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Continuous-time Markov chains II Basic Properties

Subsection 1

Basic Properties
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Continuous-time Markov chains II Basic Properties

Q-Matrices Revisited

Let I be a countable set.

Recall that a Q-matrix on I is a matrix

Q = (qij : i , j ∈ I ),

satisfying the following conditions:

(i) 0 ≤ −qii < ∞, for all i ;
(ii) qij ≥ 0, for all i 6= j ;
(iii)

∑
j∈I qij = 0, for all i .

We set qi = q(i) = −qii .
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Continuous-time Markov chains II Basic Properties

The Jump Matrix

Associated to any Q-matrix is a jump matrix

Π = (πij : i , j ∈ I ),

defined as follows:

For all i ,

πii =

{
0, if qi 6= 0,
1, if qi = 0.

For all i 6= j ,

πij =

{ qij
qi
, if qi 6= 0,

0, if qi = 0.

Note that Π is a stochastic matrix.
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Continuous-time Markov chains II Basic Properties

Sub-Stochastic Matrices

A sub-stochastic matrix on I is a matrix

P = (pij : i , j ∈ I ),

with nonnegative entries and such that
∑

j∈I

pij ≤ 1, for all i .

Associated to any Q-matrix is a semigroup (P(t) : t ≥ 0) of
sub-stochastic matrices

P(t) = (pij(t) : i , j ∈ I ).

As the name implies, we have

P(s)P(t) = P(s + t), for all s, t ≥ 0.
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Continuous-time Markov chains II Basic Properties

Basic Terms

We assume familiarity with the following terms introduced in the
preceding set:

Minimal right-continuous random process;
Jump times;
Holding times;
Jump chain;
Explosion.

Briefly, a right-continuous process

(Xt)t≥0

Runs through a sequence of states Y0,Y1,Y2, . . .;
Is held in these states for times S1, S2, S3, . . ., respectively;
Jumps to the next state at times J1, J2, J3, . . ..

Thus Jn = S1 + · · ·+ Sn.
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Continuous-time Markov chains II Basic Properties

Basic Terms (Cont’d)

The discrete-time process
(Yn)n≥0

is the jump chain.

(Sn)n≥1 are the holding times.

(Jn)n≥1 are the jump times.

The explosion time ζ is given by

ζ =

∞∑

n=1

Sn = lim
n→∞

Jn.

For a minimal process we take a new state ∞ and insist that

Xt = ∞, for all t ≥ ζ.

An important point is that a minimal right-continuous process is
determined by its jump chain and holding times.
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Continuous-time Markov chains II Basic Properties

Data for Continuous-Time Markov Chain

The data for a continuous-time Markov chain

(Xt)t≥0

are:

A distribution λ;
A Q-matrix Q.

These play the following roles.

The distribution λ gives the initial distribution, the distribution of X0.
The Q-matrix is known as the generator matrix of (Xt)t≥0.
It determines how the process evolves from its initial state.
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Continuous-time Markov chains II Basic Properties

First Description of a Continuous-Time Markov Chain

We established that there are two different, but equivalent, ways to
describe how the process evolves.

The first, in terms of jump chain and holding times, states that:

(a) (Yn)n≥0 is Markov(λ,Π);
(b) Conditional on Y0 = i0, . . . ,Yn−1 = in−1, the holding times S1, . . . , Sn

are independent exponential random variables of parameters
qi0 , . . . , qin−1 .

Put more simply, given that the chain starts at i :

It waits there for an exponential time of parameter qi ;
Then jumps to a new state, choosing state j with probability πij .
It then starts afresh, forgetting what has happened before.
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Continuous-time Markov chains II Basic Properties

Second Description of a Continuous-Time Markov Chain

The second description, in terms of the semigroup, states that the
finite dimensional distributions of the process are given by:

(c) For all n = 0, 1, 2, . . ., all times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1 and all states
i0, i1, . . . , in+1,

P(Xtn+1 = in+1|Xt0 = i0, . . . ,Xtn = in) = pinin+1(tn+1 − tn).

Put more simply, given that the chain starts at i :

By time t it is found in state j with probability pij(t);
It then starts afresh, forgetting what has happened before.

In the case where p̃i∞(t) := 1−
∑

j∈I pij(t) > 0 the chain is found at
∞ with probability p̃i∞(t).

The semigroup P(t) is the transition matrix of the chain.

Its entries pij(t) are the transition probabilities.
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Continuous-time Markov chains II Basic Properties

Remarks on the Second Description

The second description implies that, for all h > 0, the discrete
skeleton

(Xnh)n≥0

is Markov(λ,P(h)).

