entries $p_{ij}(t)$ are the **transition probabilities**.

Remarks on the Second Description

• The second description implies that, for all h > 0, the discrete skeleton

$$(X_{nh})_{n\geq 0}$$

is Markov $(\lambda, P(h))$.

• Strictly, in the explosive case, that is, when P(t) is strictly sub-stochastic, we should say

 $Markov(\widetilde{\lambda}, \widetilde{P}(h)),$

where $\widetilde{\lambda}$ and $\widetilde{P}(h)$ are defined on $I \cup \{\infty\}$, extending λ and P(h) by: • $\widetilde{\lambda}_{\infty} = 0$; • $\widetilde{p}_{\infty j}(h) = 0$.

• Usually, there is no danger of confusion in using the simpler notation.

Relation Between P and Q

- Note that we have not yet said how the semigroup P(t) is associated to the Q-matrix Q, except via the process!
- We recall that the semigroup is characterized as the minimal non-negative solution of the backward equation

$$P'(t) = QP(t), \quad P(0) = I.$$

In component form

$$p_{ij}'(t) = \sum_{k\in I} q_{ik} p_{kj}(t), \quad p_{ij}(0) = \delta_{ij}.$$

• The semigroup is also the minimal non-negative solution of the forward equation

$$P'(t) = P(t)Q, \quad P(0) = I.$$

• In the case where I is finite, P(t) is simply the matrix exponential e^{tQ} , and is the unique solution of the backward and forward equations.

Subsection 2

Class Structure

Leading and Communicating

- Recall we deal only with minimal chains, those that die after explosion.
- The class structure is simply the discrete-time class structure of the jump chain (Y_n)_{n≥0}.
- We say that *i* **leads to** *j* and write $i \rightarrow j$ if

$$\mathbb{P}_i(X_t = j \text{ for some } t \ge 0) > 0.$$

- We say *i* communicates with *j* and write $i \leftrightarrow j$ if both $i \rightarrow j$ and $j \rightarrow i$.
- Communication is an equivalence relation between states.

Inherited Notions

- The notions of communicating class, closed class, absorbing state and irreducibility are inherited from the jump chain.
- A communicating class is an equivalence class of the communicating equivalence relation ↔.
- A class C is closed if

 $i \in C$ and $i \rightarrow j$ imply $j \in C$.

- Thus, a closed class is one from which there is no escape.
- A state *i* is **absorbing** if $\{i\}$ is a closed class.
- A chain whose state space *I* consists of a single communicating class is called **irreducible**.

Characterization of the Leading Relation

Theorem

For distinct states i and j the following are equivalent:

- (i) $i \rightarrow j$;
- (ii) $i \rightarrow j$ for the jump chain;
- (iii) $q_{i_0i_1}q_{i_1i_2}\cdots q_{i_{n-1}i_n} > 0$ for some states i_0, i_1, \dots, i_n with $i_0 = i, i_n = j$;
- (iv) $p_{ij}(t) > 0$, for all t > 0;
- (v) $p_{ij}(t) > 0$, for some t > 0.
 - Implications (iv) \Rightarrow (v) \Rightarrow (i) \Rightarrow (ii) are clear. Suppose Condition (ii) holds. Then, by a previous theorem, there are states i_0, i_1, \ldots, i_n with $i_0 = i$, $i_n = j$ and

$$\pi_{i_0i_1}\pi_{i_1i_2}\cdots\pi_{i_{n-1}i_n}>0.$$

This implies Condition (iii).

Characterization of the Leading Relation (Cont'd)

• Finally, suppose Condition (iii) holds. Note that, if $q_{ij} > 0$, then, for all t > 0,

$$egin{array}{rll} {p_{ij}(t)} &\geq & \mathbb{P}_i(J_1 \leq t,\,Y_1 = j,\,S_2 > t) \ &= & (1 - e^{-q_i t}) \pi_{ij} e^{-q_j t} \ &> & 0. \end{array}$$

Thus, for all t > 0,

$$p_{ij}(t) \geq p_{i_0i_1}\left(\frac{t}{n}\right)\cdots p_{i_{n-1}i_n}\left(\frac{t}{n}\right) > 0.$$

So (iv) holds.

Comparison with Discrete Time

- Condition (iv) of the Theorem shows that the situation is simpler than in discrete-time.
- In discrete time, it may be possible to reach a state, but:
 - Only after a certain length of time;
 - And then only periodically.

Subsection 3

Hitting Times and Absorption Probabilities

Hitting Time and Absorption Probability

- Let $(X_t)_{t\geq 0}$ be a Markov chain with generator matrix Q.
- The **hitting time** of a subset *A* of *I* is the random variable *D*^{*A*} defined by

$$D^{A}(\omega) = \inf \{t \geq 0 : X_{t}(\omega) \in A\},\$$

with the usual convention that $\inf \emptyset = \infty$.

- We emphasize that $(X_t)_{t\geq 0}$ is minimal.
- So if H^A is the hitting time of A for the jump chain, then:
 - $\{H^A < \infty\} = \{D^A < \infty\};$
 - On this set we have $D^A = J_{H^A}$.
- The probability, starting from i, that $(X_t)_{t\geq 0}$ ever hits A is then

$$h_i^A = \mathbb{P}_i(D^A < \infty) = \mathbb{P}_i(H^A < \infty)$$

• When A is a closed class, h_i^A is called the **absorption probability**.

