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Continuous-time Markov chains Il Basic Properties

®-Matrices Reuvisited

o Let / be a countable set.

o Recall that a @-matrix on / is a matrix

Qz(qU’,JEI)a

satisfying the following conditions:
(1) 0< —gji < o0, for all 7

(1) gjj >0, for all i # j;

U 2 2er @i =0, forall .

o We set g; = q(i) = —qii.
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The Jump Matrix

o Associated to any @-matrix is a jump matrix
N=(mj:i,jel),

defined as follows:
o For all /,

L 07 'fq:7é0,
”"‘{ 1, ifq =0.

o Forall i # j,
9% if g
i = Ev lf qi 7é 07
5 0, if qi =0.

o Note that 1 is a stochastic matrix.
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o A sub-stochastic matrix on / is a matrix
P=(pj:ijel),

with nonnegative entries and such that

> pj<1, foralli.
Jjel

o Associated to any Q-matrix is a semigroup (P(t) : t > 0) of
sub-stochastic matrices

P(t) = (pij(t) : i,j € 1).
o As the name implies, we have

P(s)P(t) = P(s+t), foralls,t>0.
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o We assume familiarity with the following terms introduced in the
preceding set:

Minimal right-continuous random process,

Jump times,

Holding times;

Jump chain;

Explosion.

©
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o Briefly, a right-continuous process
(Xt)e0

o Runs through a sequence of states Yy, Y1, Y2,.. .;
o Is held in these states for times Sy, S5, Ss, . . ., respectively;
o Jumps to the next state at times Ji, J, J5, . . ..

o Thus J, =51+ ---+ 5.
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o The discrete-time process
(Yn)nzo
is the jump chain.
o (Sp)n>1 are the holding times.
o (Jn)n>1 are the jump times.
o The explosion time ( is given by

(o]
€= 5n=lim Jn
n=1
o For a minimal process we take a new state oo and insist that
Xy =00, forallt>(.

o An important point is that a minimal right-continuous process is
determined by its jump chain and holding times.
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o The data for a continuous-time Markov chain

(Xt)tZO

are:
o A distribution \;
o A Q-matrix Q.

o These play the following roles.

o The distribution A gives the initial distribution, the distribution of Xj.
o The Q-matrix is known as the generator matrix of (X;)¢>o.
It determines how the process evolves from its initial state.
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o We established that there are two different, but equivalent, ways to
describe how the process evolves.
o The first, in terms of jump chain and holding times, states that:
(Ya)n>0 is Markov(A, M);

Conditional on Yy = fg, ..., Yy—1 = ip—1, the holding times S;,..., 5,
are independent exponential random variables of parameters
ql'oa aoog q/n—l'

o Put more simply, given that the chain starts at i:

o It waits there for an exponential time of parameter g;;
o Then jumps to a new state, choosing state j with probability 7;;.
o It then starts afresh, forgetting what has happened before.
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©

©

The second description, in terms of the semigroup, states that the
finite dimensional distributions of the process are given by:

Forall n=0,1,2,..., all times 0 <ty < t; < --- < tyy1 and all states
iOaila"'ain+1|

]P)(th+1 = i’7+1|Xt0 = i07 L 7th = I”) = pinin+1(tn+1 - tn)

Put more simply, given that the chain starts at /:
o By time t it is found in state j with probability p;(t);
o It then starts afresh, forgetting what has happened before.

In the case where pio(t) :=1 — 3., pjj(t) > 0 the chain is found at
oo with probability pjso(t).
The semigroup P(t) is the transition matrix of the chain.

Its entries p;(t) are the transition probabilities.
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o The second description implies that, for all h > 0, the discrete
skeleton

(th)nZO
is Markov(\, P(h)).
o Strictly, in the explosive case, that is, when P(t) is strictly
sub-stochastic, we should say

Markov (X, P(h)),

where X and P(h) are defined on I U {oo}, extending A and P(h) by:
° Xoo =0;
o Pooj(h) = 0.
o Usually, there is no danger of confusion in using the simpler notation.
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o Note that we have not yet said how the semigroup P(t) is associated
to the Q-matrix @, except via the process!

o We recall that the semigroup is characterized as the minimal
non-negative solution of the backward equation