Strictly, in the explosive case, that is, when P(t) is strictly
sub-stochastic, we should say

Markov(λ̃, P̃(h)),

where λ̃ and P̃(h) are defined on I ∪ {∞}, extending λ and P(h) by:

λ̃∞ = 0;
p̃∞j(h) = 0.

Usually, there is no danger of confusion in using the simpler notation.
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Continuous-time Markov chains II Basic Properties

Relation Between P and Q

Note that we have not yet said how the semigroup P(t) is associated
to the Q-matrix Q, except via the process!

We recall that the semigroup is characterized as the minimal
non-negative solution of the backward equation

P ′(t) = QP(t), P(0) = I .

In component form

p′ij(t) =
∑

k∈I

qikpkj (t), pij(0) = δij .

The semigroup is also the minimal non-negative solution of the
forward equation

P ′(t) = P(t)Q, P(0) = I .

In the case where I is finite, P(t) is simply the matrix exponential etQ ,
and is the unique solution of the backward and forward equations.
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Continuous-time Markov chains II Class Structure

Subsection 2

Class Structure
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Continuous-time Markov chains II Class Structure

Leading and Communicating

Recall we deal only with minimal chains, those that die after
explosion.

The class structure is simply the discrete-time class structure of the
jump chain (Yn)n≥0.

We say that i leads to j and write i → j if

Pi(Xt = j for some t ≥ 0) > 0.

We say i communicates with j and write i ↔ j if both i → j and
j → i .

Communication is an equivalence relation between states.
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Continuous-time Markov chains II Class Structure

Inherited Notions

The notions of communicating class, closed class, absorbing state and
irreducibility are inherited from the jump chain.

A communicating class is an equivalence class of the
communicating equivalence relation ↔.

A class C is closed if

i ∈ C and i → j imply j ∈ C .

Thus, a closed class is one from which there is no escape.

A state i is absorbing if {i} is a closed class.

A chain whose state space I consists of a single communicating class
is called irreducible.
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Continuous-time Markov chains II Class Structure

Characterization of the Leading Relation

Theorem

For distinct states i and j the following are equivalent:

(i) i → j ;

(ii) i → j for the jump chain;

(iii) qi0i1qi1i2 · · · qin−1in > 0 for some states i0, i1, . . . , in with i0 = i , in = j ;

(iv) pij(t) > 0, for all t > 0;

(v) pij(t) > 0, for some t > 0.

Implications (iv)⇒(v)⇒(i)⇒(ii) are clear.

Suppose Condition (ii) holds.

Then, by a previous theorem, there are states i0, i1, . . . , in with i0 = i ,
in = j and

πi0i1πi1i2 · · · πin−1in > 0.

This implies Condition (iii).
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Continuous-time Markov chains II Class Structure

Characterization of the Leading Relation (Cont’d)

Finally, suppose Condition (iii) holds.

Note that, if qij > 0, then, for all t > 0,

pij(t) ≥ Pi(J1 ≤ t,Y1 = j ,S2 > t)

= (1− e−qi t)πije
−qj t

> 0.

Thus, for all t > 0,

pij(t) ≥ pi0i1

( t

n

)
· · · pin−1in

( t
n

)
> 0.

So (iv) holds.
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Continuous-time Markov chains II Class Structure

Comparison with Discrete Time

Condition (iv) of the Theorem shows that the situation is simpler
than in discrete-time.

In discrete time, it may be possible to reach a state, but:

Only after a certain length of time;
And then only periodically.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Subsection 3

Hitting Times and Absorption Probabilities
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Hitting Time and Absorption Probability

Let (Xt)t≥0 be a Markov chain with generator matrix Q.

The hitting time of a subset A of I is the random variable DA

defined by
DA(ω) = inf {t ≥ 0 : Xt(ω) ∈ A},

with the usual convention that inf ∅ = ∞.

We emphasize that (Xt)t≥0 is minimal.

So if HA is the hitting time of A for the jump chain, then:

{HA < ∞} = {DA < ∞};
On this set we have DA = JHA .

The probability, starting from i , that (Xt)t≥0 ever hits A is then

hAi = Pi(D
A < ∞) = Pi(H

A < ∞).

When A is a closed class, hAi is called the absorption probability.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Vector of Hitting Probabilities

Theorem

The vector of hitting probabilities hA = (hAi : i ∈ I ) is the minimal
non-negative solution to the system of linear equations

{
hAi = 1, for i ∈ A,∑

j∈I qijh
A
j , for i 6∈ A.

Apply a previous theorem to the jump chain and rewrite

{
hAi = 1, for i ∈ A,

hAi =
∑

j∈I pijh
A
j , for i 6∈ A.

in terms of Q.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Average Hitting Times

The average time taken, starting from i , for (Xt)t≥0 to reach A is
given by

kAi = Ei(D
A).

In calculating kAi we have to take account of the holding times.

