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Applications in Biology and Queueing Theory

o Galton and Watson in the 1870s used a branching process while
seeking a quantitative explanation for the phenomenon of the
disappearance of family names, even in a growing population.

o Assume each male in a given family has a probability px of having k
sons.

o The goal is to determine the probability that, after n generations, an
individual had no male descendants.

o Suppose at time n = 0 there is one individual.

o He dies and is replaced at time n = 1 by a random number of
offspring N.

o These offspring also die and are replaced at time n = 2, each
independently, by a random number of further offspring, having the
same distribution as M.
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Applications in Biology and Queueing Theory

o Take, for each n € IN, a sequence of independent random variables
(N?)kew, each with the same distribution as M.

o Set Xp =1.
o Define inductively, for n > 1,

Xp=N{+---+ Nz .

o Then X, gives the size of the population in the n-th generation.

o The process (X,)n>0 is @ Markov chain on [ = {0,1,2,...} with
absorbing state 0.
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Applications in Biology and Queueing Theory

o We exclude the case where P(N =1) = 1.
o We have P(X, = 0|X,_1 = i) = P(N = 0)".
o Suppose P(N =0) > 0.
Then state i leads to 0.
Every state i > 1 is transient.
o Suppose P(N = 0) = 0.
Then P(N > 2) > 0.
So, for i > 1, i leads to j, for some j > i, and j does not lead to i.
o Hence, i is transient in any case.
o We deduce that with probability 1, one of the following happens:
o X, =0, for some n;
o X, — 00, as n — oo.
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Applications in Biology and Queueing Theory

o Further information on (X;,)n>0 is obtained by exploiting the
branching structure.

o The probability generating function, defined for 0 <t <1, is
o(t) = E(t") Z tkP(N

o Conditional on X,_1 = k, we have
Xn=N{+---+ N[.

o So
E(t%"|Xn_1 = k) = E(eMTTN) = g(1)*.
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o It follows that

E(t*) = Y E(t%|X,_1 = K)P(Xn_1 = k) = E(g(t) ).
k=0
o By induction, we find that

E(£*) = ¢(") (1),

where ¢(") is the n-fold composition ¢ o --- o ¢.

o In principle, this gives the entire distribution of X,, though ¢(") may
be a rather complicated function.

George Voutsadakis (LSSU) Markov Chains



Applications in Biology and Queueing Theory Markov Chains in Biology

Probability of Survival

o Suppose 1 = E(N).

o We have
E(X,) = lim iJE(tXn) = lim id)(")(t) = ( lim ¢/(t) g "
t /1 dt t /1 dt t 1
o Moreover,

P(X, = 0) = ¢("(0).
o But state 0 is absorbing.

o So we have

q = P(X, = 0 for some n) = Ii)m #(M(0).
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Probability of Survival (Cont'd)

o ¢(t) = E(t") is a convex function with ¢(1) = 1.
o Set

r=inf{t €[0,1] : ¢(t) = t}.
o Then ¢(r) = r by continuity.
o ¢ is increasing and 0 < r.
o So we have ¢(0) < r.
o By induction,

o) <r, forall n.

o It follows that g < r.
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Applications in Biology and Queueing Theory

o On the other hand

g= lim ¢("D(0) = lim ¢(¢("(0)) = é(q).

n—oo

©

So also g > r.

©

We conclude that g = r.

©

We consider two cases.
o Suppose, first, ¢'(1) > 1.
Then we must have g < 1.
o Suppose, next, ¢'(1) < 1.
Now either ¢ = 0 or ¢" > 0 everywhere in [0,1).
So we must have g = 1.

©

We have shown that the population survives with positive probability
if and only if > 1, where y is the mean of the offspring distribution.
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Applications in Biology and Queueing Theory

o We explore a connection between branching processes and random
walks.

o Suppose that in each generation we replace individuals by their
offspring one at a time.
o So if X, = k, then it takes k steps to obtain X,1.
o The population size then performs a random walk (Yp,)m>0 with step
distribution N — 1.
o Define stopping times:
] TO = 0;
o Thy1=Ty+ Y7, for n> 0.
o Observe that
Xn=Yr,, foralln.
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o (Ym)m>0 jumps down by at most 1 each time;
o So (Xn)n>0 hits 0 if and only if (Y;)m>0 hits 0.