Vector of Hitting Probabilities

Theorem

The vector of hitting probabilities $h^A = (h_i^A : i \in I)$ is the minimal non-negative solution to the system of linear equations

$$\left\{ \begin{array}{ll} h_i^A = 1, & \text{ for } i \in A, \\ \sum_{j \in I} q_{ij} h_j^A, & \text{ for } i \notin A. \end{array} \right.$$

Apply a previous theorem to the jump chain and rewrite

$$\begin{cases} h_i^A = 1, & \text{for } i \in A, \\ h_i^A = \sum_{j \in I} p_{ij} h_j^A, & \text{for } i \notin A. \end{cases}$$

in terms of Q.

Average Hitting Times

 The average time taken, starting from i, for (X_t)_{t≥0} to reach A is given by

$$k_i^A = \mathbb{E}_i(D^A).$$

- In calculating k_i^A we have to take account of the holding times.
- So the relationship to the discrete-time case is not quite as simple.

Example

Consider the Markov chain (X_t)_{t≥0} with the diagram shown.
 How long on average does it take to get from 1 to 4?

Set $k_i = \mathbb{E}_i$ (time to get to 4). On starting in 1:

- We spend an average time $q_1^{-1} = \frac{1}{2}$ in 1;
- Then jump with equal probability to 2 or 3.

Thus,

$$k_1 = \frac{1}{2} + \frac{1}{2}k_2 + \frac{1}{2}k_3$$

Similarly

$$\begin{array}{rcl} k_2 & = & \frac{1}{6} + \frac{1}{3}k_1 + \frac{1}{3}k_3, \\ k_3 & = & \frac{1}{9} + \frac{1}{3}k_1 + \frac{1}{3}k_2. \end{array}$$

On solving these linear equations we find $k_1 = \frac{17}{12}$.

Example

• We consider the Markov chain with state space $\{1,2,3,4\}$ and generator matrix

$$\left(\begin{array}{cccc} -1 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & -\frac{1}{2} & 0 & \frac{1}{4}\\ \frac{1}{6} & 0 & -\frac{1}{3} & \frac{1}{6}\\ 0 & 0 & 0 & 0\end{array}\right)$$

We calculate the probability of hitting 3 starting from 1. We set

$$h_i$$
 = probability of hitting 3 starting from *i*.

Example (Cont'd)

We must find the minimal nonnegative solution of the system

$$\begin{cases} h_{3} = 1\\ -h_{1} + \frac{1}{2}h_{2} + \frac{1}{2}h_{3} = 0\\ \frac{1}{4}h_{1} - \frac{1}{2}h_{2} + \frac{1}{4}h_{4} = 0 \end{cases} \Rightarrow \begin{cases} h_{2} = 2h_{1} - 1\\ h_{3} = 1\\ h_{4} = 3h_{1} - 2 \end{cases}$$
$$\Rightarrow \begin{cases} h_{1} = \frac{2}{3}\\ h_{2} = \frac{1}{3}\\ h_{3} = 1\\ h_{4} = 0 \end{cases}$$

Thus, the probability of hitting 3 starting from 1 is $\frac{2}{3}$.

Vector of Expected Hitting Times

Theorem

Assume that $q_i > 0$, for all $i \notin A$. The vector of expected hitting times $k^A = (k_i^A : i \in I)$ is the minimal non-negative solution to the system of linear equations

$$\begin{cases} k_i^A = 0, & \text{for } i \in A, \\ -\sum_{j \in I} q_{ij} k_j^A = 1, & \text{for } i \notin A. \end{cases}$$

First we show that k^A satisfies the system of equations. Suppose X₀ = i ∈ A. Then D^A = 0. So k_i^A = 0.

Vector of Expected Hitting Times (Cont'd)

$$\mathbb{E}_i(D^A-J_1|Y_1=j)=\mathbb{E}_j(D^A).$$

So we get

$$k_i^A = \mathbb{E}_i(D^A)$$

= $\mathbb{E}_i(J_1) + \sum_{j \neq i} \mathbb{E}(D^A - J_1 | Y_1 = j) \mathbb{P}_i(Y_1 = j)$
= $q_i^{-1} + \sum_{j \neq i} \pi_{ij} k_j^A.$

Rewriting, $q_i(k_i^A - \sum_{j \neq i} \pi_{ij}k_j^A) = 1$. Equivalently,

$$-\sum_{j\in I}q_{ij}k_j^A=1.$$

Vector of Expected Hitting Times (Cont'd)

 Suppose now that y = (y_i : i ∈ I) is another solution of the system. Then k_i^A = y_i = 0 for i ∈ A.

Suppose $i \notin A$. Then we have

$$\begin{aligned} y_i &= q_i^{-1} + \sum_{j \notin A} \pi_{ij} y_j \\ &= q_i^{-1} + \sum_{j \notin A} \pi_{ij} (q_j^{-1} + \sum_{k \notin A} \pi_{jk} y_k) \\ &= \mathbb{E}_i(S_1) + \mathbb{E}_i(S_2 \mathbb{1}_{\{H^A \ge 2\}}) + \sum_{j \notin A} \sum_{k \notin A} \pi_{ij} \pi_{jk} y_k. \end{aligned}$$

By repeated substitution for y in the final term we obtain after n steps

$$y_i = \mathbb{E}_i(S_1) + \cdots + \mathbb{E}_i(S_n \mathbb{1}_{\{H^A \ge n\}}) + \sum_{j_1 \notin A} \cdots \sum_{j_n \notin A} \pi_{ij_1} \cdots \pi_{j_{n-1}j_n} y_{j_n}.$$

Vector of Expected Hitting Times (Cont'd)