So the relationship to the discrete-time case is not quite as simple.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Example

Consider the Markov chain (Xt)t≥0 with the diagram shown.

How long on average does it take to get from 1 to 4?

Set ki = Ei(time to get to 4).

On starting in 1:

We spend an average time q−1
1 = 1

2 in 1;
Then jump with equal probability to 2 or 3.

Thus,

k1 =
1

2
+

1

2
k2 +

1

2
k3.

Similarly
k2 = 1

6 +
1
3k1 +

1
3k3,

k3 = 1
9 +

1
3k1 +

1
3k2.

On solving these linear equations we find k1 =
17
12 .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Example

We consider the Markov chain with state space {1, 2, 3, 4} and
generator matrix 



−1 1
2

1
2 0

1
4 −1

2 0 1
4

1
6 0 −1

3
1
6

0 0 0 0


 .

We calculate the probability of hitting 3 starting from 1.

We set
hi = probability of hitting 3 starting from i .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Example (Cont’d)

We must find the minimal nonnegative solution of the system





h3 = 1
−h1 +

1
2h2 +

1
2h3 = 0

1
4h1 −

1
2h2 +

1
4h4 = 0



 ⇒





h2 = 2h1 − 1
h3 = 1
h4 = 3h1 − 2





⇒





h1 = 2
3

h2 = 1
3

h3 = 1
h4 = 0





Thus, the probability of hitting 3 starting from 1 is 2
3 .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Vector of Expected Hitting Times

Theorem

Assume that qi > 0, for all i 6∈ A. The vector of expected hitting times
kA = (kAi : i ∈ I ) is the minimal non-negative solution to the system of
linear equations

{
kAi = 0, for i ∈ A,

−
∑

j∈I qijk
A
j = 1, for i 6∈ A.

First we show that kA satisfies the system of equations.

Suppose X0 = i ∈ A.

Then DA = 0.

So kAi = 0.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Vector of Expected Hitting Times (Cont’d)

Suppose X0 = i 6∈ A.

Then DA ≥ J1.

By the Markov Property of the jump chain,

Ei(D
A − J1|Y1 = j) = Ej(D

A).

So we get

kAi = Ei(D
A)

= Ei(J1) +
∑

j 6=i E(D
A − J1|Y1 = j)Pi (Y1 = j)

= q−1
i +

∑
j 6=i πijk

A
j .

Rewriting, qi (k
A
i −

∑
j 6=i πijk

A
j ) = 1.

Equivalently,

−
∑

j∈I

qijk
A
j = 1.
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Vector of Expected Hitting Times (Cont’d)

Suppose now that y = (yi : i ∈ I ) is another solution of the system.

Then kAi = yi = 0 for i ∈ A.

Suppose i 6∈ A. Then we have

yi = q−1
i +

∑
j 6∈A πijyj

= q−1
i +

∑
j 6∈A πij(q

−1
j +

∑
k 6∈A πjkyk)

= Ei(S1) + Ei(S21{HA≥2}) +
∑

j 6∈A

∑
k 6∈A πijπjkyk .

By repeated substitution for y in the final term we obtain after n steps

yi = Ei(S1) + · · ·+ Ei(Sn1{HA≥n}) +
∑

j1 6∈A

· · ·
∑

jn 6∈A

πij1 · · · πjn−1jnyjn .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Vector of Expected Hitting Times (Cont’d)

We obtained

yi = Ei(S1) + · · ·+ Ei(Sn1{HA≥n}) +
∑

j1 6∈A

· · ·
∑

jn 6∈A

πij1 · · · πjn−1jnyjn .

So, if y is non-negative, using HA ∧ n = min {HA, n},

yi ≥
n∑

m=1

Ei(Sm1HA≥m) = Ei




HA∧n∑

m=1

Sm


 .

Now
∑HA

m=1 Sm = DA.

By Monotone Convergence,

yi ≥ Ei(D
A) = kAi .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Example

We consider again the Markov chain with state space {1, 2, 3, 4} and
generator matrix 



−1 1
2

1
2 0

1
4 −1

2 0 1
4

1
6 0 −1

3
1
6

0 0 0 0


 .

We calculate the expected time of hitting 4 starting from 1.

We set

ki = expected time of hitting 4 starting from i .
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Continuous-time Markov chains II Hitting Times and Absorption Probabilities

Example (Cont’d)

We must find the minimal nonnegative solution of the system





k4 = 0
k1 −

1
2k2 −

1
2k3 = 1

−1
4k1 +

1
2k2 −

1
4k4 = 1

−1
6k1 +

1
3k3 −

1
6k4 = 1





⇒





k1 = 7
k2 = 1

2k1 + 2
k3 = 1

2k1 + 3
k4 = 0





⇒





k1 = 7

k2 = 11
2

k3 = 13
2

k4 = 0





Thus, the expected time of hitting 4 starting from 1 is 7.
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Continuous-time Markov chains II Recurrence and Transience

Subsection 4

Recurrence and Transience

George Voutsadakis (LSSU) Markov Chains April 2024 33 / 74



Continuous-time Markov chains II Recurrence and Transience

Recurrent and Transient States

Let (Xt)t≥0 be a Markov chain with generator matrix Q.

