Introduction to Markov Chains

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University
LSSU Math 500
(1) Applications in Biology and Queueing Theory

- Markov Chains in Biology
- Queues and Queueing Networks

Subsection 1

Markov Chains in Biology

Modeling with a Branching Process

- Galton and Watson in the 1870 s used a branching process while seeking a quantitative explanation for the phenomenon of the disappearance of family names, even in a growing population.
- Assume each male in a given family has a probability p_{k} of having k sons.
- The goal is to determine the probability that, after n generations, an individual had no male descendants.
- Suppose at time $n=0$ there is one individual.
- He dies and is replaced at time $n=1$ by a random number of offspring N.
- These offspring also die and are replaced at time $n=2$, each independently, by a random number of further offspring, having the same distribution as N.

The Branching Process

- Take, for each $n \in \mathbb{N}$, a sequence of independent random variables $\left(N_{k}^{n}\right)_{k \in \mathbb{N}}$, each with the same distribution as N.
- Set $X_{0}=1$.
- Define inductively, for $n \geq 1$,

$$
X_{n}=N_{1}^{n}+\cdots+N_{X_{n-1}}^{n} .
$$

- Then X_{n} gives the size of the population in the n-th generation.
- The process $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain on $I=\{0,1,2, \ldots\}$ with absorbing state 0 .

Transience of the Branching Process

- We exclude the case where $\mathbb{P}(N=1)=1$.
- We have $\mathbb{P}\left(X_{n}=0 \mid X_{n-1}=i\right)=\mathbb{P}(N=0)^{i}$.
- Suppose $\mathbb{P}(N=0)>0$.

Then state i leads to 0 .
Every state $i \geq 1$ is transient.

- Suppose $\mathbb{P}(N=0)=0$.

Then $\mathbb{P}(N \geq 2)>0$.
So, for $i \geq 1, i$ leads to j, for some $j>i$, and j does not lead to i.

- Hence, i is transient in any case.
- We deduce that with probability 1 , one of the following happens:
- $X_{n}=0$, for some n;
- $X_{n} \rightarrow \infty$, as $n \rightarrow \infty$.

The Probability Generating Function

- Further information on $\left(X_{n}\right)_{n \geq 0}$ is obtained by exploiting the branching structure.
- The probability generating function, defined for $0 \leq t \leq 1$, is

$$
\phi(t)=\mathbb{E}\left(t^{N}\right)=\sum_{k=0}^{\infty} t^{k} \mathbb{P}(N=k)
$$

- Conditional on $X_{n-1}=k$, we have

$$
X_{n}=N_{1}^{n}+\cdots+N_{k}^{n} .
$$

- So

$$
\mathbb{E}\left(t^{X_{n}} \mid X_{n-1}=k\right)=\mathbb{E}\left(t^{N_{1}^{n}+\cdots+N_{k}^{n}}\right)=\phi(t)^{k}
$$

The Probability Generating Function (Cont'd)

- It follows that

$$
\mathbb{E}\left(t^{X_{n}}\right)=\sum_{k=0}^{\infty} \mathbb{E}\left(t^{X_{n}} \mid X_{n-1}=k\right) \mathbb{P}\left(X_{n-1}=k\right)=\mathbb{E}\left(\phi(t)^{X_{n-1}}\right)
$$

- By induction, we find that

$$
\mathbb{E}\left(t^{X_{n}}\right)=\phi^{(n)}(t)
$$

where $\phi^{(n)}$ is the n-fold composition $\phi \circ \cdots \circ \phi$.

- In principle, this gives the entire distribution of X_{n}, though $\phi^{(n)}$ may be a rather complicated function.

Probability of Survival

- Suppose $\mu=\mathbb{E}(N)$.
- We have

$$
\mathbb{E}\left(X_{n}\right)=\lim _{t \nearrow 1} \frac{d}{d t} \mathbb{E}\left(t^{X_{n}}\right)=\lim _{t \nearrow 1} \frac{d}{d t} \phi^{(n)}(t)=\left(\lim _{t \nmid 1} \phi^{\prime}(t)\right)^{n}=\mu^{n}
$$

- Moreover,

$$
\mathbb{P}\left(X_{n}=0\right)=\phi^{(n)}(0)
$$

- But state 0 is absorbing.
- So we have

$$
q=\mathbb{P}\left(X_{n}=0 \text { for some } n\right)=\lim _{n \rightarrow \infty} \phi^{(n)}(0)
$$

Probability of Survival (Cont'd)

- $\phi(t)=\mathbb{E}\left(t^{N}\right)$ is a convex function with $\phi(1)=1$.
- Set

$$
r=\inf \{t \in[0,1]: \phi(t)=t\}
$$

- Then $\phi(r)=r$ by continuity.
- ϕ is increasing and $0 \leq r$.
- So we have $\phi(0) \leq r$.
- By induction,

$$
\phi^{(n)}(0) \leq r, \quad \text { for all } n
$$

- It follows that $q \leq r$.

Probability of Survival (Cont'd)

- On the other hand

$$
q=\lim _{n \rightarrow \infty} \phi^{(n+1)}(0)=\lim _{n \rightarrow \infty} \phi\left(\phi^{(n)}(0)\right)=\phi(q)
$$

- So also $q \geq r$.
- We conclude that $q=r$.
- We consider two cases.
- Suppose, first, $\phi^{\prime}(1)>1$.

Then we must have $q<1$.

- Suppose, next, $\phi^{\prime}(1) \leq 1$.

Now either $\phi^{\prime \prime}=0$ or $\phi^{\prime \prime}>0$ everywhere in $[0,1)$.
So we must have $q=1$.

- We have shown that the population survives with positive probability if and only if $\mu>1$, where μ is the mean of the offspring distribution.

Branching Processes and Random Walks

- We explore a connection between branching processes and random walks.
- Suppose that in each generation we replace individuals by their offspring one at a time.
- So if $X_{n}=k$, then it takes k steps to obtain X_{n+1}.
- The population size then performs a random walk $\left(Y_{m}\right)_{m \geq 0}$ with step distribution $N-1$.
- Define stopping times:

$$
\begin{aligned}
& \text { - } T_{0}=0 ; \\
& \text { - } T_{n+1}=T_{n}+Y_{T_{n}}, \text { for } n \geq 0 .
\end{aligned}
$$

- Observe that

$$
X_{n}=Y_{T_{n}}, \quad \text { for all } n
$$

Branching Processes and Random Walks (Cont'd)

- $\left(Y_{m}\right)_{m \geq 0}$ jumps down by at most 1 each time;
- So $\left(X_{n}\right)_{n \geq 0}$ hits 0 if and only if $\left(Y_{m}\right)_{m \geq 0}$ hits 0 .
- Moreover, we can use the Strong Markov Property and a variation of the argument of a previous example to see that if $q_{i}=\mathbb{P}\left(Y_{m}=0\right.$ for some $\left.m \mid Y_{0}=i\right)$ then $q_{i}=q_{1}^{i}$, for all i.
- So

$$
q_{1}=\mathbb{P}(N=0)+\sum_{k=1}^{\infty} q_{1}^{i} \mathbb{P}(N=i)=\phi\left(q_{1}\right)
$$

- Each non-negative solution of this equation provides a non-negative solution of the hitting probability equations.
- So we deduce that q_{1} is the smallest non-negative root of the equation $q=\phi(q)$.
- This agrees with the generating function approach.