We obtained

$$y_i = \mathbb{E}_i(S_1) + \cdots + \mathbb{E}_i(S_n \mathbb{1}_{\{H^A \ge n\}}) + \sum_{j_1 \notin A} \cdots \sum_{j_n \notin A} \pi_{ij_1} \cdots \pi_{j_{n-1}j_n} y_{j_n}.$$

So, if y is non-negative, using $H^A \wedge n = \min \{H^A, n\}$,

$$y_i \geq \sum_{m=1}^n \mathbb{E}_i(S_m \mathbb{1}_{H^A \geq m}) = \mathbb{E}_i \left(\sum_{m=1}^{H^A \wedge n} S_m \right).$$

Now $\sum_{m=1}^{H^A} S_m = D^A$. By Monotone Convergence,

$$y_i \geq \mathbb{E}_i(D^A) = k_i^A.$$

Example

• We consider again the Markov chain with state space $\{1,2,3,4\}$ and generator matrix

$$\left(\begin{array}{cccc} -1 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{4} & -\frac{1}{2} & 0 & \frac{1}{4}\\ \frac{1}{6} & 0 & -\frac{1}{3} & \frac{1}{6}\\ 0 & 0 & 0 & 0 \end{array}\right)$$

We calculate the expected time of hitting 4 starting from 1. We set

 k_i = expected time of hitting 4 starting from *i*.

Example (Cont'd)

• We must find the minimal nonnegative solution of the system

$$\begin{cases} k_4 = 0\\ k_1 - \frac{1}{2}k_2 - \frac{1}{2}k_3 = 1\\ -\frac{1}{4}k_1 + \frac{1}{2}k_2 - \frac{1}{4}k_4 = 1\\ -\frac{1}{6}k_1 + \frac{1}{3}k_3 - \frac{1}{6}k_4 = 1 \end{cases} \Rightarrow \begin{cases} k_1 = 7\\ k_2 = \frac{1}{2}k_1 + 2\\ k_3 = \frac{1}{2}k_1 + 3\\ k_4 = 0 \end{cases}$$
$$\Rightarrow \begin{cases} k_1 = 7\\ k_2 = \frac{11}{2}\\ k_3 = \frac{13}{2}\\ k_4 = 0 \end{cases}$$

Thus, the expected time of hitting 4 starting from 1 is 7.

Subsection 4

Recurrence and Transience

Recurrent and Transient States

- Let $(X_t)_{t\geq 0}$ be a Markov chain with generator matrix Q.
- We insist $(X_t)_{t\geq 0}$ be minimal.
- We say a state *i* is **recurrent** if

$$\mathbb{P}_i(\{t \ge 0 : X_t = i\} \text{ is unbounded}) = 1.$$

• We say that *i* is **transient** if

$$\mathbb{P}_i(\{t \ge 0 : X_t = i\} \text{ is unbounded}) = 0.$$

 Note that, if (X_t)_{t≥0} can explode starting from *i*, then *i* is certainly not recurrent.

Recurrence and Transience and the Jump Chain

Theorem

- (i) If *i* is recurrent for the jump chain (Y_n)_{n≥0}, then *i* is recurrent for (X_t)_{t≥0};
- (ii) If *i* is transient for the jump chain, then *i* is transient for $(X_t)_{t\geq 0}$;
- (iii) Every state is either recurrent or transient;
- iv) Recurrence and transience are class properties.

Recurrence and Transience and the Jump Chain (Cont'd)

(ii) Suppose *i* is transient for $(Y_n)_{n\geq 0}$. If $X_0 = i$, then

$$N = \sup \{n \ge 0 : Y_n = i\} < \infty.$$

So $\{t \ge 0 : X_t = i\}$ is bounded by J(N + 1). Now $(Y_n : n \ge N)$ cannot include an absorbing state. So J(N + 1) is finite, with probability 1. For (iii) and (iv), we apply previous theorems to the jump chain.
Conditions for Recurrence and Transience

We denote by T_i the first passage time of (X_t)_{t≥0} to state i, defined by

$$T_i(\omega) = \inf \{t \ge J_1(\omega) : X_t(\omega) = i\}.$$

Theorem

The following dichotomy holds:

(i) If $q_i = 0$ or $\mathbb{P}_i(T_i < \infty) = 1$, then *i* is recurrent and

$$\int_0^\infty p_{ii}(t)dt = \infty;$$

(ii) If $q_i > 0$ and $\mathbb{P}_i(T_i < \infty) < 1$, then *i* is transient and

$$\int_0^\infty p_{ii}(t)dt < \infty.$$

Conditions for Recurrence and Transience (Cont'd)

• If
$$q_i = 0$$
, then $(X_t)_{t \ge 0}$ cannot leave *i*. So:

• *i* is recurrent;

•
$$p_{ii}(t) = 1$$
, for all t ;

•
$$\int_0^\infty p_{ii}(t)dt = \infty$$
.

Suppose then that $q_i > 0$.

Let N_i be the first passage time of the jump chain $(Y_n)_{n\geq 0}$ to state *i*. Then $\mathbb{P}_i(N_i < \infty) = \mathbb{P}_i(T_i < \infty)$.

So, by the preceding theorem and the corresponding result for the jump chain, *i* is recurrent if and only if $\mathbb{P}_i(T_i < \infty) = 1$.

Conditions for Recurrence and Transience (Cont'd)

• Write $\pi_{ij}^{(n)}$ for the (i, j) entry in Π^n .