o Moreover, we can use the Strong Markov Property and a variation of
the argument of a previous example to see that if
qi = P(Ym = 0 for some m|Yy = i) then g; = g, for all i.
o So
o0
qu=P(N=0)+  giP(N = i) = ¢(q).
k=1
o Each non-negative solution of this equation provides a non-negative
solution of the hitting probability equations.
o So we deduce that g; is the smallest non-negative root of the
equation g = ¢(q).
o This agrees with the generating function approach.
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©

In an idealized population we might suppose that:
o All pairs of individuals make contact randomly and independently at a
common rate, whether infected or not.
For an idealized disease we might suppose that:

o On contact with an infective, individuals themselves become infective
and remain so for an exponential random time, after which they either
die or recover.

©

o This idealized model is unrealistic.

o However, it is the simplest mathematical model to incorporate the
basic features of an epidemic.

o We explore the consequences for the progress of the epidemic.
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Applications in Biology and Queueing Theory

o Denote:

o The number of susceptibles by S;;
o The number of infectives by ;.

o In the idealized model,
Xt = (St, It)

performs a Markov chain on (Z*)? with transition rates:
© q(s,i)(s—i,i+1) = Asi, for some A € (0, 00);
© qG(s,i)(s,i—1) = pi, for some p € (0, 00).

o Since S; + I; does not increase, we effectively have a finite state-space.
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Applications in Biology and Queueing Theory

The states (s,0), for s € Z™, are all absorbing.
All the other states are transient.
All the communicating classes are singletons.

The epidemic must therefore eventually die out.

© 6 6 o o

The absorption probabilities give the distribution of the number of
susceptibles who escape infection.
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Applications in Biology and Queueing Theory

o We analyze the behavior in a large population, of size N, say.

o Consider the proportions

s =

=|»

o Suppose that

where v is independent of N.
o Consider a sequence of models as N — oc.

o Choose
s = s and i) — .
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o It can be shown that as N — oo the process (s, iN) converges to the
solution (s¢, i) of the differential equations

d P
gttt = VSt

d - . . .
Elt = UVStly — Mg,

starting from (so, ip).

o This means that

H(St 7’t — (st,it)

o We will not prove this result, but will give an example of another
easier asymptotic calculation.

} 0, forallt>0.
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o Consider the case where:

4] SoZN—].;
Qo /0:1,

° )\:%;

o u=20

o This can be given an alternative interpretation.

o A rumor is begun by a single individual who tells it to everyone she
meets.

o They in turn pass the rumor on to everyone they meet.

o We assume that each individual meets another randomly at the jump
times of a Poisson process of rate 1.

o We look at how long it takes until everyone knows the rumor.
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o Suppose i people know the rumor.
o Then N — j people do not.
o The rate at which the rumor is passed on is

i(N—i
UEDY
N
o The expected time until everyone knows the rumor is then
N—1 N-1_ N
ZI 1 ql = Zi:l i(N—7)
N-1,1 1
Yim1 G+ =

= 23Nt v 2log N

o This is not a limit but, rather, an asymptotic equivalence.

o The fact that the expected time grows with N is related to the fact

that we do not scale Iy with V.

o When the rumor is known by very few or by almost all, the proportion

of “infectives” changes very slowly.
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Applications in Biology and Queueing Theory

o This is the discrete-time Markov chain on {0,1,..., m} with
transition probabilities

()

o In each generation there are m alleles.

o Some are of type A and some of type a.

o The types of alleles in generation n+ 1 are found by choosing
randomly (with replacement) from the types in generation n.
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Applications in Biology and Queueing Theory

o Let X, denote the number of alleles of type A in generation n.
o Then (X,)n>0 is @ Markov chain with transition probabilities pj;.

o This can be viewed as a model of inheritance for a particular gene
with two alleles A and a.

o We suppose that each individual has two genes.
o So the possibilities are AA, Aa and aa.

o Let us take m to be even with m = 2k.
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Applications in Biology and Queueing Theory

o Suppose that:
o Individuals in the next generation are obtained by mating randomly
chosen individuals from the current generation;
o Offspring inherit one allele from each parent.

o We allow that both parents may be the same.
o In particular, it is not required that parents be of opposite sex.
o E.g., assume generation n is

AA aA AA AA aa.
Then each gene in generation n + 1 is, independently:
o A with probability lo;
o a with probability 5.
We might, for example, get
aa aA Aa AA AA.

o The structure of pairs of genes is irrelevant to (X,)n>0.
o (Xh)n>0 counts the number of alleles of type A.