Epidemics

- In an idealized population we might suppose that:
- All pairs of individuals make contact randomly and independently at a common rate, whether infected or not.
- For an idealized disease we might suppose that:
- On contact with an infective, individuals themselves become infective and remain so for an exponential random time, after which they either die or recover.
- This idealized model is unrealistic.
- However, it is the simplest mathematical model to incorporate the basic features of an epidemic.
- We explore the consequences for the progress of the epidemic.

Formalization of the Model

- Denote:
- The number of susceptibles by S_{t};
- The number of infectives by I_{t}.
- In the idealized model,

$$
X_{t}=\left(S_{t}, I_{t}\right)
$$

performs a Markov chain on $\left(\mathbb{Z}^{+}\right)^{2}$ with transition rates:

- $q_{(s, i)(s-i, i+1)}=\lambda s i$, for some $\lambda \in(0, \infty)$;
- $q_{(s, i)(s, i-1)}=\mu i$, for some $\mu \in(0, \infty)$.
- Since $S_{t}+I_{t}$ does not increase, we effectively have a finite state-space.

Features of the Model

- The states $(s, 0)$, for $s \in \mathbb{Z}^{+}$, are all absorbing.
- All the other states are transient.
- All the communicating classes are singletons.
- The epidemic must therefore eventually die out.
- The absorption probabilities give the distribution of the number of susceptibles who escape infection.

Behavior in a Large Population

- We analyze the behavior in a large population, of size N, say.
- Consider the proportions

$$
s_{t}^{N}=\frac{S_{t}}{N} \quad \text { and } \quad i_{t}^{N}=\frac{I_{t}}{N}
$$

- Suppose that

$$
\lambda=\frac{\nu}{N}
$$

where ν is independent of N.

- Consider a sequence of models as $N \rightarrow \infty$.
- Choose

$$
s_{0}^{N} \rightarrow s_{0} \quad \text { and } \quad i_{0}^{N} \rightarrow i_{0}
$$

Behavior in a Large Population (Cont'd)

- It can be shown that as $N \rightarrow \infty$ the process $\left(s_{t}^{N}, i_{t}^{N}\right)$ converges to the solution $\left(s_{t}, i_{t}\right)$ of the differential equations

$$
\begin{aligned}
\frac{d}{d t} s_{t} & =-\nu s_{t} i_{t} \\
\frac{d}{d t} i_{t} & =\nu s_{t} i_{t}-\mu i_{t}
\end{aligned}
$$

starting from $\left(s_{0}, i_{0}\right)$.

- This means that

$$
\mathbb{E}\left[\left|\left(s_{t}^{N}, i_{t}^{N}\right)-\left(s_{t}, i_{t}\right)\right|\right] \rightarrow 0, \quad \text { for all } t \geq 0
$$

- We will not prove this result, but will give an example of another easier asymptotic calculation.

Spreading of a Rumor

- Consider the case where:
- $S_{0}=N-1$;
- $I_{0}=1$;
- $\lambda=\frac{1}{N}$;
- $\mu=0$.
- This can be given an alternative interpretation.
- A rumor is begun by a single individual who tells it to everyone she meets.
- They in turn pass the rumor on to everyone they meet.
- We assume that each individual meets another randomly at the jump times of a Poisson process of rate 1.
- We look at how long it takes until everyone knows the rumor.

Spreading of a Rumor (Cont'd)

- Suppose i people know the rumor.
- Then N - i people do not.
- The rate at which the rumor is passed on is

$$
q_{i}=\frac{i(N-i)}{N}
$$

- The expected time until everyone knows the rumor is then

$$
\begin{aligned}
\sum_{i=1}^{N-1} q_{i}^{-1} & =\sum_{i=1}^{N-1} \frac{N}{i(N-i)} \\
& =\sum_{i=1}^{N-1}\left(\frac{1}{i}+\frac{1}{N-i}\right) \\
& =2 \sum_{i=1}^{N-1} \frac{1}{i} \sim 2 \log N
\end{aligned}
$$

- This is not a limit but, rather, an asymptotic equivalence.
- The fact that the expected time grows with N is related to the fact that we do not scale I_{0} with N.
- When the rumor is known by very few or by almost all, the proportion of "infectives" changes very slowly.

The Wright-Fisher Model in Population Genetics

- This is the discrete-time Markov chain on $\{0,1, \ldots, m\}$ with transition probabilities

$$
p_{i j}=\binom{m}{j}\left(\frac{i}{m}\right)^{j}\left(\frac{m-i}{m}\right)^{m-j}
$$

- In each generation there are m alleles.
- Some are of type A and some of type a.
- The types of alleles in generation $n+1$ are found by choosing randomly (with replacement) from the types in generation n.

The Wright-Fisher Model (Cont'd)

- Let X_{n} denote the number of alleles of type A in generation n.
- Then $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with transition probabilities $p_{i j}$.
- This can be viewed as a model of inheritance for a particular gene with two alleles A and a.
- We suppose that each individual has two genes.
- So the possibilities are AA, Aa and aa.
- Let us take m to be even with $m=2 k$.

The Wright-Fisher Model (Cont'd)

- Suppose that:
- Individuals in the next generation are obtained by mating randomly chosen individuals from the current generation;
- Offspring inherit one allele from each parent.
- We allow that both parents may be the same.
- In particular, it is not required that parents be of opposite sex.
- E.g., assume generation n is

AA aA AA AA aa.

Then each gene in generation $n+1$ is, independently:

- A with probability $\frac{7}{10}$;
- a with probability $\frac{3}{10}$.

We might, for example, get
aa $a A$ Aa AA AA.

- The structure of pairs of genes is irrelevant to $\left(X_{n}\right)_{n \geq 0}$.
- $\left(X_{n}\right)_{n \geq 0}$ counts the number of alleles of type A.

The Wright-Fisher Model (Absorbing and Transient States)

- The communicating classes of $\left(X_{n}\right)_{n \geq 0}$ are $\{0\},\{1, \ldots, m-1\},\{m\}$.
- States 0 and m are absorbing and $\{1, \ldots, m-1\}$ is transient.
- The hitting probabilities for state m (pure AA) are given by

$$
h_{i}=\mathbb{P}_{i}\left(X_{n}=m \text { for some } n\right)=\frac{i}{m}
$$

- This can be seen by noticing that $\left(X_{n}\right)_{n \geq 0}$ is a martingale.
- Alternatively one can check that

$$
h_{i}=\sum_{j=0}^{m} p_{i j} h_{j} .
$$

- According to this model, genetic diversity eventually disappears.