We insist (Xt)t≥0 be minimal.

We say a state i is recurrent if

Pi({t ≥ 0 : Xt = i} is unbounded) = 1.

We say that i is transient if

Pi({t ≥ 0 : Xt = i} is unbounded) = 0.

Note that, if (Xt)t≥0 can explode starting from i , then i is certainly
not recurrent.
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Continuous-time Markov chains II Recurrence and Transience

Recurrence and Transience and the Jump Chain

Theorem

(i) If i is recurrent for the jump chain (Yn)n≥0, then i is recurrent for
(Xt)t≥0;

(ii) If i is transient for the jump chain, then i is transient for (Xt)t≥0;

(iii) Every state is either recurrent or transient;

(iv) Recurrence and transience are class properties.

(i) Suppose i is recurrent for (Yn)n≥0.

If X0 = i , then (Xt)t≥0 does not explode.

Moreover, Jn → ∞, by a previous theorem.

Also X (Jn) = Yn = i infinitely often.

So {t ≥ 0 : Xt = i} is unbounded, with probability 1.
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Continuous-time Markov chains II Recurrence and Transience

Recurrence and Transience and the Jump Chain (Cont’d)

(ii) Suppose i is transient for (Yn)n≥0.

If X0 = i , then

N = sup {n ≥ 0 : Yn = i} < ∞.

So {t ≥ 0 : Xt = i} is bounded by J(N + 1).

Now (Yn : n ≥ N) cannot include an absorbing state.

So J(N + 1) is finite, with probability 1.

For (iii) and (iv), we apply previous theorems to the jump chain.
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Continuous-time Markov chains II Recurrence and Transience

Conditions for Recurrence and Transience

We denote by Ti the first passage time of (Xt)t≥0 to state i ,
defined by

Ti(ω) = inf {t ≥ J1(ω) : Xt(ω) = i}.

Theorem

The following dichotomy holds:

(i) If qi = 0 or Pi(Ti < ∞) = 1, then i is recurrent and

∫ ∞

0
pii(t)dt = ∞;

(ii) If qi > 0 and Pi (Ti < ∞) < 1, then i is transient and

∫ ∞

0
pii(t)dt < ∞.
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Continuous-time Markov chains II Recurrence and Transience

Conditions for Recurrence and Transience (Cont’d)

If qi = 0, then (Xt)t≥0 cannot leave i . So:

i is recurrent;
pii(t) = 1, for all t;∫∞

0 pii(t)dt = ∞.

Suppose then that qi > 0.

Let Ni be the first passage time of the jump chain (Yn)n≥0 to state i .

Then Pi(Ni < ∞) = Pi(Ti < ∞).

So, by the preceding theorem and the corresponding result for the
jump chain, i is recurrent if and only if Pi(Ti < ∞) = 1.
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Continuous-time Markov chains II Recurrence and Transience

Conditions for Recurrence and Transience (Cont’d)

Write π
(n)
ij for the (i , j) entry in Πn.

We show that
∫∞
0 pii(t)dt =

1
qi

∑∞
n=0 π

(n)
ii .

Then i is recurrent if and only if
∫∞
0 pii(t)dt = ∞, by the preceding

theorem and the corresponding result for the jump chain.

We use Fubini’s Theorem:
∫∞
0 pii(t)dt =

∫∞
0 Ei(1{Xt=i})dt

= Ei

∫∞
0 1{Xt=i}dt

= Ei

∑∞
n=0 Sn+11{Yn=i}

=
∑∞

n=0 Ei (Sn+1|Yn = i)Pi(Yn = i)

= 1
qi

∑∞
n=0 π

(n)
ii .
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Continuous-time Markov chains II Recurrence and Transience

Recurrence, Transience and Samplings

Theorem

Let h > 0 be given and set Zn = Xnh.

(i) If i is recurrent for (Xt)t≥0, then i is recurrent for (Zn)n≥0.

(ii) If i is transient for (Xt)t≥0, then i is transient for (Zn)n≥0.

Claim (ii) is obvious.

We now prove Claim (i).

By the Markov Property, for nh ≤ t < (n + 1)h, we have

pii((n + 1)h) ≥ e−qihpii(t).

By Monotone Convergence,
∫ ∞

0
pii(t)dt ≤ heqih

∞∑

n=1

pii(nh).