George Voutsadakis (LSSU)



Applications in Biology and Queueing Theory

o The communicating classes of (X,)n>0 are {0}, {1,...,m — 1}, {m}.
o States 0 and m are absorbing and {1,..., m — 1} is transient.

o The hitting probabilities for state m (pure AA) are given by
hi = P;(X, = m for some n) = #

o This can be seen by noticing that (X,),>0 is a martingale.

o Alternatively one can check that

m
h,' = Z PUhj-
Jj=0

o According to this model, genetic diversity eventually disappears.
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Applications in Biology and Queueing Theory

o The Moran model is the birth-and-death chain on {0,1,..., m} with
transition probabilities
i(m—1i) P (m—i)? i(m—1i)

Pii—-1 = 2 pii = 2 Pi,i+1 = 2

o It has the following genetic interpretation.
o A population consists of individuals of two types, a and A.

o At time n:

We choose randomly one individual from the population;

We add a new individual of the same type;

Then we choose, again randomly, one individual from the population;
We remove the chosen individual.

© © 0 o

o In this way, we obtain the population at time n+ 1.
o The same individual may be chosen to give birth and to die.
o In this case there is no change in the make-up of the population.



Applications in Biology and Queueing Theory

o Let X, denote the number of type A individuals at time n.

o Then (X;)n>0 is @ Markov chain with transition matrix P.
o There are some differences from the Wright-Fisher model.

o The Moran model cannot be interpreted in terms of a species where
genes come in pairs, or where individuals have more than one parent;

o In the Moran model we only change one individual at a time, not the
whole population.

o The basic Markov chain structure is the same.

o The communicating classes are {0}, {1,..., m — 1}, {m}, absorbing
states 0 and m and transient class {1,...,m —1};

o The Moran model is reversible, and, like the Wright-Fisher model, is a
martingale.

i

o The hitting probabilities are given by P;(X, = m for some n) = —.
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Applications in Biology and Queueing Theory

o We can also calculate explicitly the mean time to absorption
ki =E;(T),

where T is the hitting time of {0, m}.
o The simplest method is to:

o Fix j; )
o Write equations for the mean time k/ spent in j, starting from /, before
absorption.
k{ = 6ij+(pi,i—lk,j'._l+piik{+pi,i+1k{+1)7 = 17"'7m_ 11
K = k,=0.

o Then, fori=1,....m—1

Koy — 20 4+ kL, = oy

1+
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Mean Time of Absorption (Cont'd)

o We found, fori=1,...,m—1,

K

i+1

o This has solution
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Mean Time of Absorption (Cont'd)

° kJJ is determined by

m—j—1 —1 m?
(oot g ity
m—j J J(m—j)
o This gives )
K=m
o Hence,
m—1 im—l m—ll.
b= YK =m >
-1 e
J= J Jj=i+1
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The Case of Large mand i = pm, 0 < p <1

o The main interest lies in the case where:
o mis large;
o i = pm, for some p € (0,1).

o Then, as m — oo,

kpm
# = (l_p)ZJ 1m—J+pZ mp+1_%
—  —(L—p)log(l—p)—plogp.

o So, as m — oo,

Epm(T) ~ —m?*{(1 — p)log (1 — p) + plog p}.
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Applications in Biology and Queueing Theory

o We found

Epm(T) ~ —m*{(1 - p)log (1 — p) + plog p}.

o For the Wright-Fisher model, one has

Epm(T) ~ —2m{(1 — p)log (1 — p) + plog p}.

o This has the same functional form in p and differs by a factor of 7.
o This factor is partially explained by the fact that:

o The Moran model deals with one individual at a time;
o The Wright-Fisher model changes all m at once.
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Subsection 2

Queues and Queueing Networks
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Applications in Biology and Queueing Theory

o Queues form in many circumstances and it is important to be able to
predict their behavior.
o The basic mathematical model for queues runs as follows.

o There is a succession of customers wanting service;
o On arrival each customer must wait until a server is free, giving priority
to earlier arrivals;
o Probabilistically, it is assumed that:
o The times between arrivals are independent random variables of the

same distribution;
o The times taken to serve customers are also independent random
variables, of some other distribution.