The Moran Model

- The Moran model is the birth-and-death chain on $\{0,1, \ldots, m\}$ with transition probabilities

$$
p_{i, i-1}=\frac{i(m-i)}{m^{2}}, \quad p_{i i}=\frac{i^{2}+(m-i)^{2}}{m^{2}}, \quad p_{i, i+1}=\frac{i(m-i)}{m^{2}} .
$$

- It has the following genetic interpretation.
- A population consists of individuals of two types, a and A.
- At time n :
- We choose randomly one individual from the population;
- We add a new individual of the same type;
- Then we choose, again randomly, one individual from the population;
- We remove the chosen individual.
- In this way, we obtain the population at time $n+1$.
- The same individual may be chosen to give birth and to die.
- In this case there is no change in the make-up of the population.

Differences and Similarities with Wright-Fisher

- Let X_{n} denote the number of type A individuals at time n.
- Then $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with transition matrix P.
- There are some differences from the Wright-Fisher model.
- The Moran model cannot be interpreted in terms of a species where genes come in pairs, or where individuals have more than one parent;
- In the Moran model we only change one individual at a time, not the whole population.
- The basic Markov chain structure is the same.
- The communicating classes are $\{0\},\{1, \ldots, m-1\},\{m\}$, absorbing states 0 and m and transient class $\{1, \ldots, m-1\}$;
- The Moran model is reversible, and, like the Wright-Fisher model, is a martingale.
- The hitting probabilities are given by $\mathbb{P}_{i}\left(X_{n}=m\right.$ for some $\left.n\right)=\frac{i}{m}$.

Mean Time of Absorption

- We can also calculate explicitly the mean time to absorption

$$
k_{i}=\mathbb{E}_{i}(T)
$$

where T is the hitting time of $\{0, m\}$.

- The simplest method is to:
- Fix j;
- Write equations for the mean time k_{i}^{j} spent in j, starting from i, before absorption.

$$
\begin{aligned}
k_{i}^{j} & =\delta_{i j}+\left(p_{i, i-1} k_{i-1}^{j}+p_{i i} k_{i}^{j}+p_{i, i+1} k_{i+1}^{j}\right), \quad i=1, \ldots, m-1 \\
k_{0}^{j} & =k_{m}^{j}=0
\end{aligned}
$$

- Then, for $i=1, \ldots, m-1$

$$
k_{i+1}^{j}-2 k_{i}^{j}+k_{i-1}^{j}=-\delta_{i j} \frac{m^{2}}{j(m-j)}
$$

Mean Time of Absorption (Cont'd)

- We found, for $i=1, \ldots, m-1$,

$$
k_{i+1}^{j}-2 k_{i}^{j}+k_{i-1}^{j}=-\delta_{i j} \frac{m^{2}}{j(m-j)} .
$$

- This has solution

$$
k_{i}^{j}=\left\{\begin{array}{ll}
\frac{i}{j} k_{j}^{j} & \text { for } i \leq j \\
\frac{m-i}{m-j} k_{j}^{j} & \text { for } i \geq j
\end{array} .\right.
$$

Mean Time of Absorption (Cont'd)

- k_{j}^{j} is determined by

$$
\left(\frac{m-j-1}{m-j}-2+\frac{j-1}{j}\right) k_{j}^{j}=-\frac{m^{2}}{j(m-j)}
$$

- This gives

$$
k_{j}^{j}=m .
$$

- Hence,

$$
k_{i}=\sum_{j=1}^{m-1} k_{i}^{j}=m\left\{\sum_{j=1}^{i} \frac{m-i}{m-j}+\sum_{j=i+1}^{m-1} \frac{i}{j}\right\}
$$

The Case of Large m and $i=p m, 0<p<1$

- The main interest lies in the case where:
- m is large;
- $i=p m$, for some $p \in(0,1)$.
- Then, as $m \rightarrow \infty$,

$$
\begin{aligned}
\frac{k_{p m}}{m^{2}} & =(1-p) \sum_{j=1}^{m p} \frac{1}{m-j}+p \sum_{j=m p+1}^{m-1} \frac{1}{j} \\
& \rightarrow-(1-p) \log (1-p)-p \log p .
\end{aligned}
$$

- So, as $m \rightarrow \infty$,

$$
\mathbb{E}_{p m}(T) \sim-m^{2}\{(1-p) \log (1-p)+p \log p\}
$$

The Case of Large m and $i=p m, 0<p<1$

- We found

$$
\mathbb{E}_{p m}(T) \sim-m^{2}\{(1-p) \log (1-p)+p \log p\}
$$

- For the Wright-Fisher model, one has

$$
\mathbb{E}_{p m}(T) \sim-2 m\{(1-p) \log (1-p)+p \log p\}
$$

- This has the same functional form in p and differs by a factor of $\frac{m}{2}$.
- This factor is partially explained by the fact that:
- The Moran model deals with one individual at a time;
- The Wright-Fisher model changes all m at once.

Subsection 2

Queues and Queueing Networks

Basic Elements of Queues

- Queues form in many circumstances and it is important to be able to predict their behavior.
- The basic mathematical model for queues runs as follows.
- There is a succession of customers wanting service;
- On arrival each customer must wait until a server is free, giving priority to earlier arrivals;
- Probabilistically, it is assumed that:
- The times between arrivals are independent random variables of the same distribution;
- The times taken to serve customers are also independent random variables, of some other distribution.
- The main quantity of interest is the random process $\left(X_{t}\right)_{t \geq 0}$ recording the number of customers in the queue at time t.
- This is always taken to include both those being served and those waiting to be served.

Preview of Some Special Cases

- In cases where inter-arrival times and service times have exponential distributions, $\left(X_{t}\right)_{t \geq 0}$ turns out to be a continuous-time Markov chain.
- In this case many questions about the queue can be answered.
- If the inter-arrival times only are exponential, an analysis is still possible.
- One exploits:
- The memorylessness of the Poisson process of arrivals;
- A certain discrete-time Markov chain embedded in the queue.

M/M/1 Queue

- $\mathrm{M} / \mathrm{M} / 1$ means memoryless inter-arrival times/memoryless service times/one server.
- Let us suppose that:
- The inter-arrival times are exponential of parameter λ;
- The service times are exponential of parameter μ.
- Then the number of customers in the queue $\left(X_{t}\right)_{t \geq 0}$ evolves as a Markov chain with the following diagram:

Markov Chain Justification

- Suppose at time 0 there are $i>0$ customers in the queue.
- Denote by:
- T the time taken to serve the first customer;
- A the time of the next arrival.
- Then the first jump time J_{1} is $A \wedge T$.
- This is exponential of parameter $\lambda+\mu$.
- Moreover,

$$
X_{J_{1}}= \begin{cases}i-1, & \text { if } T<A \\ i+1, & \text { if } T>A\end{cases}
$$

These events are independent of J_{1}, with probabilities:

$$
\mathbb{P}(T<A)=\frac{\mu}{\lambda+\mu} \quad \text { and } \quad \mathbb{P}(T>A)=\frac{\lambda}{\lambda+\mu}
$$

Markov Chain Justification (Cont'd)

- If we condition on $J_{1}=T$, then $A-J_{1}$ is exponential of parameter λ and independent of J_{1}.
- The time already spent waiting for an arrival is forgotten.
- Similarly, conditional on $J_{1}=A, T-J_{1}$ is exponential of parameter μ and independent of J_{1}.
- The case where $i=0$ is simpler as there is no serving going on.
- Hence, conditional on $X_{J_{1}}=j,\left(X_{t}\right)_{t \geq 0}$ begins afresh from j at time J_{1}.
- It follows that $\left(X_{t}\right)_{t \geq 0}$ is the claimed Markov chain.