P'(t) = QP(t), P(0)=1I.
o In component form
p’.l Z Cl:kPkJ(t PU(O) = 0;
kel
o The semigroup is also the minimal non-negative solution of the
forward equation
P'(t) = P(t)Q, P(0)=1.

o In the case where | is finite, P(t) is simply the matrix exponential ef?
and is the unique solution of the backward and forward equations.
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o Recall we deal only with minimal chains, those that die after
explosion.

o The class structure is simply the discrete-time class structure of the
jump chain (Y,)n>o0.

o We say that i leads to j and write i — j if

Pi(X¢ = j for some t > 0) > 0.
o We say i communicates with j and write / < j if both /i — j and
j— .
o Communication is an equivalence relation between states.
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o The notions of communicating class, closed class, absorbing state and
irreducibility are inherited from the jump chain.

o A communicating class is an equivalence class of the
communicating equivalence relation <.

o A class C is closed if
ieC and i—j imply jeC.

o Thus, a closed class is one from which there is no escape.
o A state / is absorbing if {/} is a closed class.

o A chain whose state space / consists of a single communicating class
is called irreducible.
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For distinct states / and j the following are equivalent:
i = J;
i — j for the jump chain;
Qi Qirio * ** Gi,_1in > O for some states ig, i1,...,i, with ip =i, i, = J;
pij(t) > 0, for all t > 0;
pij(t) > 0, for some t > 0.

o Implications (iv)=-(v)=-(i)=(ii) are clear.
Suppose Condition (ii) holds.
Then, by a previous theorem, there are states iy, i1, . . ., ip With iy =i,
in=Jj and
Tioiy Tiviy " Tip_1in > 0.
This implies Condition (iii).
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Characterization of the Leading Relation (Cont'd)

o Finally, suppose Condition (iii) holds.
Note that, if g;; > 0, then, for all t >0,
pi(t) = Pi(h<t,Y1=j,%>1)
= (1—e 9)mje 9t

> 0.

Thus, for all t > 0,

t t
pii(t) > piir (E) e Pin_tin (;) > 0.

So (iv) holds.
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Comparison with Discrete Time

o Condition (iv) of the Theorem shows that the situation is simpler
than in discrete-time.
o In discrete time, it may be possible to reach a state, but:

o Only after a certain length of time;
o And then only periodically.
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o Let (X¢)t>0 be a Markov chain with generator matrix Q.
o The hitting time of a subset A of / is the random variable DA
defined by
DA(w) = inf {t > 0: X;(w) € A},
with the usual convention that inf () = co.
o We emphasize that (X;)¢>0 is minimal.

o So if HA is the hitting time of A for the jump chain, then:
o {HA < 00} = {D* < oo};
o On this set we have DA = Jya.

o The probability, starting from i, that (X;)¢>o ever hits A is then
h? = P;(D* < o) = P;(H” < ).
o When A is a closed class, h,-A is called the absorption probability.
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Vector of Hitting Probabilities

The vector of hitting probabilities /" = (h# : i € [) is the minimal
non-negative solution to the system of linear equations

{h,-Azl, fori € A,
> jel q,-J-hJ’-“, for i & A.

o Apply a previous theorem to the jump chain and rewrite

{h;“zl, for i € A,
hA = el p,-jhj’.“, for i & A.

in terms of Q.
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o The average time taken, starting from i, for (X;)>o to reach A'is
given by
kA = Ei(D).

o In calculating k,-A we have to take account of the holding times.

o So the relationship to the discrete-time case is not quite as simple.
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o Consider the Markov chain (X;)¢>o with the diagram shown.

How long on average does it take to get from 1 to 47

Set k; = IE;(time to get to 4). 1 !
On starting in 1:
o We spend an average time ‘71_1 = % in1; !
o Then jump with equal probability to 2 or 3.
Thus, e
k1=%+%k2+%k3. 3 3
Similarly

ky = k1+ ks,
ks = ? %kl‘l‘%

On solving these linear equations we find k3 = 12

George Voutsadakis (LSSU)
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o We consider the Markov chain with state space {1,2,3,4} and
generator matrix

O OIRNR
O O NN
O Wk O NI
O OIRNR O

We calculate the probability of hitting 3 starting from 1.