o The main quantity of interest is the random process (X;):>o recording
the number of customers in the queue at time t.

o This is always taken to include both those being served and those
waiting to be served.
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Applications in Biology and Queueing Theory

o In cases where inter-arrival times and service times have exponential
distributions, (X¢)¢>0 turns out to be a continuous-time Markov
chain.

o In this case many questions about the queue can be answered.

o If the inter-arrival times only are exponential, an analysis is still
possible.

o One exploits:

o The memorylessness of the Poisson process of arrivals;
o A certain discrete-time Markov chain embedded in the queue.

George Voutsadakis (LSSU)



Applications in Biology and Queueing Theory

o M/M/1 means memoryless inter-arrival times/ memoryless service
times/one server.
o Let us suppose that:

o The inter-arrival times are exponential of parameter \;
o The service times are exponential of parameter p.

o Then the number of customers in the queue (X;);>o evolves as a
Markov chain with the following diagram:
A HA I N
0 1 i 1+ 1
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o Suppose at time O there are / > 0 customers in the queue.

o Denote by:

o T the time taken to serve the first customer;
o A the time of the next arrival.

o Then the first jump time J; is AAT.

o This is exponential of parameter A\ + p.

x, -1 fT<A
AT i+, T > A

o Moreover,

These events are independent of J;, with probabilities:

A
P(T<A)=ﬁ and (T > A) =
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o If we condition on J;1 = T, then A — J; is exponential of parameter A
and independent of J;.

o The time already spent waiting for an arrival is forgotten.

o Similarly, conditional on J;1 = A, T — J; is exponential of parameter p
and independent of J;.

o The case where i = 0 is simpler as there is no serving going on.

o Hence, conditional on X, = j, (Xt)r>0 begins afresh from j at time
Ji.

o It follows that (X:)¢>0 is the claimed Markov chain.
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o The M/M/1 queue evolves like a random walk, except that it does
not take jumps below 0.
o Suppose A > p.
Then (X;)¢>0 is transient, that is X; — oo as t — occ.
Thus, if A > p the queue grows without limit in the long term.
o Suppose, next, A < u.
Then (X;)e>0 is positive recurrent with invariant distribution

(26

So when A\ < p, the average number of customers in the queue in
equilibrium is given by

E,(X:) = ipﬂ(xt > i) = i (ﬁ)i - ;%A

i=1 i=1 K
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Mean Continuously Busy Time

o The mean time to return to 0 is given by

o111
O_qowo_)\#;_/\_A(,u—A)'

o So the mean length of time that the server is continuously busy is
given by
1l 1%

11
T Mu—N X p=X
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o Another quantity of interest is the mean waiting time for a typical
customer, when A < p and the queue is in equilibrium.

o Conditional on finding a queue of length i on arrival, this is
i+1
o

o So the overall mean waiting time is

A 2
EWXt—i-l:u_)\"i_l: - 1

0 0 [TEON

George Voutsadakis (LSSU) Markov Chains



Applications in Biology and Queueing Theory

o A rough check is available as we can calculate in two ways the
expected total time spent in the queue over an interval of length t.

o We may multiply the average queue length by t.

o We get

At
t-Ex(X¢) = ——.
(6) = =5

o We may multiply the mean waiting time by the expected number of
customers At.

We get
)\t.EWXt—’—l :L_
Iz p—=A

o The first calculation is exact but the second has not been fully
justified.
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M/M/s Queue

o This is a variation on the last example where:

o There is one queue;
o There are s servers.

o We assume that:

o The arrival rate is \;
o The service rate by each server is p.
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o If i servers are occupied, the first service is completed at the
minimum of / independent exponential times of parameter p.

o The first service time is therefore exponential of parameter ip.

o The total service rate increases to a maximum su when all servers are
working.

o Suppose the queue size includes the customers being served.

o Then the queue size (X;)¢>0 performs a Markov chain with the
following diagram:
BN 2 ) SN S[E A
0 1 2 s s+1

o So this time we obtain a birth-and-death chain.
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o If A > spu, the birth-and-death chain is transient; Otherwise, recurrent.
o To find an invariant measure we look at the detailed balance equations

Tiqi,i+1 = Ti+1qi+1,i-

o If i <s,

o Ti—1 o 11 1%

7T,'_7T,' 7T1_>\ /\_<>\>’1

o Similarly, if i > s,

o So we have

o [ A g i—0,1,...s
7o O/ fori=s+1,5+2,...

o The queue is therefore positive recurrent when A < spu.
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o There are two special cases when the invariant distribution has a
particularly nice form.

o Suppose s = 1.
Then we are back to the preceding example.
The invariant distribution is geometric of parameter ﬁ

(-2
w) \
o Suppose s = 0.