Average Number of Customers

- The $M / M / 1$ queue evolves like a random walk, except that it does not take jumps below 0 .
- Suppose $\lambda>\mu$.

Then $\left(X_{t}\right)_{t \geq 0}$ is transient, that is $X_{t} \rightarrow \infty$ as $t \rightarrow \infty$.
Thus, if $\lambda>\mu$ the queue grows without limit in the long term.

- Suppose, next, $\lambda<\mu$.

Then $\left(X_{t}\right)_{t \geq 0}$ is positive recurrent with invariant distribution

$$
\pi_{i}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{i}
$$

So when $\lambda<\mu$, the average number of customers in the queue in equilibrium is given by

$$
\mathbb{E}_{\pi}\left(X_{t}\right)=\sum_{i=1}^{\infty} \mathbb{P}_{\pi}\left(X_{t} \geq i\right)=\sum_{i=1}^{\infty}\left(\frac{\lambda}{\mu}\right)^{i}=\frac{\lambda}{\mu-\lambda}
$$

Mean Continuously Busy Time

- The mean time to return to 0 is given by

$$
m_{0}=\frac{1}{q_{0} \pi_{0}}=\frac{1}{\lambda} \frac{1}{\frac{\mu-\lambda}{\mu}}=\frac{\mu}{\lambda(\mu-\lambda)}
$$

- So the mean length of time that the server is continuously busy is given by

$$
m_{0}-\frac{1}{q_{0}}=\frac{\mu}{\lambda(\mu-\lambda)}-\frac{1}{\lambda}=\frac{1}{\mu-\lambda}
$$

Mean Waiting Time

- Another quantity of interest is the mean waiting time for a typical customer, when $\lambda<\mu$ and the queue is in equilibrium.
- Conditional on finding a queue of length i on arrival, this is

$$
\frac{i+1}{\mu} .
$$

- So the overall mean waiting time is

$$
\mathbb{E}_{\pi} \frac{X_{t}+1}{\mu}=\frac{\frac{\lambda}{\mu-\lambda}+1}{\mu}=\frac{\frac{\mu}{\mu-\lambda}}{\mu}=\frac{1}{\mu-\lambda}
$$

Mean Total Waiting Time

- A rough check is available as we can calculate in two ways the expected total time spent in the queue over an interval of length t.
- We may multiply the average queue length by t.
- We get

$$
t \cdot \mathbb{E}_{\pi}\left(X_{t}\right)=\frac{\lambda t}{\mu-\lambda}
$$

- We may multiply the mean waiting time by the expected number of customers λt.
We get

$$
\lambda t \cdot \mathbb{E}_{\pi} \frac{X_{t}+1}{\mu}=\frac{\lambda t}{\mu-\lambda} .
$$

- The first calculation is exact but the second has not been fully justified.

M/M/s Queue

- This is a variation on the last example where:
- There is one queue;
- There are s servers.
- We assume that:
- The arrival rate is λ;
- The service rate by each server is μ.

The Associated Markov Chain

- If i servers are occupied, the first service is completed at the minimum of i independent exponential times of parameter μ.
- The first service time is therefore exponential of parameter $i \mu$.
- The total service rate increases to a maximum $s \mu$ when all servers are working.
- Suppose the queue size includes the customers being served.
- Then the queue size $\left(X_{t}\right)_{t \geq 0}$ performs a Markov chain with the following diagram:

- So this time we obtain a birth-and-death chain.

Invariant Measures

- If $\lambda>s \mu$, the birth-and-death chain is transient; Otherwise, recurrent.
- To find an invariant measure we look at the detailed balance equations

$$
\pi_{i} q_{i, i+1}=\pi_{i+1} q_{i+1, i}
$$

- If $i \leq s$,

$$
\frac{\pi_{i}}{\pi_{0}}=\frac{\pi_{i}}{\pi_{i-1}} \cdots \frac{\pi_{1}}{\pi_{0}}=\frac{\lambda}{i \mu} \cdots \frac{\lambda}{\mu}=\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} .
$$

- Similarly, if $i>s$,

$$
\frac{\pi_{i}}{\pi_{0}}=\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{s^{i-s} s!}
$$

- So we have

$$
\frac{\pi_{i}}{\pi_{0}}= \begin{cases}\frac{(\lambda / \mu)^{i}}{i!}, & \text { for } i=0,1, \ldots, s \\ \frac{(\lambda / \mu)^{i}}{s^{i-s} s!}, & \text { for } i=s+1, s+2, \ldots\end{cases}
$$

- The queue is therefore positive recurrent when $\lambda<s \mu$.

Special Cases

- There are two special cases when the invariant distribution has a particularly nice form.
- Suppose $s=1$.

Then we are back to the preceding example.
The invariant distribution is geometric of parameter $\frac{\lambda}{\mu}$,

$$
\pi_{i}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda}{\mu}\right)^{i}
$$

- Suppose $s=\infty$.

We normalize π by taking $\pi_{0}=e^{-\lambda / \mu}$.
Then

$$
\pi_{i}=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{i}}{i!}
$$

So the invariant distribution is Poisson of parameter $\frac{\lambda}{\mu}$.

Number of Arrivals and Departures

- The number of arrivals by time t is a Poisson process of rate λ.
- Each arrival corresponds to an increase in X_{t}.
- Each departure corresponds to a decrease in X_{t}.
- Suppose that $\lambda<s \mu$, so there is an invariant distribution.
- Consider the queue in equilibrium.
- The detailed balance equations hold.
- Moreover, $\left(X_{t}\right)_{t \geq 0}$ is non-explosive.
- So by a previous theorem, for any $T>0,\left(X_{t}\right)_{0 \leq t \leq T}$ and $\left(X_{T-t}\right)_{0 \leq t \leq T}$ have the same law.
- It follows that, in equilibrium, the number of departures by time t is also a Poisson process of rate λ.

Comments

- The fact that the number of departures by time t is also a Poisson process of rate λ is slightly counter-intuitive.
- One might imagine that the departure process runs in fits and starts depending on the number of servers working.
- But it turns out that the process of departures, in equilibrium, is just as regular as the process of arrivals.