We show that $\int_0^{\infty} p_{ii}(t)dt = \frac{1}{q_i} \sum_{n=0}^{\infty} \pi_{ii}^{(n)}$. Then *i* is recurrent if and only if $\int_0^{\infty} p_{ii}(t)dt = \infty$, by the preceding theorem and the corresponding result for the jump chain. We use Fubini's Theorem:

$$\int_0^\infty p_{ii}(t)dt = \int_0^\infty \mathbb{E}_i (\mathbb{1}_{\{X_t=i\}})dt$$

= $\mathbb{E}_i \int_0^\infty \mathbb{1}_{\{X_t=i\}}dt$
= $\mathbb{E}_i \sum_{n=0}^\infty S_{n+1}\mathbb{1}_{\{Y_n=i\}}$
= $\sum_{n=0}^\infty \mathbb{E}_i (S_{n+1}|Y_n=i)\mathbb{P}_i (Y_n=i)$
= $\frac{1}{a_i} \sum_{n=0}^\infty \pi_{ii}^{(n)}.$

Recurrence, Transience and Samplings

Theorem

Let h > 0 be given and set $Z_n = X_{nh}$.

- (i) If *i* is recurrent for $(X_t)_{t\geq 0}$, then *i* is recurrent for $(Z_n)_{n\geq 0}$.
- (ii) If *i* is transient for $(X_t)_{t\geq 0}$, then *i* is transient for $(Z_n)_{n\geq 0}$.
 - Claim (ii) is obvious.
 We now prove Claim (i).
 By the Markov Property, for nh ≤ t < (n+1)h, we have

$$p_{ii}((n+1)h) \geq e^{-q_ih}p_{ii}(t).$$

By Monotone Convergence,

$$\int_0^\infty p_{ii}(t) dt \leq h e^{q_i h} \sum_{n=1}^\infty p_{ii}(nh).$$

So the result follows by previous theorems.

Subsection 5

Invariant Distributions

Invariant Measures

• We say that λ is **invariant** if $\lambda Q = 0$.

Theorem

Let Q be a Q-matrix with jump matrix Π and let λ be a measure. The following are equivalent:

- (i) λ is invariant;
- (ii) $\mu \Pi = \mu$ where $\mu_i = \lambda_i q_i$.
 - We have $q_i(\pi_{ij} \delta_{ij}) = q_{ij}$, for all i, j. So

$$(\mu(\Pi-I))_j = \sum_{i\in I} \mu_i(\pi_{ij}-\delta_{ij}) = \sum_{i\in I} \lambda_i q_{ij} = (\lambda Q)_j.$$

 This connection allows using the existence and uniqueness results related to the discrete-time processes.

Irreducible and Recurrent Q-Matrices

Theorem

Suppose that Q is irreducible and recurrent. Then Q has an invariant measure λ which is unique up to scalar multiples.

• Let us exclude the trivial case $I = \{i\}$.

Then irreducibility forces $q_i > 0$ for all *i*.

By previous theorems, Π is irreducible and recurrent.

Then, by theorems addressing the discrete time case, Π has an invariant measure μ , which is unique up to scalar multiples.

Setting $\lambda_i = \frac{\mu_i}{q_i}$, we obtain, by the preceding theorem, an invariant measure unique up to scalar multiples.

Positive Recurrence

- Recall that a state *i* is **recurrent** if $q_i = 0$ or $\mathbb{P}_i(T_i < \infty) = 1$.
- State *i* is **positive recurrent** if $q_i = 0$ or the **expected return time** $m_i = \mathbb{E}_i(T_i)$ is finite.
- Otherwise a recurrent state *i* is called **null recurrent**.

Theorem

Let Q be an irreducible Q-matrix. Then the following are equivalent:

- (i) Every state is positive recurrent;
- (ii) Some state *i* is positive recurrent;
- (iii) Q is non-explosive and has an invariant distribution λ .

Moreover, when (iii) holds we have $m_i = \frac{1}{\lambda_i q_i}$, for all *i*.

We again exclude the trivial case I = {i}.
 Irreducibility forces q_i > 0, for all i. Obviously, (i) implies (ii).

Positive Recurrence (Cont'd)

• Define $\mu^i = (\mu^i_j: j \in I)$ by

$$\mu_j^i = \mathbb{E}_i \int_0^{T_i \wedge \zeta} \mathbb{1}_{\{X_s = j\}} ds,$$

where $T_i \wedge \zeta$ denotes the minimum of T_i and ζ . By Monotone Convergence, $\sum_{j \in I} \mu_j^i = \mathbb{E}_i(T_i \wedge \zeta)$. Let N_i be the first passage time of the jump chain to state *i*. By Fubini's Theorem,

$$\begin{split} \mu_{j}^{i} &= & \mathbb{E}_{i} \sum_{n=0}^{\infty} S_{n+1} \mathbf{1}_{\{Y_{n}=j,n < N_{i}\}} \\ &= & \sum_{n=0}^{\infty} \mathbb{E}_{i} (S_{n+1} | Y_{n} = j) \mathbb{E}_{i} (\mathbf{1}_{\{Y_{n}=j,n < N_{i}\}}) \\ &= & q_{j}^{-1} \mathbb{E}_{i} \sum_{n=0}^{\infty} \mathbf{1}_{\{Y_{n}=j,n < N_{i}\}} \\ &= & q_{j}^{-1} \mathbb{E}_{i} \sum_{n=0}^{N_{i}-1} \mathbf{1}_{\{Y_{n}=j\}} = \frac{\gamma_{j}^{i}}{q_{i}}, \end{split}$$

where γ_j^i is the expected time in *j* between visits to *i* for the jump chain.