We normalize 7 by taking my = e */#,

Then .
A/
B i

So the invariant distribution is Poisson of parameter ﬁ
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o The number of arrivals by time t is a Poisson process of rate A.

o Each arrival corresponds to an increase in X;.

o Each departure corresponds to a decrease in X:.

o Suppose that A < su, so there is an invariant distribution.
o Consider the queue in equilibrium.

o The detailed balance equations hold.

o Moreover, (X:¢)t>0 is non-explosive.

o So by a previous theorem, for any T > 0, (X¢)o<¢<T and

(XT—t)o<t<T have the same law.

o It follows that, in equilibrium, the number of departures by time t is
also a Poisson process of rate \.
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o The fact that the number of departures by time t is also a Poisson
process of rate A is slightly counter-intuitive.

o One might imagine that the departure process runs in fits and starts
depending on the number of servers working.

o But it turns out that the process of departures, in equilibrium, is just
as regular as the process of arrivals.
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o A variation on the M/M/s queue is to turn away customers who
cannot be served immediately.

o This might serve as a simple model for a telephone exchange, where
the maximum number of calls that can be connected at once is s.

o When the exchange is full, additional calls are lost.
o The maximum queue size or buffer size is s.

o We get the following modified Markov chain diagram:
P X200 A (s=Dp \ sp

> << >

0 1 2 s—1 S

George Voutsadakis (LSSU)



Applications in Biology and Queueing Theory

o We can find the invariant distribution of this finite Markov chain by
solving the detailed balance equations.

o This time we get a truncated Poisson distribution

Wiy A

o The long run proportion of time that the exchange is full equals the
long run proportion of calls that are lost.

o By the Ergodic Theorem, it is given by

Ty G

j=0 "I
o This is known as Erlang’s formula.
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o Suppose that arriving customers have two service requirements.

o They arrive as a Poisson process of rate A;
o They are seen first by server A,
o They are seen then by server B.

o For simplicity, we assume that the service times are independent
exponentials.

o Service by A is an exponential of parameter «;
o Service by B is an exponential of parameter (.

o We compute the average queue length at B.
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o Let (X¢)t>0 be the queue length at A.

o Let (Y¢)t>0 be the queue length at B.
o Then (X¢)¢>0 is simply an M/M/1 queue.
o Suppose A > a.
Then (Xt)e>o is transient.
So there is eventually always a queue at A.
Moreover, departures form a Poisson process of rate a.
o Suppose A < a.
Then, by the reversibility argument of a previous example, the process
of departures from A is Poisson of rate )\, provided queue A is in
equilibrium.
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o The question about queue length at B is not precisely formulated.
o One needs to specify that the queues should be in equilibrium.

o If A > «, there is no equilibrium.
o We may treat arrivals at B as a Poisson process of rate a A A.
o Suppose a A A\ < S.
By a previous example, the average queue length at B, when in

equilibrium, is given by
a A

B—(aAN)

o Suppose a A A > 5.
Then (Y;)e>o is transient.
Now the queue at B grows without limit.
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o There is an equilibrium for both queues if A < a and A < .
o The fact that, in equilibrium, the output from A is Poisson greatly
simplifies the analysis of the two queues in series.

o For example, the average time taken by one customer to obtain both

services is given by
1 1

a—)\—i_ﬂ—)\'

George Voutsadakis (LSSU) Markov Chains



Applications in Biology and Queueing Theory

o Consider a single particle in a finite state-space / which performs a
Markov chain with irreducible Q-matrix Q.

o We know there is a unique invariant distribution 7.

o The holding times of the chain may be thought of as service times, by
a single server at each node j € /.

o Suppose that there are N particles in the state-space.

o They move as before except that they must queue for service at every
node.

o Suppose we do not care to distinguish between the particles.
o Then this is a new process (X;)s>0 with state-space =N
o Xy = (nj:i€l)if at time t there are n; particles at state /.

o In fact, this new process is also a Markov chain.
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Suppose (X¢)¢>0 has Q-matrix Q.