A Telephone Exchange

- A variation on the $M / M / s$ queue is to turn away customers who cannot be served immediately.
- This might serve as a simple model for a telephone exchange, where the maximum number of calls that can be connected at once is s.
- When the exchange is full, additional calls are lost.
- The maximum queue size or buffer size is s.
- We get the following modified Markov chain diagram:

A Telephone Exchange (Cont'd)

- We can find the invariant distribution of this finite Markov chain by solving the detailed balance equations.
- This time we get a truncated Poisson distribution

$$
\pi_{i}=\frac{\frac{(\lambda / \mu)^{i}}{i!}}{\sum_{j=0}^{s} \frac{(\lambda / \mu)^{2}}{j!}} .
$$

- The long run proportion of time that the exchange is full equals the long run proportion of calls that are lost.
- By the Ergodic Theorem, it is given by

$$
\pi_{s}=\frac{\frac{(\lambda / \mu)^{s}}{s!}}{\sum_{j=0}^{s} \frac{(\lambda / \mu)^{j}}{j!}}
$$

- This is known as Erlang's formula.

Queues in Series

- Suppose that arriving customers have two service requirements.
- They arrive as a Poisson process of rate λ;
- They are seen first by server A;
- They are seen then by server B.
- For simplicity, we assume that the service times are independent exponentials.
- Service by A is an exponential of parameter α;
- Service by \mathbf{B} is an exponential of parameter β.
- We compute the average queue length at B.

Queues in Series (Cont'd)

- Let $\left(X_{t}\right)_{t \geq 0}$ be the queue length at A .
- Let $\left(Y_{t}\right)_{t \geq 0}$ be the queue length at B .
- Then $\left(X_{t}\right)_{t \geq 0}$ is simply an $\mathrm{M} / \mathrm{M} / 1$ queue.
- Suppose $\lambda>\alpha$.

Then $\left(X_{t}\right)_{t \geq 0}$ is transient.
So there is eventually always a queue at A.
Moreover, departures form a Poisson process of rate α.

- Suppose $\lambda<\alpha$.

Then, by the reversibility argument of a previous example, the process of departures from A is Poisson of rate λ, provided queue A is in equilibrium.

Queues in Series (Cont'd)

- The question about queue length at B is not precisely formulated.
- One needs to specify that the queues should be in equilibrium.
- If $\lambda \geq \alpha$, there is no equilibrium.
- We may treat arrivals at B as a Poisson process of rate $\alpha \wedge \lambda$.
- Suppose $\alpha \wedge \lambda<\beta$.

By a previous example, the average queue length at B, when in equilibrium, is given by

$$
\frac{\alpha \wedge \lambda}{\beta-(\alpha \wedge \lambda)} .
$$

- Suppose $\alpha \wedge \lambda>\beta$.

Then $\left(Y_{t}\right)_{t \geq 0}$ is transient.
Now the queue at B grows without limit.

Queues in Series (Cont'd)

- There is an equilibrium for both queues if $\lambda<\alpha$ and $\lambda<\beta$.
- The fact that, in equilibrium, the output from A is Poisson greatly simplifies the analysis of the two queues in series.
- For example, the average time taken by one customer to obtain both services is given by

$$
\frac{1}{\alpha-\lambda}+\frac{1}{\beta-\lambda} .
$$

Closed Migration Process

- Consider a single particle in a finite state-space I which performs a Markov chain with irreducible Q-matrix Q.
- We know there is a unique invariant distribution π.
- The holding times of the chain may be thought of as service times, by a single server at each node $i \in I$.
- Suppose that there are N particles in the state-space.
- They move as before except that they must queue for service at every node.
- Suppose we do not care to distinguish between the particles.
- Then this is a new process $\left(X_{t}\right)_{t \geq 0}$ with state-space $\tilde{I}=\mathbb{N}^{I}$.
- $X_{t}=\left(n_{i}: i \in I\right)$ if at time t there are n_{i} particles at state i.
- In fact, this new process is also a Markov chain.

Q-Matrix of the Closed Migration Process

- Suppose $\left(X_{t}\right)_{t \geq 0}$ has Q-matrix \widetilde{Q}.
- Define a function $\delta_{i}: \tilde{I} \rightarrow \tilde{I}$ by

$$
\left(\delta_{i} n\right)_{j}=n_{j}+\delta_{i j}
$$

- Thus, δ_{i} adds a particle at i.
- Then, for $i \neq j$, the non-zero transition rates are given by

$$
\widetilde{q}\left(\delta_{i} n, \delta_{j} n\right)=q_{i j}, \quad n \in \tilde{I}, i, j \in I .
$$

- Observe that we can write the invariant measure equation $\pi Q=0$ in the form

$$
\pi_{i} \sum_{j \neq i} q_{i j}=\sum_{j \neq i} \pi_{j} q_{j i}
$$

Invariant Measure

- For $n=\left(n_{i}: i \in I\right)$ we set

$$
\tilde{\pi}(n)=\prod_{i \in i} \pi_{i}^{n i} .
$$

- Then

$$
\begin{aligned}
\tilde{\pi}\left(\delta_{i} n\right) \sum_{j \neq i} \widetilde{q}\left(\delta_{i} n, \delta_{j} n\right) & =\prod_{k \in I} \pi_{k}^{n_{k}}\left(\pi \sum_{j \neq i} q_{j i}\right) \\
& =\prod_{k \in I} \pi_{k}^{n_{k}}\left(\sum_{j \neq i} \pi_{j} q_{j i}\right) \\
& =\sum_{j \neq i} \widetilde{\pi}\left(\delta_{j} n\right) \widetilde{q}\left(\delta_{j} n, \delta_{i} n\right) .
\end{aligned}
$$

- Given $m \in \widetilde{I}$, we can set $m=\delta_{i} n$, whenever $m_{i} \geq 1$.
- On summing the resulting equations we obtain

$$
\widetilde{\pi}(m) \sum_{n \neq m} \widetilde{q}(m, n)=\sum_{n \neq m} \widetilde{\pi}(n) \widetilde{q}(n, m) .
$$

- So $\widetilde{\pi}$ is an invariant measure for \widetilde{Q}.

Communicating Classes

- The total number of particles is conserved.
- So \widetilde{Q} has communicating classes

$$
C_{N}=\left\{n \in \tilde{I}: \sum_{i \in I} n_{i}=N\right\}
$$

- The unique invariant distribution for the N-particle system is given by normalizing $\widetilde{\pi}$ restricted to C_{N}.

Open Migration Process

- We consider a modification of the last example.
- We make the following assumptions.
- New customers, or particles, arrive at each node $i \in I$ at rate λ_{i}.
- Customers receiving service at node i leave the network at rate μ_{i}.
- In this setting, like in a shopping center:
- Customers enter the network;
- They move from queue to queue according to a Markov chain;
- Eventually, they leave.
- This model includes:
- The closed system of the last example;
- The queues in series of a previous example.

Formalism

- Let

$$
X_{t}=\left(X_{t}^{i}: i \in I\right)
$$

where X_{t}^{i} denotes the number of customers at node i at time t.