So the result follows by previous theorems.
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Continuous-time Markov chains II Invariant Distributions

Subsection 5

Invariant Distributions
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Continuous-time Markov chains II Invariant Distributions

Invariant Measures

We say that λ is invariant if λQ = 0.

Theorem

Let Q be a Q-matrix with jump matrix Π and let λ be a measure. The
following are equivalent:

(i) λ is invariant;

(ii) µΠ = µ where µi = λiqi .

We have qi (πij − δij) = qij , for all i , j . So

(µ(Π− I ))j =
∑

i∈I

µi (πij − δij) =
∑

i∈I

λiqij = (λQ)j .

This connection allows using the existence and uniqueness results
related to the discrete-time processes.
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Continuous-time Markov chains II Invariant Distributions

Irreducible and Recurrent Q-Matrices

Theorem

Suppose that Q is irreducible and recurrent. Then Q has an invariant
measure λ which is unique up to scalar multiples.

Let us exclude the trivial case I = {i}.

Then irreducibility forces qi > 0 for all i .

By previous theorems, Π is irreducible and recurrent.

Then, by theorems addressing the discrete time case, Π has an
invariant measure µ, which is unique up to scalar multiples.

Setting λi =
µi

qi
, we obtain, by the preceding theorem, an invariant

measure unique up to scalar multiples.
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Continuous-time Markov chains II Invariant Distributions

Positive Recurrence

Recall that a state i is recurrent if qi = 0 or Pi (Ti < ∞) = 1.

State i is positive recurrent if qi = 0 or the expected return time

mi = Ei(Ti ) is finite.

Otherwise a recurrent state i is called null recurrent.

Theorem

Let Q be an irreducible Q-matrix. Then the following are equivalent:

(i) Every state is positive recurrent;

(ii) Some state i is positive recurrent;

(iii) Q is non-explosive and has an invariant distribution λ.

Moreover, when (iii) holds we have mi =
1

λiqi
, for all i .

We again exclude the trivial case I = {i}.

Irreducibility forces qi > 0, for all i . Obviously, (i) implies (ii).
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Continuous-time Markov chains II Invariant Distributions

Positive Recurrence (Cont’d)

Define µi = (µi
j : j ∈ I ) by

µi
j = Ei

∫ Ti∧ζ

0
1{Xs=j}ds,

where Ti ∧ ζ denotes the minimum of Ti and ζ.
By Monotone Convergence,

∑
j∈I µ

i
j = Ei(Ti ∧ ζ).

Let Ni be the first passage time of the jump chain to state i .
By Fubini’s Theorem,

µi
j = Ei

∑∞
n=0 Sn+11{Yn=j ,n<Ni}

=
∑∞

n=0 Ei(Sn+1|Yn = j)Ei (1{Yn=j ,n<Ni})

= q−1
j Ei

∑∞
n=0 1{Yn=j ,n<Ni}

= q−1
j Ei

∑Ni−1
n=0 1{Yn=j} =

γi
j

qj
,

where γij is the expected time in j between visits to i for the jump
chain.
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Positive Recurrence ((ii)⇒(iii))

Suppose Condition (ii) holds.

Let state i be positive recurrent.

Then i is certainly recurrent.

By a previous theorem, the jump chain is recurrent and Q is
non-explosive.

Also, by a previous theorem, γiΠ = γi .

So µiQ = 0, by one of the preceding theorems.

But µi has finite total mass

∑

j∈I

µi
j = Ei(Ti ) = mi .

So we obtain an invariant distribution λ by setting λj =
µi
j

mi
.
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Positive Recurrence ((iii)⇒(i))

Suppose Condition (iii) holds.

Fix i ∈ I and set νj =
λjqj
λiqi

.

Then νi = 1 and νΠ = ν by a previous theorem.

Also by a previous theorem, νj ≥ γij , for all j .

So we get

mi =
∑

j∈I µ
i
j =

∑
j∈I

γi
j

qj
≤

∑
j∈I

νj
qj

=
∑

j∈I
λj

λiqi
= 1

λiqi
< ∞.

This shows that i is positive recurrent.

To complete the proof we return to the preceding calculation armed
with the knowledge that Q is recurrent.

It follows that Π is recurrent, νj = γij and mi =
1

λiqi
, for all i .
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Continuous-time Markov chains II Invariant Distributions

Example

The existence of an invariant distribution for a continuous-time
Markov chain is not enough to guarantee positive recurrence, or even
recurrence.

Consider the Markov chain (Xt)t≥0 on Z
+ with the following diagram.

qi > 0, for all i ;
0 < λ = 1− µ < 1.

The jump chain behaves as a simple random walk away from 0.

So (Xt)t≥0 is:

Recurrent, if λ ≤ µ;
Transient, if λ > µ.
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Example (Cont’d)

To compute an invariant measure ν it is convenient to use the
detailed balance equations νiqij = νjqji , for all i , j .