We set
h; = probability of hitting 3 starting from i.
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o We must find the minimal nonnegative solution of the system

hy = 1 hy = 2h;—1
—1h1+%h2+%h3 =0, =4 hmh =1
Zh1_§h2+1h4 =0 hy = 3h;—2
h = %
=3
hy = 1
hy = 0
Thus, the probability of hitting 3 starting from 1 is %
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Theorem

Assume that g; > 0, for all i ¢ A. The vector of expected hitting times
kA = (kA : i € 1) is the minimal non-negative solution to the system of
linear equations

{kf‘zO, for i € A,
=Ygkl =1, fori g A

o First we show that k” satisfies the system of equations.
Suppose Xy =i € A.
Then DA = 0.
So kA = 0.
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o Suppose Xp =1 & A.
Then DA > J;.
By the Markov Property of the jump chain,

Ei(D* - 4|1 =) = E;(D?).
So we get
kAt = Ei(D*Y)
Ei(41) + > B(DA — Al Y1 = j)Pi(Y1 = J)
= g Xkl
Rewriting, g;(k — Z';éiﬂ-ijkf\) =1,

Y
Y ak -1

Jjel

Equivalently,
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o Suppose now that y = (y; : i € I) is another solution of the system.
Then kA = y; =0 for i € A.
Suppose i € A. Then we have
Yi = 4+ > jgA iy
g '+ > igA 7Tij(qj_1 + D kg TjkYk)
= Ei(S1) +Eil(S2l{pasoy) + D j2a D kg TiiTjkYk-

By repeated substitution for y in the final term we obtain after n steps

Yi=Ei(S1) + -+ EilSalpasm) + D > iy T yj i
77
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o We obtained

Yi=Ei(S1) + -+ Eil(Salpasm) + D > T Ty iV
jlgA J.ngA

So, if y is non-negative, using HA A n = min {HA, n},

HAAR

Yi = Y Ei(Smlpasm) =Ei[ > Sn
m=1

m=1

Now S°H* 'S, = DA,
By Monotone Convergence,

yi > Ei(D?) = k2.

]
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o We consider again the Markov chain with state space {1,2,3,4} and
generator matrix

O ORI =
O O NN
O Wik O NI
O olRRF O

We calculate the expected time of hitting 4 starting from 1.
We set

ki = expected time of hitting 4 starting from i.

George Voutsadakis (LSSU) Markov Chains



Continuous-time Markov chains Il

o We must find the minimal nonnegative solution of the system

ke = 0 kk =7
-zlo—zke = 1L )k = Fa+2
—%kl—i-?kz—%/q = 1 ks = §k1+3
_5k1+§k3_5k4 = | ke = 0
Lk
ky = =
=9\ ks — %
ke = 0

Thus, the expected time of hitting 4 starting from 1 is 7.
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o Let (X¢)t>0 be a Markov chain with generator matrix Q.
o We insist (X;)¢>0 be minimal.
o We say a state / is recurrent if
P;({t > 0: X; =i} is unbounded) = 1.
o We say that / is transient if
P;({t > 0: X; =i} is unbounded) = 0.
o Note that, if (X;)s>0 can explode starting from i, then i is certainly

not recurrent.

George Voutsadakis (LSSU)



Continuous-time Markov chains Il

If i is recurrent for the jump chain (Y,),>0, then i is recurrent for
(Xt)tZO;

If i is transient for the jump chain, then i is transient for (X¢)¢>o;
Every state is either recurrent or transient;

Recurrence and transience are class properties.

Suppose i is recurrent for (Y,)n>0.

If Xo =i, then (X¢)¢>0 does not explode.

Moreover, J, — 0o, by a previous theorem.

Also X(Jp) = Y, = i infinitely often.

So {t > 0: X; =i} is unbounded, with probability 1.
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Suppose i is transient for (Y,)n>0.
If Xo =i, then
N=sup{n>0:Y,=i} < oc.

So {t >0: X; =i} is bounded by J(N + 1).
Now (Y}, : n > N) cannot include an absorbing state.
So J(N + 1) is finite, with probability 1.

For (iii) and (iv), we apply previous theorems to the jump chain.
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o We denote by T; the first passage time of (X;):>0 to state i,
defined by

Ti(w) = inf{t > h(w) : X¢(w) = i}.