©

Define a function 9; : I — Tby

©

((5,’/7)j =n;+ 5,‘j.

©

Thus, §; adds a particle at /.

©

Then, for i # j, the non-zero transition rates are given by
q(din,é;jn) = q;, ne 1, i,jel

Observe that we can write the invariant measure equation 7Q = 0 in

the form
TP =Y g

JF#i JF#i

©
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©

For n = (n; : i € I) we set

#(n) =[] ="

i€l
o Then
7(din) Zj;éi q(éin,d5n) = Tlke T (m Zj;éi gji)
= [le ”Zk(Zj;éinqu)
= 2 ©(05n)q(d;n, 6in).
o Given m € I~ we can set m = d;n, whenever m; > 1.

©

On summing the resulting equations we obtain
#(m) S G(m,n) = 3 #(n)d(n, m).
n#m n#m

o So 7 is an invariant measure for Q.
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Communicating Classes

o The total number of particles is conserved.

o So @ has communicating classes

Cy = nET:Zn;:N
i€l

o The unique invariant distribution for the N-particle system is given by
normalizing 7 restricted to Cy.
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Applications in Biology and Queueing Theory

o We consider a modification of the last example.
o We make the following assumptions.

o New customers, or particles, arrive at each node / € | at rate \;.
o Customers receiving service at node i leave the network at rate ;.

o In this setting, like in a shopping center:

o Customers enter the network;
o They move from queue to queue according to a Markov chain;
o Eventually, they leave.

o This model includes:

o The closed system of the last example;
o The queues in series of a previous example.
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Applications in Biology and Queueing Theory

o Let
Xe=(X;:i€l),
where X/ denotes the number of customers at node i at time t.
o (Xt)e>0 is a Markov chain in =N
o The non-zero transition rates are given, for all n € I and distinct
states i,j € I, by:
o a(n, (5,’!1) = \j;
o q(din,djn) = qj;
o q(djn, n) = y;.
o We shall assume that:
o A\ >0, for some /;
o puj >0, for some j.

o Then C~) is irreducible on 1.
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Applications in Biology and Queueing Theory

o The system of invariant measure equations for an invariant measure is
replaced here by

milwi+ D a5 | =X+
JF#i JF#
o This system has a unique solution, with 7; > 0 for all i.

o This may be seen by considering the invariant distribution for the
extended Q-matrix Q on /U {0} with off-diagonal entries

Joj = Ni» G = qij, Gig = Wi-

o Summing over i € I, we find

Z?Tiui = Z Ai

iel i€l
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Applications in Biology and Queueing Theory

o As in the last example, for n = (n; : i € 1), set
7(n) =[]~
iel

o Transitions from m € | may be divided into:
o Those where a new particle is added;
o For each i € | with m; > 1, those where a particle is moved from / to
somewhere else.

o For the first sort of transition
m(m) = > q(m,d;m)
w(m) Zjel Aj
7(m) X jer Tk
= Zjel 7(6;m)q(d;m, m).

George Voutsadakis (LSSU)



Applications in Biology and Queueing Theory

o For the second sort,

7(0in)(q(in, n) + >;4; q(din, 6jn))

= [kes me(milpi + 35 9if)

= [lkes T N + 25 i Gji)

= 7(n)q(n,din) + ;. 7(d;n)q(;n, d;n).

o On summing these equations, we obtain

a(m) Y q(m,n) = w(n)g(n, m).
n#m n#m

o So 7 is an invariant measure for Q.
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o Suppose 7; < 1, for all J.

o Then 7 has finite total mass
[T -m).
iel

o Otherwise the total mass if infinite.

o Hence, Q is positive recurrent if and only if 7; < 1 for all /.

o In that case, in equilibrium, the individual queue lengths (X/ : i € /)
are independent geometric random variables with

P(Xé = n,-) = (1 — 7T,')7T{1".