In this case the non-zero equations read

νiλqi = νi+1µqi+1, for all i .

So a solution is given by νi = q−1
i (λ

µ
)i .

If the jump rates qi are constant, then ν can be normalized to
produce an invariant distribution precisely when λ < µ.

Consider the case where qi = 2i , for all i , and 1 < λ
µ
< 2.

Then ν has finite total mass.

So (Xt)t≥0 has an invariant distribution.

But (Xt)t≥0 is also transient.

Given the theorem, the only possibility is that (Xt)t≥0 is explosive.
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Characterization of Invariant Measures

Theorem

Let Q be irreducible and recurrent, and let λ be a measure. Let s > 0 be
given. The following are equivalent:

(i) λQ = 0;

(ii) λP(s) = λ.

There is a very simple proof in the case of finite state space.

By the backward equation

d

ds
λP(s) = λP ′(s) = λQP(s).

So λQ = 0 implies λP(s) = λP(0) = λ, for all s.

P(s) is also recurrent.

So µP(s) = µ implies that µ is proportional to λ.

So µQ = 0.
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Characterization of Invariant Measures

For infinite state space, the interchange of differentiation with the
summation involved in multiplication by λ is not justified.

So an entirely different proof is needed.

Since Q is recurrent, it is non-explosive, by a previous theorem.

Moreover, P(s) is recurrent, by a previous theorem.

Hence, any λ satisfying (i) or (ii) is unique up to scalar multiples.

Fix i and set

µj = Ei

∫ Ti

0
1{Xt=j}dt.

By the proof of a previous theorem, µQ = 0.

Thus, it suffices to show µP(s) = µ.
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Characterization of Invariant Measures (Infinite States)

By the Strong Markov Property at Ti (which is a simple consequence
of the Strong Markov Property of the jump chain),

Ei

∫ s

0
1{Xt=j}dt = Ei

∫ Ti+s

Ti

1{Xt=j}dt.

Hence, using Fubini’s Theorem,

µj = Ei

∫ s+Ti

s
1{Xt=j}dt

=
∫∞
0 Pi(Xs+t = j , t < Ti)dt

=
∫∞
0

∑
k∈I Pi (Xt = k , t < Ti )pkj(s)dt

=
∑

k∈I (Ei

∫ Ti

0 1{Xt=k}dt)pkj(s)

=
∑

k∈I µkpkj(s).
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Irreducibility, Non-Explosivity and Invariant Distributions

Theorem

Let Q be an irreducible non-explosive Q-matrix having an invariant
distribution λ. If (Xt)t≥0 is Markov(λ,Q), then so is (Xs+t)t≥0, for any
s ≥ 0.

By the preceding theorem, for all i ,

P(Xs = i) = (λP(s))i = λi .

So, by the Markov Property, conditional on Xs = i , (Xs+t)t≥0 is
Markov(δi ,Q).
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Subsection 6

Convergence to Equilibrium
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Continuous-time Markov chains II Convergence to Equilibrium

Estimate of Uniform Continuity for Transition Probabilities

Lemma

Let Q be a Q-matrix with semigroup P(t). Then, for all t, h ≥ 0,

|pij(t + h)− pij(t)| ≤ 1− e−qih.

We have

|pij(t + h)− pij(t)| =
∣∣∑

k∈I pik(h)pkj (t)− pij(t)
∣∣

=
∣∣∣
∑

k 6=i pik(h)pkj (t)− (1− pii(h))pij (t)
∣∣∣

≤ 1− pii (h)

≤ Pi(J1 ≤ h)

= 1− e−qih.
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Continuous-time Markov chains II Convergence to Equilibrium

Convergence to Equilibrium

Theorem (Convergence to Equilibrium)

Let Q be an irreducible non-explosive Q-matrix with semigroup P(t), and
having an invariant distribution λ. Then for all states i , j we have

pij(t) → λj as t → ∞.

Let (Xt)t≥0 be Markov(δi ,Q).

Fix h > 0 and consider the h-skeleton Zn = Xnh.

By a previous theorem,

P(Zn+1 = in+1|Z0 = i0, . . . ,Zn = in) = pinin+1(h).

So (Zn)n≥0 is discrete-time Markov(δi ,P(h)).
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Convergence to Equilibrium (Cont’d)

By a previous theorem, irreducibility implies pij(h) > 0 for all i , j .

So P(h) is irreducible and aperiodic

By a previous theorem, λ is invariant for P(h).

So, by discrete-time convergence to equilibrium, for all i , j ,

pij(nh) → λj as n → ∞.