Theorem
The following dichotomy holds:
If g =0 or P;(T; < co) =1, then i is recurrent and

/000 pii(t)dt =

If gi > 0 and P;(T; < o0) < 1, then / is transient and

o0
/ pii(t)dt < oco.
0
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o If gi =0, then (X;)¢>0 cannot leave i. So:
o [ is recurrent;
o pii(t) =1, for all t;
o [ pi(t)dt = oo.
Suppose then that g; > 0.
Let N; be the first passage time of the jump chain (Y})n>0 to state /.
Then Pi(N; < 00) =Pi(T; < 00).
So, by the preceding theorem and the corresponding result for the
jump chain, i is recurrent if and only if P;(T; < c0) = 1.
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o Write ") for the (i,j) entry in I1".
We show that [ pii(t)dt = é S s

ii
Then i is recurrent if and only if [ p;i(t)dt = oo, by the preceding
theorem and the corresponding result for the jump chain.

We use Fubini's Theorem:

fo pi(t)dt = [ Ei(lix,—i)dt
= Eify lix=pdt
Ei > oto Snt1l{y,—i}
= ZZO:OEI(SH—H‘Yn = i)Pi(Yn = /)

1 Nvwoo (n)
= g Zn=0Tj -
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Let h > 0 be given and set Z, = X,.
If i is recurrent for (X;)¢>0, then i is recurrent for (Z,)n>o0.
If i is transient for (X;)¢>0, then i is transient for (Z,)n>0.
o Claim (ii) is obvious.
We now prove Claim (i).
By the Markov Property, for nh <t < (n+ 1)h, we have

pir((n+1)h) > e~ %"p;(t).
By Monotone Convergence,

/ pii(t)dt < heq"th,-,-(nh).
0

n=1
So the result follows by previous theorems.
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Invariant Distributions
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o We say that A is invariant if A\Q = 0.

Theorem

Let @ be a Q-matrix with jump matrix 1 and let A be a measure. The
following are equivalent:

A is invariant;
ull = p where p; = \iq;.
o We have gi(mj — d;;) = gjj, for all i,j. So
(M= 1); = > pilmy —85) = Y Aigy = (AQ);.
icl il
o This connection allows using the existence and uniqueness results
related to the discrete-time processes.

George Voutsadakis (LSSU) Markov Chains



Continuous-time Markov chains Il

Suppose that Q is irreducible and recurrent. Then @ has an invariant
measure A which is unique up to scalar multiples.

o Let us exclude the trivial case | = {/}.
Then irreducibility forces g; > 0 for all i.
By previous theorems, I1 is irreducible and recurrent.

Then, by theorems addressing the discrete time case, 1 has an
invariant measure u, which is unique up to scalar multiples.

Setting \; = % we obtain, by the preceding theorem, an invariant
measure unique up to scalar multiples.
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o Recall that a state 7 is recurrent if g; =0 or P;(T; < c0) = 1.
o State i is positive recurrent if g; = 0 or the expected return time
m; = E;(T;) is finite.

o Otherwise a recurrent state / is called null recurrent.

Let Q be an irreducible Q-matrix. Then the following are equivalent:
Every state is positive recurrent;
Some state / is positive recurrent;

Q is non-explosive and has an invariant distribution .

Moreover, when (iii) holds we have m; = ﬁ for all i.

o We again exclude the trivial case | = {i}.
Irreducibility forces g; > 0, for all i. Obviously, (i) implies (ii).
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o Define p/ = (;LJ’ :jE€l) by

. Ting
pj=Ei /0 Lix,=j}ds,

where T; A ¢ denotes the minimum of T; and (.

By Monotone Convergence, >, pi; = Ei(T;i A C).

Let N; be the first passage time of the jump chain to state /.
By Fubini’'s Theorem,

po= Ei Yo Sotil{v,=jn<n

Ym0 Ei(Snt1l Yo = NEi(l{y,=jn<n;})
= q-_lEi Ym0 LiYa=jin<ni}

i

= i Vi
= 1]E Z 1{Yn—J} _J’

where 7/ is the expected time in j between visits to / for the jump
V; J

chain.
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o Suppose Condition (ii) holds.
Let state i be positive recurrent.
Then i is certainly recurrent.
By a previous theorem, the jump chain is recurrent and Q is
non-explosive.
Also, by a previous theorem, v/l = ~'.
So ;'@ = 0, by one of the preceding theorems.
But 4 has finite total mass

Z,uj’: = E,’(T,') = m;.
Jel _
So we obtain an invariant distribution X\ by setting \; = %
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o Suppose Condition (iii) holds.
o g g
Fix i € I and set v; = 300
Then v; =1 and vI1 = v by a previous theorem.
Also by a previous theorem, v; > 71’ for all j.