- $\left(X_{t}\right)_{t \geq 0}$ is a Markov chain in $\tilde{I}=\mathbb{N}^{\prime}$.
- The non-zero transition rates are given, for all $n \in \tilde{I}$ and distinct states $i, j \in I$, by:
- $\widetilde{q}\left(n, \delta_{i} n\right)=\lambda_{i}$;
- $\widetilde{q}\left(\delta_{i} n, \delta_{j} n\right)=q_{i j}$;
- $\widetilde{q}\left(\delta_{j} n, n\right)=\mu_{j}$.
- We shall assume that:
- $\lambda_{i}>0$, for some i;
- $\mu_{j}>0$, for some j.
- Then \widetilde{Q} is irreducible on \widetilde{I}.

Invariant Measure

- The system of invariant measure equations for an invariant measure is replaced here by

$$
\pi_{i}\left(\mu_{i}+\sum_{j \neq i} q_{i j}\right)=\lambda_{i}+\sum_{j \neq i} \pi_{j} q_{j i}
$$

- This system has a unique solution, with $\pi_{i}>0$ for all i.
- This may be seen by considering the invariant distribution for the extended Q-matrix \bar{Q} on $I \cup\{\partial\}$ with off-diagonal entries

$$
\bar{q}_{\partial j}=\lambda_{j}, \quad \bar{q}_{i j}=q_{i j}, \quad \bar{q}_{i \partial}=\mu_{i}
$$

- Summing over $i \in I$, we find

$$
\sum_{i \in I} \pi_{i} \mu_{i}=\sum_{i \in I} \lambda_{i}
$$

Invariant Measure (Cont'd)

- As in the last example, for $n=\left(n_{i}: i \in I\right)$, set

$$
\widetilde{\pi}(n)=\prod_{i \in I} \pi_{i}^{n_{i}}
$$

- Transitions from $m \in \tilde{I}$ may be divided into:
- Those where a new particle is added;
- For each $i \in I$ with $m_{i} \geq 1$, those where a particle is moved from i to somewhere else.
- For the first sort of transition

$$
\begin{aligned}
\widetilde{\pi}(m) & =\sum_{j \in I} \widetilde{q}\left(m, \delta_{j} m\right) \\
& =\widetilde{\pi}(m) \sum_{j \in I} \lambda_{j} \\
& =\widetilde{\pi}(m) \sum_{j \in I} \pi_{j} \mu_{j} \\
& =\sum_{j \in I} \widetilde{\pi}\left(\delta_{j} m\right) \widetilde{q}\left(\delta_{j} m, m\right)
\end{aligned}
$$

Invariant Measure (Cont'd)

- For the second sort,

$$
\begin{aligned}
& \widetilde{\pi}\left(\delta_{i} n\right)\left(\widetilde{q}\left(\delta_{i} n, n\right)+\sum_{j \neq i} \widetilde{q}\left(\delta_{i} n, \delta_{j} n\right)\right) \\
& =\prod_{k \in I} \pi_{k}^{n_{k}}\left(\pi_{i}\left(\mu_{i}+\sum_{j \neq i} q_{i j}\right)\right) \\
& =\prod_{k \in I} \pi_{k}^{n_{k}}\left(\lambda_{i}+\sum_{j \neq i} \pi_{j} q_{j i}\right) \\
& =\widetilde{\pi}(n) \widetilde{q}\left(n, \delta_{i} n\right)+\sum_{j \neq i} \widetilde{\pi}\left(\delta_{j} n\right) \widetilde{q}\left(\delta_{j} n, \delta_{i} n\right) .
\end{aligned}
$$

- On summing these equations, we obtain

$$
\widetilde{\pi}(m) \sum_{n \neq m} \widetilde{q}(m, n)=\sum_{n \neq m} \widetilde{\pi}(n) \widetilde{q}(n, m)
$$

- So $\widetilde{\pi}$ is an invariant measure for \widetilde{Q}.

Queue Lengths

- Suppose $\pi_{i}<1$, for all i.
- Then $\widetilde{\pi}$ has finite total mass

$$
\prod_{i \in I}\left(1-\pi_{i}\right)
$$

- Otherwise the total mass if infinite.
- Hence, \widetilde{Q} is positive recurrent if and only if $\pi_{i}<1$ for all i.
- In that case, in equilibrium, the individual queue lengths ($X_{t}^{i}: i \in I$) are independent geometric random variables with

$$
\mathbb{P}\left(X_{t}^{i}=n_{i}\right)=\left(1-\pi_{i}\right) \pi_{i}^{n_{i}} .
$$

M/G/1 Queue

- The service requirements have often observable distributions which are generally not exponential.
- A better model in this case is the $M / G / 1$ queue, where G indicates that the service-time distribution is general.
- We can characterize the distribution of a service time T in one of two ways.
- By its distribution function $F(t)=\mathbb{P}(T \leq t)$;
- By its Laplace transform

$$
L(w)=\mathbb{E}\left(e^{-w T}\right)=\int_{0}^{\infty} e^{-w t} d F(t)
$$

- This integral is the Lebesgue-Stieltjes integral.
- When T has a density function $f(t)$ we can replace $d F(t)$ by $f(t) d t$.
- Then the mean service time μ is given by

$$
\mu=\mathbb{E}(T)=-L^{\prime}(0+)
$$

Formalism

- Let X_{n} be the queue size immediately following the n-th departure.
- Let Y_{n} be the number of arrivals during the n-th service time.
- Then

$$
X_{n+1}=X_{n}+Y_{n+1}-1_{X_{n}>0}
$$

- The case where $X_{n}=0$ is different because then we get an extra arrival before the $(n+1)$-th service time begins.
- By the Markov Property of the Poisson process, Y_{1}, Y_{2}, \ldots are independent and identically distributed.
- It follows that $\left(X_{n}\right)_{n \geq 0}$ is a discrete time Markov chain.
- Indeed, except for visits to $0,\left(X_{n}\right)_{n \geq 0}$ behaves as a random walk with jumps $Y_{n}-1$.

Service Intensity and Generating Function

- Let T_{n} denote the nth service time.
- Conditional on $T_{n}=t, Y_{n}$ is Poisson of parameter λt.
- So

$$
\mathbb{E}\left(Y_{n}\right)=\int_{0}^{\infty} \lambda t d F(t)=\lambda \mu
$$

- $\rho=\mathbb{E}\left(Y_{n}\right)$ is termed the service intensity.
- We can compute the probability generating function

$$
\begin{aligned}
A(z) & =\mathbb{E}\left(z^{Y_{n}}\right) \\
& =\int_{0}^{\infty} E\left(z^{Y_{n}} \mid T_{n}=t\right) d F(t) \\
& =\int_{0}^{\infty} e^{-\lambda t(1-z)} d F(t) \\
& =L(\lambda(1-z)) .
\end{aligned}
$$

Positive Recurrence

- We set $\rho=\mathbb{E}\left(Y_{n}\right)=\lambda \mu$.
- Suppose $\rho<1$.
- Let Z_{n} be the number of visits of X_{n} to 0 before time n.
- Then we have

$$
X_{n}=X_{0}+\left(Y_{1}+\cdots+Y_{n}\right)-n+Z_{n}
$$

- So

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{0}\right)-n(1-\rho)+\mathbb{E}\left(Z_{n}\right)
$$

- Take $X_{0}=0$.
- Since $X_{n} \geq 0$, for all n, we have $0<1-\rho \leq \mathbb{E}\left(Z_{n} / n\right)$.
- By the Ergodic Theorem, as $n \rightarrow \infty, \mathbb{E}\left(Z_{n} / n\right) \rightarrow \frac{1}{m_{0}}$, where m_{0} is the mean return time to 0 .
- Hence, $m_{0} \leq \frac{1}{1-\rho}<\infty$, showing that $\left(X_{n}\right)_{n \geq 0}$ is positive recurrent.