Thus we have a lattice of points along which the desired limit holds.
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Continuous-time Markov chains II Convergence to Equilibrium

Convergence to Equilibrium (Cont’d)

We fill in the gaps using uniform continuity. Fix a state i .

Given ε > 0, we can find h > 0, such that

1− e−qi s ≤
ε

2
, for 0 ≤ s ≤ h.

Then find N, such that

|pij(nh)− λj | ≤
ε

2
, for n ≥ N.

For t ≥ Nh, we have nh ≤ t < (n + 1)h, for some n ≥ N.

Moreover, by the preceding lemma,

|pij(t)− λj | ≤ |pij (t)− pij(nh)|+ |pij(nh)− λj | ≤ ε.

Hence, pij(t) → λj as n → ∞.
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Continuous-time Markov chains II Convergence to Equilibrium

Limiting Behavior for Irreducible Chains

The complete description of limiting behavior for irreducible chains in
continuous time is provided by the following result.

Theorem

Let Q be an irreducible Q-matrix and let ν be any distribution. Suppose
that (Xt)t≥0 is Markov(ν,Q). Then

P(Xt = j) →
1

qjmj
, as t → ∞, for all j ∈ I ,

where mj is the expected return time to state j .

This follows from a previous theorem by the same argument we used
in the preceding result.
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Continuous-time Markov chains II Convergence to Equilibrium

Example

Consider the Markov chain with state space {1, 2, 3} and Q-matrix




−2 1 1
4 −4 0
2 1 −3


 .

We find an invariant distribution λ.

We have

(λ1 λ2 λ3)




−2 1 1
4 −4 0
2 1 −3


 = 0 ⇒





−2λ1 + 4λ2 + 2λ3 = 0
λ1 − 4λ2 + λ3 = 0

λ1 − 3λ3 = 0





⇒





λ1 = 3λ3

λ2 = λ3

λ1 + λ2 + λ3 = 1





⇒





λ1 = 3
5

λ2 = 1
5

λ3 = 1
5



 .
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Continuous-time Markov chains II Convergence to Equilibrium

Example (Cont’d)

We discover p11(t).

The matrix has characteristic equation

x(x + 4)(x + 5) = 0.

Hence, its eigenvalues are x = 0, x = −4 and x = −5.

It follows that
p11(t) = a + be−4t + ce−5t .

Moreover, we have





p11(0) = 1
p′11(0) = q11

p′′11(0) = q
(2)
11



 ⇒





a + b + c = 1
−4b − 5c = −2
16b + 25c = 10



 ⇒





a = 3
5

b = 0
c = 2

5

So p11(t) =
3
5 +

2
5e

−5t t → ∞

−→ 3
5 = λ1.
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Continuous-time Markov chains II Time Reversal

Subsection 7

Time Reversal
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Continuous-time Markov chains II Time Reversal

Introducing Time Reversal

In time reversal right-continuous processes become left-continuous.

We can redefine the time-reversed process to equal its right limit at
the jump times, thus obtaining again a right-continuous process.

We suppose implicitly that this is done, and ignore this problem.
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Continuous-time Markov chains II Time Reversal

Time Reversal

Theorem

Let Q be irreducible and non-explosive and suppose that Q has an
invariant distribution λ. Let T ∈ (0,∞) be given and let (Xt)0≤t≤T be

Markov(λ,Q). Set X̂t = XT−t . Then the process (X̂t)0≤t≤T is

Markov(λ, Q̂), where Q̂ = (q̂ij : i , j ∈ I ) is given by λj q̂ji = λiqij .

Moreover, Q̂ is also irreducible and non-explosive with invariant
distribution λ.

By a previous theorem, the semigroup (P(t) : t ≥ 0) of Q is the
minimal non-negative solution of the forward equation

P ′(t) = P(t)Q, P(0) = I .

Also, for all t > 0, P(t) is an irreducible stochastic matrix with
invariant distribution λ. Define P̂(t) by

λj p̂ji(t) = λipij(t).
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Time Reversal (Cont’d)

We defined P̂(t) by λj p̂ji (t) = λipij(t).

Then P̂(t) is an irreducible stochastic matrix with invariant
distribution λ.

We can rewrite the forward equation transposed as

P̂ ′(t) = Q̂P̂(t).

This is the backward equation for Q̂, which is itself a Q-matrix.

Furthermore, P̂(t) is its minimal non-negative solution.

Hence Q̂ is irreducible and non-explosive and has invariant
distribution λ.
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Time Reversal (Cont’d)

Finally, consider:

0 = t0 < · · · < tn = T ;
sk = tk − tk−1.

We have, by a previous theorem,

P(X̂t0 = i0, . . . , X̂tn = in) = P(XT−t0 = i0, . . . ,XT−tn = in)

= λinpinin−1(sn) · · · pi1i0(s1)

= λi0 p̂i0i1(s1) · · · p̂in−1in(sn).