So we get

o i 7 Y
mi = Zjel:“j = Zjel qi < Djel a
Aj 1
—J = —

ZJE/ Aigi Aigi e

This shows that / is positive recurrent.

To complete the proof we return to the preceding calculation armed
with the knowledge that @ is recurrent.

It follows that [ is recurrent, v; = 7} and m; = ﬁ for all /.
141
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o The existence of an invariant distribution for a continuous-time
Markov chain is not enough to guarantee positive recurrence, or even
recurrence.

Consider the Markov chain (X¢)t>0 on Z™ with the following diagram.
Aqo K A
0 1 1—1 ) 141

o g; >0, for all /;
0 0<A=1—-pu<1.

The jump chain behaves as a simple random walk away from 0.
So (Xt)tZO is:

o Recurrent, if A < y;

o Transient, if A > p.
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o To compute an invariant measure v it is convenient to use the
detailed balance equations v;q;; = v;qj;, for all i, ;.

In this case the non-zero equations read

ViAq; = Viy1jiqi+1, for all /.

So a solution is given by v; = qfl(%)".

If the jump rates g; are constant, then v can be normalized to
produce an invariant distribution precisely when A < p.
Consider the case where g; = 2/, for all i, and 1 < % < 2.
Then v has finite total mass.

So (Xt)¢>0 has an invariant distribution.

But (Xt)e>0 is also transient.

Given the theorem, the only possibility is that (X):>0 is explosive.
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Let @ be irreducible and recurrent, and let A\ be a measure. Let s > 0 be
given. The following are equivalent:

AQ =0;
AP(s) = A,

o There is a very simple proof in the case of finite state space.
By the backward equation

%AP(S) — AP/(s) = AQP(s).

So AQ = 0 implies AP(s) = AP(0) = A, for all s.
P(s) is also recurrent.

So uP(s) = p implies that y is proportional to A.
So u@ = 0.
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o For infinite state space, the interchange of differentiation with the
summation involved in multiplication by A is not justified.

So an entirely different proof is needed.

Since @ is recurrent, it is non-explosive, by a previous theorem.
Moreover, P(s) is recurrent, by a previous theorem.

Hence, any A satisfying (i) or (ii) is unique up to scalar multiples.
Fix i and set

T;
Hj = E,/o 1{Xt:j}dt'

By the proof of a previous theorem, uQ = 0.
Thus, it suffices to show pP(s) = p.
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o By the Strong Markov Property at T; (which is a simple consequence
of the Strong Markov Property of the jump chain),

s Ti+s
E,’/ 1{Xt:j}dt = E,’/ 1{Xt:j}dt-
0 Ti

Hence, using Fubini's Theorem,

wo= BT gt
= [ Pi(Xeye =4, t < T;)dt
= Jo Zker PilXe = k,t < Ti)pig(s)dt
= Ckei(Ei o Lixmiydt)pig(s)
= D kel MkPii(s)-
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Irreducibility, Non-Explosivity and Invariant Distributions

Theorem

Let @ be an irreducible non-explosive Q-matrix having an invariant
distribution A. If (X¢)r>0 is Markov(A, Q), then so is (Xsi+t)e>0, for any
s> 0.

o By the preceding theorem, for all /,

P(Xs = i) = (AP(s))i = Ai.

So, by the Markov Property, conditional on Xs = i, (Xst+t)¢>0 is
Markov(d;, Q).
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Subsection 6

Convergence to Equilibrium
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Estimate of Uniform Continuity for Transition Probabilities

Lemma

Let Q be a Q-matrix with semigroup P(t). Then, for all t,h > 0,

|py(t+ h) = py(t)] <1—e~".

o We have
pi(t +h) = py(t)] = |Xkes Pix(h)pii(t) — pii(t)|
=[Sz Puh)pi () — (1 = pi(h))pi(8)
< 1—pi(h)
< Pi(sh<h)
= 1-—e9h
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Theorem (Convergence to Equilibrium)

Let Q be an irreducible non-explosive Q-matrix with semigroup P(t), and
having an invariant distribution A. Then for all states /, j we have

pij(t) — Aj as t — oo.

o Let (X¢)t>0 be Markov(d;, Q).
Fix h > 0 and consider the h-skeleton Z, = X,,.