George Voutsadakis (LSSU)

Positive Recurrence $((ii) \Rightarrow (iii))$

• Suppose Condition (ii) holds.

Let state *i* be positive recurrent.

Then *i* is certainly recurrent.

By a previous theorem, the jump chain is recurrent and Q is non-explosive.

Also, by a previous theorem, $\gamma^i \Pi = \gamma^i$.

So $\mu^i Q = 0$, by one of the preceding theorems.

But μ^i has finite total mass

$$\sum_{j\in I}\mu_j^i=\mathbb{E}_i(T_i)=m_i.$$

So we obtain an invariant distribution λ by setting $\lambda_j = \frac{\mu_j}{m_i}$.

Positive Recurrence $((iii) \Rightarrow (i))$

• Suppose Condition (iii) holds.

Fix $i \in I$ and set $\nu_j = \frac{\lambda_j q_j}{\lambda_i q_i}$. Then $\nu_i = 1$ and $\nu \Pi = \nu$ by a previous theorem. Also by a previous theorem, $\nu_j \ge \gamma_j^i$, for all j. So we get

$$\begin{split} m_i &= \sum_{j \in I} \mu_j^i = \sum_{j \in I} \frac{\gamma_j^i}{q_j} \leq \sum_{j \in I} \frac{\nu_j}{q_j} \\ &= \sum_{j \in I} \frac{\lambda_j}{\lambda_i q_i} = \frac{1}{\lambda_i q_i} < \infty. \end{split}$$

This shows that *i* is positive recurrent.

To complete the proof we return to the preceding calculation armed with the knowledge that Q is recurrent.

It follows that Π is recurrent, $\nu_j = \gamma_j^i$ and $m_i = \frac{1}{\lambda_i q_i}$, for all *i*.

Example

• The existence of an invariant distribution for a continuous-time Markov chain is not enough to guarantee positive recurrence, or even recurrence.

Consider the Markov chain $(X_t)_{t\geq 0}$ on \mathbb{Z}^+ with the following diagram.

$$\begin{array}{c} \lambda q_0 \\ \bullet \\ 0 \\ 1 \\ \end{array} \begin{array}{c} \mu q_i \\ i - 1 \\ i \\ i \\ \end{array} \begin{array}{c} \lambda q_i \\ i + 1 \\ \end{array} \end{array}$$

•
$$q_i > 0$$
, for all i ;

•
$$0 < \lambda = 1 - \mu < 1.$$

The jump chain behaves as a simple random walk away from 0. So $(X_t)_{t>0}$ is:

- Recurrent, if $\lambda \leq \mu$;
- Transient, if $\lambda > \mu$.

Example (Cont'd)

To compute an invariant measure ν it is convenient to use the detailed balance equations ν_iq_{ij} = ν_jq_{ji}, for all i, j.
 In this case the non-zero equations read

$$\nu_i \lambda q_i = \nu_{i+1} \mu q_{i+1}$$
, for all *i*.

So a solution is given by $\nu_i = q_i^{-1} (\frac{\lambda}{\mu})^i$.

If the jump rates q_i are constant, then ν can be normalized to produce an invariant distribution precisely when $\lambda < \mu$.

Consider the case where $q_i = 2^i$, for all *i*, and $1 < \frac{\lambda}{\mu} < 2$.

Then ν has finite total mass.

So $(X_t)_{t\geq 0}$ has an invariant distribution.

But $(X_t)_{t>0}$ is also transient.

Given the theorem, the only possibility is that $(X_t)_{t\geq 0}$ is explosive.

Characterization of Invariant Measures

Theorem

Let Q be irreducible and recurrent, and let λ be a measure. Let s > 0 be given. The following are equivalent:

(i)
$$\lambda Q = 0;$$

- (ii) $\lambda P(s) = \lambda$.
 - There is a very simple proof in the case of finite state space. By the backward equation

$$\frac{d}{ds}\lambda P(s) = \lambda P'(s) = \lambda QP(s).$$

So $\lambda Q = 0$ implies $\lambda P(s) = \lambda P(0) = \lambda$, for all s. P(s) is also recurrent. So $\mu P(s) = \mu$ implies that μ is proportional to λ . So $\mu Q = 0$.

Characterization of Invariant Measures

• For infinite state space, the interchange of differentiation with the summation involved in multiplication by λ is not justified.

So an entirely different proof is needed.

Since Q is recurrent, it is non-explosive, by a previous theorem.

Moreover, P(s) is recurrent, by a previous theorem.

Hence, any λ satisfying (i) or (ii) is unique up to scalar multiples. Fix *i* and set

$$\mu_j = \mathbb{E}_i \int_0^{T_i} \mathbb{1}_{\{X_t=j\}} dt.$$

By the proof of a previous theorem, $\mu Q = 0$. Thus, it suffices to show $\mu P(s) = \mu$.