So, again by a previous theorem, (X̂t)0≤t≤T is Markov(λ, Q̂).

The chain (X̂t)0≤t≤T is called the time-reversal of (Xt)0≤t≤T .
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Q-Matrix and Measure in Detailed Balance

A Q-matrix Q and a measure λ are said to be in detailed balance if

λiqij = λjqji , for all i , j .

Lemma

If Q and λ are in detailed balance then λ is invariant for Q.

We have
(λQ)i =

∑

j∈I

λjqji =
∑

j∈I

λiqij = 0.
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Reversibility

Let (Xt)t≥0 be Markov(λ,Q), with Q irreducible and non-explosive.

We say that (Xt)t≥0 is reversible if, for all T > 0, (XT−t)0≤t≤T is
also Markov(λ,Q).

Theorem

Let Q be an irreducible and non-explosive Q-matrix and let λ be a
distribution. Suppose that (Xt)t≥0 is Markov(λ,Q). Then the following
are equivalent:

(a) (Xt)t≥0 is reversible;

(b) Q and λ are in detailed balance.

Both Conditions (a) and (b) imply that λ is invariant for Q.

Then both Conditions (a) and (b) are equivalent to the statement
that Q̂ = Q in the preceding theorem.
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Subsection 8

Ergodic Theorem
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Continuous-time Markov chains II Ergodic Theorem

Ergodic Theorem

Theorem (Ergodic Theorem)

Let Q be irreducible and let ν be any distribution. If (Xt)t≥0 is
Markov(ν,Q), then

P

(
1

t

∫ t

0
1{Xs=i}ds →

1

miqi
as t → ∞

)
= 1,

where mi = Ei(Ti ) is the expected return time to state i . Moreover, in the
positive recurrent case, for any bounded function f : I → R we have

P

(
1

t

∫ t

0
f (Xs)ds → f as t → ∞

)
= 1,

where f =
∑

i∈I λi fi and where (λi : i ∈ I ) is the unique invariant
distribution.
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Ergodic Theorem (Cont’d)

Suppose Q is transient.

Then the total time spent in any state i is finite.

So
1

t

∫ t

0
1{Xs=i}ds ≤

1

t

∫ ∞

0
1{Xs=i}ds → 0 =

1

mi
.

Suppose then that Q is recurrent and fix a state i .

Then (Xt)t≥0 hits i with probability 1.

The long run proportion of time in i equals the long run proportion of
time in i after first hitting i .

By the Strong Markov Property (of the jump chain), it suffices to
consider the case ν = δi .
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Continuous-time Markov chains II Ergodic Theorem

Ergodic Theorem (Cont’d)

Denote by:

Mn
i the length of the n-th visit to i ;

T n
i the time of the n-th return to i ;

Lni the length of the n-th excursion to i .

Thus for n = 0, 1, 2, . . ., setting T 0
i = 0, we have:

Mn+1
i = inf {t > T n

i : Xt 6= i} − T n
i ;

T n+1
i = inf {t > T n

i +Mn+1
i : Xt = i};

Ln+1
i = T n+1

i − T n
i .
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Ergodic Theorem (Cont’d)

By the Strong Markov Property (of the jump chain) at the stopping
times T n

i , for n ≥ 0, we find that:

L1i , L
2
i , . . . are independent and identically distributed with mean mi ;

M1
i ,M

2
i , . . . are independent and identically distributed with mean 1

qi
.

Hence, by the Strong Law of Large Numbers, as n → ∞,

L1i + · · ·+ Lni
n

→ mi and
M1

i + · · ·+Mn
i

n
→

1

qi
.

Therefore,

M1
i + · · · +Mn

i

L1i + · · · + Lni
→

1

miqi
as n → ∞, with probability 1.

In particular, we note that
T n
i

T n+1
i

→ 1 as n → ∞, with probability 1.
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Ergodic Theorem (Cont’d)

Now, for T n
i ≤ t < T n+1

i we have

T n
i

T n+1
i

M1
i + · · · +Mn

i

L1i + · · · + Lni
≤

1

t

∫ t

0
1{Xs=i}ds ≤

T n+1
i

T n
i

M1
i + · · · +Mn+1

i

L1i + · · · + Ln+1
i

.

Letting t → ∞, we obtain that, with probability 1,

1

t

∫ t

0
1{Xs=i}ds →

1

miqi
.

In the positive recurrent case, for λi =
1

miqi
, we can write

1

t

∫ t

0
f (Xs)ds − f =

∑

i∈I

fi

(
1

t

∫ t

0
1{Xs=i}ds − λi

)
.

By the same argument used in the discrete case, 1
t

∫ t

0 f (Xs)ds → f as
t → ∞, with probability 1.
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