By a previous theorem,
P(Znt1 = ins1|Zo = ios- -+ Zn = in) = Pipipss (h)-

So (Zn)n>0 is discrete-time Markov(d;, P(h)).
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o By a previous theorem, irreducibility implies p;;(h) > 0 for all i, ;.
So P(h) is irreducible and aperiodic
By a previous theorem, A is invariant for P(h).

So, by discrete-time convergence to equilibrium, for all i, J,
pij(nh) = A\j as n — oo.

Thus we have a lattice of points along which the desired limit holds.
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o We fill in the gaps using uniform continuity. Fix a state /.
Given € > 0, we can find h > 0, such that

1—e_‘7"5§%, for 0 <s < h.
Then find N, such that

|pij(nh) — A\j| < =, forn>N.

N ™

For t > Nh, we have nh <t < (n+ 1)h, for some n > N.
Moreover, by the preceding lemma,

pij(t) = Ajl < |pi(t) — pi(nh)| + |pii(nh) — Ajf < e.
Hence, pjj(t) — Aj as n — oo.
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o The complete description of limiting behavior for irreducible chains in
continuous time is provided by the following result.

Theorem

Let @ be an irreducible @-matrix and let © be any distribution. Suppose
that (X¢)¢>0 is Markov(v, Q). Then

1
P(X; =j) > ——, ast— oo, foralljel,
(Xe =) o

where m; is the expected return time to state .

o This follows from a previous theorem by the same argument we used
in the preceding result.
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o Consider the Markov chain with state space {1,2,3} and Q-matrix

—2 1 1
4 —4 0
2 1 -3

We find an invariant distribution \.

We have
( —2 1 1 —2XA1+4X+2)3 = 0
(A1 A2 A3) 4 —4 0 =0 => AM—4X+2A3 = 0
2 1 -3 A1—3x3 = 0
A1 = 33 A = 3
= A2 = A3 =< N = %
AM+X+A3 =1 A3 = 5
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o We discover py1(t).
The matrix has characteristic equation

x(x +4)(x+5) =0.

Hence, its eigenvalues are x =0, x = —4 and x = —5.

It follows that
p11(t) = a+ be * 4 ce 5t

Moreover, we have

p11(0) = 1 a+b+c =1
Pi1(0) = quu p = { —4b—5c = -2 p =
pl(0) = ¥ 16b+25¢ = 10

— 0

_ 3.2, 5t¢
So pii(t) = 5 + 5e

1w

= X

L

gl O ollw
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Subsection 7

Time Reversal
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o In time reversal right-continuous processes become left-continuous.

o We can redefine the time-reversed process to equal its right limit at
the jump times, thus obtaining again a right-continuous process.

o We suppose implicitly that this is done, and ignore this problem.
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Let Q be irreducible and non-explosive and suppose that @ has an
invariant distribution A. Let T € (0,00) be given and let (X;¢)o<¢<T be
Markov(), Q). Set Xt = X7_;. Then the process (Xt)ogth is
Markov(), Q), where @ = (Gj : i,j € 1) is given by \jGji = \iqj.
Moreover, CA) is also irreducible and non-explosive with invariant
distribution A.

o By a previous theorem, the semigroup (P(t) : t > 0) of Q is the
minimal non-negative solution of the forward equation

P'(t) = P(t)Q, P(0)=1.

Also, for all t > 0, P(t) is an irreducible stochastic matrix with
invariant distribution \. Define P(t) by

Aibji(t) = Aipij(t)-
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o We defined ﬁ(t) by A\;pji(t) = Aipjj(t).

Then P(t) is an irreducible stochastic matrix with invariant
distribution A.

We can rewrite the forward equation transposed as
P'(t) = QP(t).

This is the backward equation for @ which is itself a Q-matrix.
Furthermore, I3(t) is its minimal non-negative solution.