Equilibrium

- Suppose we start $\left(X_{n}\right)_{n \geq 0}$ with its equilibrium distribution π.
- Set

$$
G(z)=\mathbb{E}\left(z^{X_{n}}\right)=\sum_{i=0}^{\infty} \pi_{i} z^{i}
$$

- Then

$$
\begin{aligned}
z G(z) & =\mathbb{E}\left(z^{X_{n+1}+1}\right) \\
& =\mathbb{E}\left(z^{X_{n}+Y_{n+1}+1 X_{n}=0}\right) \\
& =\mathbb{E}\left(z^{Y_{n+1}}\right)\left(\pi_{0} z+\sum_{i=1}^{\infty} \pi_{i} z^{i}\right) \\
& =A(z)\left(\pi_{0} z+G(z)-\pi_{0}\right)
\end{aligned}
$$

- So

$$
(A(z)-z) G(z)=\pi_{0} A(z)(1-z)
$$

Equilibrium (Cont'd)

- We obtained $(A(z)-z) G(z)=\pi_{0} A(z)(1-z)$.
- Rewrite $\frac{A(z)-z}{1-z}=\frac{\pi_{0} A(z)}{G(z)}$.
- Equivalently,

$$
\frac{A(1)-z}{1-z}-\frac{A(1)-A(z)}{1-z}=\frac{\pi_{0} A(z)}{G(z)}
$$

- As $z \nearrow 1$, the left approaches $1-A^{\prime}(1-)=1-\rho$.
- As $z \nearrow 1$, since $G(1)=1=A(1)$, the right approaches π_{0}.
- So we must have:
- $\pi_{0}=1-\rho$;
- $m_{0}=\frac{1}{1-\rho}$;
- $G(z)=(1-\rho)(1-z) \frac{A(z)}{A(z)-z}$.
- A is given explicitly in terms of the service time distribution.
- So we can now obtain, in principle, the full equilibrium distribution.

Mean Queue Length

- We now obtain the mean queue length.
- Start again with $(A(z)-z) G(z)=\pi_{0} A(z)(1-z)$.
- Differentiate, recalling $\pi_{0}=1-\rho$,

$$
(A(z)-z) G^{\prime}(z)+\left(A^{\prime}(z)-1\right) G(z)=(1-\rho)\left\{A^{\prime}(z)(1-z)-A(z)\right\} .
$$

- Substitute $G(z)=(1-\rho)(1-z) \frac{A(z)}{A(z)-z}$ to obtain

$$
\begin{aligned}
G^{\prime}(z) & =-\frac{A^{\prime}(z)-1}{A(z)-z} G(z)+(1-\rho) \frac{A^{\prime}(z)(1-z)-A(z)}{A(z)-z} \\
& =-(1-\rho)(1-z) \frac{A(z)\left(A^{\prime}(z)-1\right)}{(A(z)-z)^{2}}+(1-\rho) \frac{A^{\prime}(z)(1-z)-A(z)}{A(z)-z} \\
& =(1-\rho) A^{\prime}(z) \frac{1-z}{A(z)-z}-(1-\rho) A(z) \frac{\left(A^{\prime}(z)-1\right)(1-z)+A(z)-z}{(A(z)-z)^{2}} .
\end{aligned}
$$

- Now note, using l'Hôpital's Rule, that:
- $\lim _{z \nearrow_{1}}(1-\rho) A^{\prime}(z) \frac{1-z}{A(z)-z}=(1-\rho) \rho \frac{1}{1-\rho}=\rho ;$
- $\lim _{z \nearrow 1} \frac{\left(A^{\prime}(z)-1\right)(1-z)+A(z)-z}{(A(z)-z)^{2}}=\lim _{z \nearrow 1} \frac{A^{\prime \prime}(z)(1-z)}{2\left(A^{\prime}(z)-1\right)(A(z)-z)}=\frac{A^{\prime \prime}(1-)}{2(1-\rho)^{2}}$.

Mean Queue Length (Cont'd)

- We found:
- $G^{\prime}(z)=(1-\rho) A^{\prime}(z) \frac{1-z}{A(z)-z}-(1-\rho) A(z) \frac{\left(A^{\prime}(z)-1\right)(1-z)+A(z)-z}{(A(z)-z)^{2}}$;
- $\lim _{z \nearrow_{1}}(1-\rho) A^{\prime}(z) \frac{1-z}{A(z)-z}=\rho$;
- $\lim _{z \nearrow 1} \frac{\left(A^{\prime}(z)-1\right)(1-z)+A(z)-z}{(A(z)-z)^{2}}=\frac{A^{\prime \prime}(1-)}{2(1-\rho)^{2}}$.
- Now we obtain

$$
\begin{aligned}
\mathbb{E}\left(X_{n}\right) & =G^{\prime}(1-) \\
& =\rho+\frac{A^{\prime \prime}(1-)}{2(1-\rho)} \\
& =\rho+\lambda^{2} \frac{L^{\prime \prime}(0+)}{2(1-\rho)} \\
& =\rho+\lambda^{2} \frac{\mathbb{E}\left(T^{2}\right)}{2(1-\rho)} .
\end{aligned}
$$

- In the case of the $M / M / 1$ queue, we have
- $\rho=\frac{\lambda}{\mu}$;
- $\mathbb{E}\left(T^{2}\right)=\frac{2}{\mu^{2}}$.

Consequently, $\mathbb{E}\left(X_{n}\right)=\rho+\frac{(\lambda / \mu)^{2}}{1-(\lambda / \mu)}=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda}$.

Mean Queueing Time

- Consider the queue $\left(X_{n}\right)_{n \in \mathbb{Z}}$ in equilibrium.
- Suppose that the customer who leaves at time 0 has spent:
- Time Q queueing to be served;
- Time T being served.
- Note that the customers in the queue at time 0 are precisely those who arrived during the queueing and service times of the departing customer.
- So, conditional on $Q+T=t, X_{0}$ is Poisson of parameter λt.
- Hence,

$$
G(z)=\mathbb{E}\left(e^{-\lambda(Q+T)(1-z)}\right)=M(\lambda(1-z)) L(\lambda(1-z)),
$$

where M is the Laplace transform $M(w)=\mathbb{E}\left(e^{-w Q}\right)$.