Characterization of Invariant Measures (Infinite States)

• By the Strong Markov Property at *T_i* (which is a simple consequence of the Strong Markov Property of the jump chain),

$$\mathbb{E}_i \int_0^s \mathbb{1}_{\{X_t=j\}} dt = \mathbb{E}_i \int_{T_i}^{T_i+s} \mathbb{1}_{\{X_t=j\}} dt.$$

Hence, using Fubini's Theorem,

$$\begin{array}{rcl} u_{j} & = & \mathbb{E}_{i} \int_{s}^{s+T_{i}} \mathbf{1}_{\{X_{t}=j\}} dt \\ & = & \int_{0}^{\infty} \mathbb{P}_{i}(X_{s+t}=j,t< T_{i}) dt \\ & = & \int_{0}^{\infty} \sum_{k \in I} \mathbb{P}_{i}(X_{t}=k,t< T_{i}) p_{kj}(s) dt \\ & = & \sum_{k \in I} (\mathbb{E}_{i} \int_{0}^{T_{i}} \mathbf{1}_{\{X_{t}=k\}} dt) p_{kj}(s) \\ & = & \sum_{k \in I} \mu_{k} p_{kj}(s). \end{array}$$

Irreducibility, Non-Explosivity and Invariant Distributions

Theorem

Let Q be an irreducible non-explosive Q-matrix having an invariant distribution λ . If $(X_t)_{t\geq 0}$ is $Markov(\lambda, Q)$, then so is $(X_{s+t})_{t\geq 0}$, for any $s\geq 0$.

• By the preceding theorem, for all *i*,

$$\mathbb{P}(X_s = i) = (\lambda P(s))_i = \lambda_i.$$

So, by the Markov Property, conditional on $X_s = i$, $(X_{s+t})_{t \ge 0}$ is Markov (δ_i, Q) .

Subsection 6

Convergence to Equilibrium

Estimate of Uniform Continuity for Transition Probabilities

Lemma

Let Q be a Q-matrix with semigroup P(t). Then, for all $t, h \ge 0$,

$$|p_{ij}(t+h)-p_{ij}(t)|\leq 1-e^{-q_ih}.$$

We have

$$\begin{aligned} |p_{ij}(t+h) - p_{ij}(t)| &= |\sum_{k \in I} p_{ik}(h) p_{kj}(t) - p_{ij}(t)| \\ &= |\sum_{k \neq i} p_{ik}(h) p_{kj}(t) - (1 - p_{ii}(h)) p_{ij}(t)| \\ &\leq 1 - p_{ii}(h) \\ &\leq \mathbb{P}_i(J_1 \leq h) \\ &= 1 - e^{-q_i h}. \end{aligned}$$

Convergence to Equilibrium

Theorem (Convergence to Equilibrium)

Let Q be an irreducible non-explosive Q-matrix with semigroup P(t), and having an invariant distribution λ . Then for all states i, j we have

 $p_{ij}(t) o \lambda_j$ as $t o \infty$.

Let (X_t)_{t≥0} be Markov(δ_i, Q).
 Fix h > 0 and consider the h-skeleton Z_n = X_{nh}.
 By a previous theorem,

$$\mathbb{P}(Z_{n+1} = i_{n+1} | Z_0 = i_0, \dots, Z_n = i_n) = p_{i_n i_{n+1}}(h).$$

So $(Z_n)_{n\geq 0}$ is discrete-time Markov $(\delta_i, P(h))$.

Convergence to Equilibrium (Cont'd)

By a previous theorem, irreducibility implies p_{ij}(h) > 0 for all i, j.
So P(h) is irreducible and aperiodic
By a previous theorem, λ is invariant for P(h).
So, by discrete-time convergence to equilibrium, for all i, j,

$$\mathsf{p}_{ij}(\mathsf{n}\mathsf{h}) o \lambda_j$$
 as $\mathsf{n} o \infty$.

Thus we have a lattice of points along which the desired limit holds.

Convergence to Equilibrium (Cont'd)

We fill in the gaps using uniform continuity. Fix a state *i*.
 Given ε > 0, we can find h > 0, such that

$$1-e^{-q_is}\leq rac{arepsilon}{2}, \quad ext{for } 0\leq s\leq h.$$

Then find N, such that

$$|p_{ij}(nh) - \lambda_j| \leq \frac{\varepsilon}{2}, \quad \text{for } n \geq N.$$

For $t \ge Nh$, we have $nh \le t < (n+1)h$, for some $n \ge N$. Moreover, by the preceding lemma,

$$|p_{ij}(t) - \lambda_j| \leq |p_{ij}(t) - p_{ij}(nh)| + |p_{ij}(nh) - \lambda_j| \leq \varepsilon.$$

Hence, $p_{ij}(t) \rightarrow \lambda_j$ as $n \rightarrow \infty$.

Limiting Behavior for Irreducible Chains

• The complete description of limiting behavior for irreducible chains in continuous time is provided by the following result.

Theorem

Let Q be an irreducible Q-matrix and let ν be any distribution. Suppose that $(X_t)_{t\geq 0}$ is Markov (ν, Q) . Then

$$\mathbb{P}(X_t=j)
ightarrow rac{1}{q_jm_j}, \hspace{1em} ext{as} \hspace{1em} t
ightarrow \infty, \hspace{1em} ext{for all} \hspace{1em} j\in I,$$

where m_j is the expected return time to state j.

• This follows from a previous theorem by the same argument we used in the preceding result.

Example

• Consider the Markov chain with state space $\{1,2,3\}$ and Q-matrix

$$\left(\begin{array}{rrrr}
-2 & 1 & 1 \\
4 & -4 & 0 \\
2 & 1 & -3
\end{array}\right)$$

We find an invariant distribution λ .