Hence (3 is irreducible and non-explosive and has invariant
distribution A.
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o Finally, consider:
0 0=ty<---<t,=T;
0 S = by — tk—1.-

We have, by a previous theorem,

P()?fo = I.(),...,th = In) = ]P(XT—tO = I.Oj"'jXT—tn = In)
= AinPinin_1(5n) - * Piio(51)
= )\iob\ioh(sl) o ﬁl‘n—ll‘n(sn)‘

So, again by a previous theorem, ()AQ)OS,:ST is Markov(\, @)

o The chain ()?t)ogth is called the time-reversal of (X;)o<¢<T.
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®-Matrix and Measure in Detailed Balance

o A @-matrix @ and a measure X\ are said to be in detailed balance if

)\,-q,-j = )\jqj,-, for all i,j.

Lemma
If Q and )\ are in detailed balance then ) is invariant for Q.

o We have

AQ)i = Zquji = ZAiqij =0.

Jjel Jjel
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o Let (X¢)t>0 be Markov(\, Q), with Q irreducible and non-explosive.
We say that (X;)>0 is reversible if, for all T > 0, (X7_¢)o<e<T is
also Markov(A, Q).

Let Q be an irreducible and non-explosive @-matrix and let A be a
distribution. Suppose that (X;)¢>o is Markov(A, Q). Then the following

are equivalent:
(Xt)e>0 is reversible;

Q@ and )\ are in detailed balance.

o Both Conditions (a) and (b) imply that A is invariant for Q.

Then both Conditions (a) and (b) are equivalent to the statement
that @ = Q in the preceding theorem.
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Subsection 8

Ergodic Theorem
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Theorem (Ergodic Theorem)

Let Q be irreducible and let v be any distribution. If (X;)¢>0 is
Markov(v, Q), then

P 1/tl nds — L ast— oo | =1
t 0 {X5=’} m:q;: -

igi

where m; = E;(T;) is the expected return time to state /. Moreover, in the
positive recurrent case, for any bounded function f : /| — R we have

1/t =
IP’(?/ f(Xs)ds — f as t—>oo>:1,
0

where f =Y., \if; and where ()\; : i € 1) is the unique invariant
distribution.
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o Suppose @ is transient.
Then the total time spent in any state i is finite.

So
1

t 1 [ 1
T lix,=ipds < 7 lix,=nds > 0=—.
0 0

mj

Suppose then that @ is recurrent and fix a state /.
Then (X¢)¢>0 hits i with probability 1.

The long run proportion of time in i equals the long run proportion of
time in i after first hitting /.

By the Strong Markov Property (of the jump chain), it suffices to
consider the case v = §;.

George Voutsadakis (LSSU)



Continuous-time Markov chains Il Ergodic Theorem

Ergodic Theorem (Cont'd)

o Denote by:

o M! the length of the n-th visit to i;
o T/ the time of the n-th return to /;
o L7 the length of the n-th excursion to /.

Thus for n =0,1,2,..., setting Tl-0 =0, we have:

+1
1 1
f\/f1-"+1 i
e
1

ML = inf{t > TP X £ i} — TP
T = inf{t > T"+ MM X, = i)
R
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o By the Strong Markov Property (of the jump chain) at the stopping
times T/, for n > 0, we find that:

° L}, L,?, ... are independent and identically distributed with mean mj;
1

° /\/I,.l, M,?, ... are independent and identically distributed with mean P

Hence, by the Strong Law of Large Numbers, as n — oo,

LYoo MLy .. Mmn 1
4t - m and —|—— —=L — —.

n n qi
Therefore,

ML+ 4+ MP 1
%
Lh+. L7 mjqj

as n — oo, with probability 1.

In particular, we note that % — 1 as n — oo, with probability 1.
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o Now, for T <t < T,."+1 we have
TP M4 MP 1 T M4 M

t
<€ = liw _nds < - .
THT 4. L7 _t/o =" =T T T

Letting t — oo, we obtain that, with probability 1,

t
%/0 l{XS:,'}dS—> m:,'lq,'.
In the positive recurrent case, for \; = #q, we can write
1/t = 1/t
?/0 f(X)ds —F=> f (E/o 1ix,—pds — )\,-) :

i€l

By the same argument used in the discrete case, %fot f(Xs)ds — f as
t — 0o, with probability 1.
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