]
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Applications in Biology and Queueing Theory

o The service requirements have often observable distributions which
are generally not exponential.
o A better model in this case is the M/G/1 queue, where G indicates

that the service-time distribution is general.
o We can characterize the distribution of a service time T in one of two
ways.
o By its distribution function F(t) =P(T < t);
o By its Laplace transform

L(w) =E(e™"T) = /Ooo e " dF (t).

o This integral is the Lebesgue-Stieltjes integral.
o When T has a density function f(t) we can replace dF(t) by f(t)dt.
o Then the mean service time w is given by

p=E(T) = —L'(0+).
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Applications in Biology and Queueing Theory

o Let X, be the queue size immediately following the n-th departure.
o Let Y, be the number of arrivals during the n-th service time.
o Then
Xnt1 = Xn + Ynt1 — 1x,>0.
o The case where X, = 0 is different because then we get an extra
arrival before the (n+ 1)-th service time begins.

o By the Markov Property of the Poisson process, Y1, Ya,... are
independent and identically distributed.

o It follows that (X,),>0 is a discrete time Markov chain.

o Indeed, except for visits to 0, (X,)n>0 behaves as a random walk with
jumps Y, — 1.
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Applications in Biology and Queueing Theory

o Let T, denote the nth service time.
o Conditional on T, = t, Y, is Poisson of parameter At.
o So -
E(Y,) = / AtdF (t) = A\p.
0
o p =E(Y,) is termed the service intensity.

©

We can compute the probability generating function

Alz) = E(z")
= Jo E@"|T, = t)dF(t)
foo —At(1— Z)dF(t)
— L(\1-2)).
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o We set p =E(Y,) = A\u.

o Suppose p < 1.

o Let Z, be the number of visits of X, to 0 before time n.
o Then we have

Xn:XO+(Y1+"'+Yn)_n+Zn-
o So

IE(Xn) = IE(XO) - n(l - p) + IE(Zn)'
o Take Xp = 0.

o Since X, >0, for all n, we have 0 < 1 — p < E(Z,/n).

o By the Ergodic Theorem, as n — oo, E(Z,/n) — mio where mg is the
mean return time to 0.

o Hence, mg < 1%,0 < 00, showing that (X,)n>0 is positive recurrent.
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Equilibrium

o Suppose we start (X,)n>0 with its equilibrium distribution 7.

o Set -
G(z) =E(z*") = Zwizi.
i=0
o Then
zG(z) = E(%nt1)
= ]E(an+yn+1+1Xn=0)
E(zYm1)(moz + 3.2, miz")

= A(z)(moz + G(z) — m).

o So

(A(z) — 2)G(z2) = m0A(z)(1 — z).
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Applications in Biology and Queueing Theory

©

We obtained (A(z) — z)G(z) = mpA(z)(1 — 2).

Rewrite % = %ﬁz)).

©

©

Equivalently,

A(l)—z A1) - A(z) _ mA(z)
1—-z 1—z G(z)

o As z /1, the left approaches 1 — A'(1-) =1 — p.
o Asz 71, since G(1) =1 = A(1), the right approaches 7.

o So we must have:

o m=1—p;
O 0y = =70
° G(2) =(1-p)(1-2) 735

o A is given explicitly in terms of the service time distribution.
o So we can now obtain, in principle, the full equilibrium distribution.
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o We now obtain the mean queue length.
o Start again with (A(z) — z)G(z) = meA(z)(1 — z).
o Differentiate, recalling mg = 1 — p,

(A(z) = 2)G'(2) + (A'(2) = 1)G(2) = (1 = p){A'(2)(1 - 2) — A(2)}-

o Substitute G(z) = (1 — p)(1 — Z)A( _ to obtain
G'(z) = —5E2G(2)+ (1~ p)AelizAL)

— A(z)(A'(z)-1) (2)(1-2)—A(2)
= —(1-n0-2)=pe0r T P)T

_ - (A'(2)=1)(1=2)+A(z)~2
= (1- )A’()(Z)Z—(l—p) (2) (A(z)—2)2

o Now note, using I'Hopital’'s Rule, that:

o limz 1 (1= p)A'(2) a5% = (1= p)ors; = pi
. A’ 1)(1—2)+A(2)—=z A’ (2)(1-z A (1—
o lim; g CHEEREERALE — i, 1 s A=) = At
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Applications in Biology and Queueing Theory