We have

$$\begin{aligned} &(\lambda_1 \ \lambda_2 \ \lambda_3) \begin{pmatrix} -2 & 1 & 1 \\ 4 & -4 & 0 \\ 2 & 1 & -3 \end{pmatrix} = 0 \ \Rightarrow \begin{cases} -2\lambda_1 + 4\lambda_2 + 2\lambda_3 &= 0 \\ \lambda_1 - 4\lambda_2 + \lambda_3 &= 0 \\ \lambda_1 - 3\lambda_3 &= 0 \end{cases} \\ &\Rightarrow \begin{cases} \lambda_1 &= 3\lambda_3 \\ \lambda_2 &= \lambda_3 \\ \lambda_1 + \lambda_2 + \lambda_3 &= 1 \end{cases} \Rightarrow \begin{cases} \lambda_1 &= \frac{3}{5} \\ \lambda_2 &= \frac{1}{5} \\ \lambda_3 &= \frac{1}{5} \end{cases}. \end{aligned}$$

Example (Cont'd)

• We discover $p_{11}(t)$.

The matrix has characteristic equation

$$x(x+4)(x+5)=0.$$

Hence, its eigenvalues are x = 0, x = -4 and x = -5. It follows that

$$p_{11}(t) = a + be^{-4t} + ce^{-5t}.$$

Moreover, we have

$$\left\{\begin{array}{l} p_{11}(0) = 1\\ p_{11}'(0) = q_{11}\\ p_{11}''(0) = q_{11}^{(2)} \end{array}\right\} \Rightarrow \left\{\begin{array}{l} a+b+c = 1\\ -4b-5c = -2\\ 16b+25c = 10 \end{array}\right\} \Rightarrow \left\{\begin{array}{l} a = \frac{3}{5}\\ b = 0\\ c = \frac{2}{5} \end{array}\right\}$$

So
$$p_{11}(t) = \frac{3}{5} + \frac{2}{5}e^{-5t} \xrightarrow{t \to \infty} \frac{3}{5} = \lambda_1$$
.

Subsection 7

Time Reversal

Introducing Time Reversal

- In time reversal right-continuous processes become left-continuous.
- We can redefine the time-reversed process to equal its right limit at the jump times, thus obtaining again a right-continuous process.
- We suppose implicitly that this is done, and ignore this problem.

Time Reversal

Theorem

Let Q be irreducible and non-explosive and suppose that Q has an invariant distribution λ . Let $T \in (0, \infty)$ be given and let $(X_t)_{0 \le t \le T}$ be Markov (λ, Q) . Set $\widehat{X}_t = X_{T-t}$. Then the process $(\widehat{X}_t)_{0 \le t \le T}$ is Markov (λ, \widehat{Q}) , where $\widehat{Q} = (\widehat{q}_{ij} : i, j \in I)$ is given by $\lambda_j \widehat{q}_{ji} = \lambda_i q_{ij}$. Moreover, \widehat{Q} is also irreducible and non-explosive with invariant distribution λ .

 By a previous theorem, the semigroup (P(t) : t ≥ 0) of Q is the minimal non-negative solution of the forward equation

$$P'(t) = P(t)Q, \quad P(0) = I.$$

Also, for all t > 0, P(t) is an irreducible stochastic matrix with invariant distribution λ . Define $\hat{P}(t)$ by

$$\lambda_j \widehat{p}_{ji}(t) = \lambda_i p_{ij}(t).$$

Time Reversal (Cont'd)

• We defined $\widehat{P}(t)$ by $\lambda_j \widehat{p}_{ji}(t) = \lambda_i p_{ij}(t)$. Then $\widehat{P}(t)$ is an irreducible stochastic matrix.

Then $\widehat{P}(t)$ is an irreducible stochastic matrix with invariant distribution λ .

We can rewrite the forward equation transposed as

$$\widehat{P}'(t) = \widehat{Q}\widehat{P}(t).$$

This is the backward equation for \widehat{Q} , which is itself a Q-matrix. Furthermore, $\widehat{P}(t)$ is its minimal non-negative solution. Hence \widehat{Q} is irreducible and non-explosive and has invariant distribution λ .

Time Reversal (Cont'd)

Finally, consider:

•
$$0 = t_0 < \cdots < t_n = T;$$

•
$$s_k = t_k - t_{k-1}$$

We have, by a previous theorem,

$$\mathbb{P}(\widehat{X}_{t_0} = i_0, \dots, \widehat{X}_{t_n} = i_n) = \mathbb{P}(X_{T-t_0} = i_0, \dots, X_{T-t_n} = i_n)$$

$$= \lambda_{i_n} p_{i_n i_{n-1}}(s_n) \cdots p_{i_1 i_0}(s_1)$$

$$= \lambda_{i_0} \widehat{p}_{i_0 i_1}(s_1) \cdots \widehat{p}_{i_{n-1} i_n}(s_n).$$

So, again by a previous theorem, $(\widehat{X}_t)_{0 \le t \le T}$ is Markov (λ, \widehat{Q}) . • The chain $(\widehat{X}_t)_{0 \le t \le T}$ is called the **time-reversal** of $(X_t)_{0 \le t \le T}$.

Q-Matrix and Measure in Detailed Balance

• A Q-matrix Q and a measure λ are said to be in **detailed balance** if

$$\lambda_i q_{ij} = \lambda_j q_{ji}, \quad \text{for all } i, j.$$

Lemma

If Q and λ are in detailed balance then λ is invariant for Q.

We have

$$(\lambda Q)_i = \sum_{j \in I} \lambda_j q_{ji} = \sum_{j \in I} \lambda_i q_{ij} = 0.$$

Reversibility

 Let (X_t)_{t≥0} be Markov(λ, Q), with Q irreducible and non-explosive. We say that (X_t)_{t≥0} is **reversible** if, for all T > 0, (X_{T-t})_{0≤t≤T} is also Markov(λ, Q).