Mean Queueing Time (Cont'd)

- We have

$$
G(z)=M(\lambda(1-z)) L(\lambda(1-z)),
$$

where M is the Laplace transform $M(w)=\mathbb{E}\left(e^{-w Q}\right)$.

- Recall that:
- $A(z)=L(\lambda(1-z))$;
- $G(z)=(1-\rho)(1-z) \frac{A(z)}{A(z)-z}$.
- Setting $w=\lambda(1-z)$, we obtain

$$
\begin{gathered}
M(w)=\frac{G(z)}{A(z)} \\
M(w)=\frac{(1-\rho) \frac{w}{\lambda} \frac{A(z)}{A(z)-\left(1-\frac{w}{\lambda}\right)}}{A(z)} \\
M(w)=(1-\rho) \frac{w}{\lambda} \frac{1}{L(w)-\left(1-\frac{w}{\lambda}\right)} \\
M(w)=(1-\rho) \frac{w}{w-\lambda(1-L(w))} .
\end{gathered}
$$

Mean Queueing Time (Cont'd)

- We obtained

$$
M(w)=(1-\rho) \frac{w}{w-\lambda(1-L(w))}
$$

- Differentiation and l'Hôpital's Rule yield the mean queueing time

$$
\begin{aligned}
\mathbb{E}(Q) & =-M^{\prime}(0+) \\
& =-(1-\rho) \lim _{w \rightarrow 0^{+}} \frac{w+\lambda L(w)-\lambda-w\left(1+\lambda L^{\prime}(w)\right)}{(w+\lambda L(w)-\lambda)^{2}} \\
& =-(1-\rho) \lim _{w \rightarrow 0^{+}} \frac{\lambda L(w)-\lambda-w \lambda L^{\prime}(w)}{(w+\lambda L(w)-)^{2}} \\
& =-(1-\rho) \lim _{w \rightarrow 0^{+}} \frac{\lambda L^{\prime}(w)-\lambda L^{\prime}(w)-\lambda w L^{\prime \prime}(w)}{2(w+\lambda L(w)-\lambda)\left(1+\lambda L^{\prime}(w)\right)} \\
& =-(1-\rho) \lim _{w \rightarrow 0^{+}} \frac{-\lambda L^{\prime \prime}(w)-\lambda w L^{\prime \prime \prime}(w)}{2\left(1+\lambda L^{\prime}(w)\right)^{2}+2 \lambda L^{\prime \prime}(w)(w+\lambda L(w)-\lambda)} \\
& =-(1-\rho) \lim _{w \rightarrow 0^{+}} \frac{-\lambda L^{\prime \prime}(w)}{2\left(1+\lambda L^{\prime}(w)\right)^{2}} \\
& =(1-\rho) \frac{\lambda L^{\prime \prime}(0+)}{2\left(1+\lambda L^{\prime}(0+)\right)^{2}}=\frac{\lambda \mathbb{E}\left(T^{2}\right)}{2(1-\rho)} .
\end{aligned}
$$

Busy Period

- We turn to the busy period S.
- Consider the Laplace transform

$$
B(w)=\mathbb{E}\left(e^{-w S}\right)
$$

- Let T be the service time of the first customer in the busy period.
- Let N be the number of customers arriving while the first customer is served.
- This is Poisson of parameter λt.
- Conditional on $T=t$, we have

$$
S=t+S_{1}+\cdots+S_{N}
$$

where S_{1}, S_{2}, \ldots are independent, with the same distribution as S.

Busy Period (Cont'd)

- Now we have

$$
\begin{aligned}
B(w) & =\int_{0}^{\infty} \mathbb{E}\left(e^{-w S} \mid T=t\right) d F(t) \\
& =\int_{0}^{\infty} e^{-w t} e^{-\lambda t(1-B(w))} d F(t) \\
& =L(w+\lambda(1-B(w)))
\end{aligned}
$$

- Using $B(w)$, we can obtain moments by differentiation.

$$
\begin{aligned}
\mathbb{E}(S) & =-B^{\prime}(0+) \\
& =-L^{\prime}(0+)\left(1-\lambda B^{\prime}(0+)\right) \\
& =\mu(1+\lambda \mathbb{E}(S))
\end{aligned}
$$

- So the mean length of the busy period is given by $\mathbb{E}(S)=\frac{\mu}{1-\rho}$.

M/G/ ∞ Queue

- Arrivals at this queue form a Poisson process, of rate λ, say.
- Service times are independent, with a common distribution function

$$
F(t)=\mathbb{P}(T \leq t)
$$

- There are infinitely many servers.
- So all customers receive service at once.
- Suppose there are no customers at time 0.
- Let X_{t} be the number of customers being served at time t.
- Let N_{t} be the number of arrivals by time t.
- This is a Poisson random variable of parameter λt.
- Condition on $N_{t}=n$.
- Label the times of the n arrivals randomly by A_{1}, \ldots, A_{n}.
- By a previous theorem, A_{1}, \ldots, A_{n} are independent and uniformly distributed on the interval $[0, t]$.

M/G/ ∞ Queue (Cont'd)

- For each of these customers, service is incomplete at time t with probability

$$
p=\frac{1}{t} \int_{0}^{t} \mathbb{P}(T>s) d s=\frac{1}{t} \int_{0}^{t}(1-F(s)) d s .
$$

- Hence, conditional on $N_{t}=n, X_{t}$ is binomial of parameters n and p. Then

$$
\begin{aligned}
\mathbb{P}\left(X_{t}=k\right) & =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{t}=k \mid N_{t}=n\right) \mathbb{P}\left(N_{t}=n\right) \\
& =\sum_{n=k}^{\infty}\binom{n}{k} p^{k}(1-p)^{n-k} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =e^{-\lambda t} \frac{(\lambda p t)^{k}}{k!} \sum_{n=k}^{\infty} \frac{(\lambda(1-p) t)^{n-k}}{(n-k)!} \\
& =e^{-\lambda t} \frac{(\lambda p t)^{k}}{k!} e^{\lambda(1-p) t}=e^{-\lambda p t} \frac{(\lambda p t)^{k}}{k!} .
\end{aligned}
$$

- So we have shown that X_{t} is Poisson of parameter $\lambda \int_{0}^{t}(1-F(s)) d s$.

M/G/ ∞ Queue (Cont'd)

- We have shown that X_{t} is Poisson of parameter $\lambda \int_{0}^{t}(1-F(s)) d s$.
- Recall that

$$
\int_{0}^{\infty}(1-F(s)) d s=\int_{0}^{\infty} \mathbb{E}\left(1_{T>t}\right) d t=\mathbb{E} \int_{0}^{\infty} 1_{T>t} d t=\mathbb{E}(T)
$$

- Assume $\mathbb{E}(T)<\infty$.
- Then the queue size has a limiting distribution, which is Poisson of parameter

$$
\lambda \mathbb{E}(T)
$$