o We found:
o G'(2) = (1—p)A(z )A(;) _ —(1- )A(Z) (A'(2)-1) ((1)72);2'A( z)-z
o limz x (1 - p)A (Z)Az =5
: A'(z)—1)(1—2)+A(z)—z A'(1—
o i, WM s _ )
o Now we obtain
E(X,) = G'(1-)
_ A//(l )
= PTaasy
_ 2L"(0+)
= P A5
_ 2 E(T?)
= P A5y

o In the case of the M/M/1 queue, we have

_ A
°op=4 .
Qo E(TZ) = F
Consequently,

George Voutsadakis (LSSU)
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Applications in Biology and Queueing Theory

o Consider the queue (X;)nez in equilibrium.
o Suppose that the customer who leaves at time 0 has spent:

o Time Q queueing to be served;
o Time T being served.

o Note that the customers in the queue at time 0 are precisely those
who arrived during the queueing and service times of the departing
customer.

o So, conditional on Q + T = t, Xy is Poisson of parameter At.

o Hence,
G(z) = E(e MUTT=2)) = M(A(1 - 2))L(A(1 — 2)),

where M is the Laplace transform M(w) = E(e™"?).
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o We have
G(2) = M(A(L = 2))L(A(1 - 2));
where M is the Laplace transform M(w) = E(e™"®).
o Recall that:
o A(z) = L(A(1 —2));
° G(z)=(1-p)(1-2) 7.
o Setting w = A(1 — z), we obtain

(1-0)¥ a2

2 AD-1-%)
A(z)

M(w) = (1 = 0)¥ e
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o We obtained

M(w) = (1~

w

P\ 3 = Lw))

o Differentiation and I'Hopital’'s Rule yield the mean queueing time

E(Q) = — M'(0+)
=~ (1 p)limy o RIS D
. AL (W)= AL (w)—Awl”
= —(1-p)limy_o+ 2(WSFMQL(W)—(;V))(1+VAVL/((vt/)))
= —(I=p)limy_o+ 2(1+>\L’(;v;)LZlii—(;?L_’vatggv(:-Vz\L(w)—A)
= —(I-p)limy_o+ %

"(04) _ _ AE(T?)

A
= (- p)2(1+>\L’(0+))2 = 20-9)"
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o We turn to the busy period S.

o Consider the Laplace transform
B(w) = E(e™"°).

o Let T be the service time of the first customer in the busy period.

o Let N be the number of customers arriving while the first customer is
served.

o This is Poisson of parameter At.

o Conditional on T = t, we have
S=t+S1+ -+ S,

where 51, 5,, ... are independent, with the same distribution as S.
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o Now we have
Bw) = [°E(e™S|T = t)dF(t)
[ e e~ M(1-BW) gF (¢)
— [_(W—i—)\(l - B(W)))

o Using B(w), we can obtain moments by differentiation.

E(S) = - B(0+)
— L'(0+)(1 — AB'(0+))
= (1 + AE(S)).

o So the mean length of the busy period is given by E(S) = &
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o Arrivals at this queue form a Poisson process, of rate A, say.
o Service times are independent, with a common distribution function

F(t)=P(T <t).

There are infinitely many servers.

So all customers receive service at once.

Suppose there are no customers at time 0.

Let X; be the number of customers being served at time t.
Let N; be the number of arrivals by time t.

This is a Poisson random variable of parameter At.
Condition on N; = n.

Label the times of the n arrivals randomly by Aq,..., A,.

© 06 06 06 06 06 o o o

By a previous theorem, Ai,..., A, are independent and uniformly
distributed on the interval [0, t].
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o For each of these customers, service is incomplete at time t with
probability

D= %/OtIP’(T> S = %/Ot(l — F(s))ds.

o Hence, conditional on Ny = n, X; is binomial of parameters n and p.
Then

P(X; =k) = S %, P(X; = k|N; = n)P(N; = n)

= Y2, (MpH(1 - p)rke At Ae)

k 0o _ n—k
e Rl S %

k K
e—At%eA(l—p)t _ o pt (A,Z!t) ‘

o So we have shown that X; is Poisson of parameter )\fot (1—F(s))ds
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o We have shown that X; is Poisson of parameter )\fot(l — F(s))ds.
o Recall that

/ooo (1 F(s))ds = /ooo E(17s¢)dt = E/Ooo 17sdt = E(T).

o Assume E(T) < occ.

o Then the queue size has a limiting distribution, which is Poisson of

para meter
AE(T).
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