Theorem

Let Q be an irreducible and non-explosive Q-matrix and let λ be a distribution. Suppose that $(X_t)_{t\geq 0}$ is $Markov(\lambda, Q)$. Then the following are equivalent:

- (a) $(X_t)_{t\geq 0}$ is reversible;
- (b) Q and λ are in detailed balance.
 - Both Conditions (a) and (b) imply that λ is invariant for Q.
 Then both Conditions (a) and (b) are equivalent to the statement that Q

 Q = Q in the preceding theorem.

Subsection 8

Ergodic Theorem

Ergodic Theorem

Theorem (Ergodic Theorem)

Let Q be irreducible and let ν be any distribution. If $(X_t)_{t\geq 0}$ is Markov (ν, Q) , then

$$\mathbb{P}\left(rac{1}{t}\int_{0}^{t} \mathbb{1}_{\{X_{s}=i\}}ds
ightarrow rac{1}{m_{i}q_{i}} ext{ as } t
ightarrow \infty
ight)=1,$$

where $m_i = \mathbb{E}_i(T_i)$ is the expected return time to state *i*. Moreover, in the positive recurrent case, for any bounded function $f : I \to \mathbb{R}$ we have

$$\mathbb{P}\left(rac{1}{t}\int_{0}^{t}f(X_{s})ds
ightarrow \overline{f} ext{ as }t
ightarrow \infty
ight)=1,$$

where $\overline{f} = \sum_{i \in I} \lambda_i f_i$ and where $(\lambda_i : i \in I)$ is the unique invariant distribution.

Ergodic Theorem (Cont'd)

• Suppose Q is transient.

Then the total time spent in any state *i* is finite. So $\frac{1}{2} \int_{-\infty}^{t} 1_{0,0} ds \leq \frac{1}{2} \int_{-\infty}^{\infty} 1_{0,0} ds \rightarrow 0$

$$\frac{1}{t}\int_0^t \mathbb{1}_{\{X_s=i\}} ds \leq \frac{1}{t}\int_0^\infty \mathbb{1}_{\{X_s=i\}} ds \to 0 = \frac{1}{m_i}.$$

Suppose then that Q is recurrent and fix a state i.

Then $(X_t)_{t\geq 0}$ hits *i* with probability 1.

The long run proportion of time in i equals the long run proportion of time in i after first hitting i.

By the Strong Markov Property (of the jump chain), it suffices to consider the case $\nu = \delta_i$.

Ergodic Theorem (Cont'd)

- Denote by:
 - M_i^n the length of the *n*-th visit to *i*;
 - T_i^n the time of the *n*-th return to *i*;
 - L_i^n the length of the *n*-th excursion to *i*.

Thus for $n = 0, 1, 2, \ldots$, setting $T_i^0 = 0$, we have:

$$\frac{T_{i}^{n}}{M_{i}^{n+1}} = \inf \{t > T_{i}^{n} : X_{t} \neq i\} - T_{i}^{n}; \\
T_{i}^{n+1} = \inf \{t > T_{i}^{n} : X_{t} \neq i\} - T_{i}^{n}; \\
T_{i}^{n+1} = \inf \{t > T_{i}^{n} + M_{i}^{n+1} : X_{t} = i\}; \\
L_{i}^{n+1} = T_{i}^{n+1} - T_{i}^{n}.$$
Ergodic Theorem (Cont'd)

- By the Strong Markov Property (of the jump chain) at the stopping times Tⁿ_i, for n ≥ 0, we find that:
 - L¹_i, L²_i,... are independent and identically distributed with mean m_i;
 M¹_i, M²_i,... are independent and identically distributed with mean ¹/_{ai}.

Hence, by the Strong Law of Large Numbers, as $n o \infty$,

$$rac{L_i^1+\dots+L_i^n}{n} o m_i \quad ext{and} \quad rac{M_i^1+\dots+M_i^n}{n} o rac{1}{q_i}.$$

Therefore,

$$rac{M_i^1+\cdots+M_i^n}{L_i^1+\cdots+L_i^n} o rac{1}{m_iq_i}$$
 as $n o \infty$, with probability 1.

In particular, we note that $\frac{T_i^n}{T_i^{n+1}} \to 1$ as $n \to \infty$, with probability 1.

Ergodic Theorem (Cont'd)

• Now, for
$$T_i^n \leq t < T_i^{n+1}$$
 we have

$$\frac{T_i^n}{T_i^{n+1}}\frac{M_i^1 + \dots + M_i^n}{L_i^1 + \dots + L_i^n} \leq \frac{1}{t}\int_0^t \mathbb{1}_{\{X_s=i\}}ds \leq \frac{T_i^{n+1}}{T_i^n}\frac{M_i^1 + \dots + M_i^{n+1}}{L_i^1 + \dots + L_i^{n+1}}.$$

Letting $t \to \infty$, we obtain that, with probability 1,

$$\frac{1}{t}\int_0^t \mathbb{1}_{\{X_s=i\}}ds \to \frac{1}{m_i q_i}.$$

In the positive recurrent case, for $\lambda_i = \frac{1}{m_i q_i}$, we can write

$$\frac{1}{t}\int_0^t f(X_s)ds - \overline{f} = \sum_{i \in I} f_i\left(\frac{1}{t}\int_0^t \mathbb{1}_{\{X_s=i\}}ds - \lambda_i\right).$$

By the same argument used in the discrete case, $\frac{1}{t} \int_0^t f(X_s) ds \to \overline{f}$ as $t \to \infty$, with probability 1.

George Voutsadakis (LSSU)

Markov Chains