Introduction to Markov Chains

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

Applications in Biology and Queueing Theory

- Markov Chains in Biology
- Queues and Queueing Networks

Subsection 1

Markov Chains in Biology

Modeling with a Branching Process

- Galton and Watson in the 1870s used a branching process while seeking a quantitative explanation for the phenomenon of the disappearance of family names, even in a growing population.
- Assume each male in a given family has a probability p_k of having k sons.
- The goal is to determine the probability that, after *n* generations, an individual had no male descendants.
- Suppose at time n = 0 there is one individual.
- He dies and is replaced at time *n* = 1 by a random number of offspring *N*.
- These offspring also die and are replaced at time n = 2, each independently, by a random number of further offspring, having the same distribution as N.

.

The Branching Process

- Take, for each $n \in \mathbb{N}$, a sequence of independent random variables $(N_k^n)_{k \in \mathbb{N}}$, each with the same distribution as N.
- Set $X_0 = 1$.
- Define inductively, for $n \ge 1$,

$$X_n = N_1^n + \cdots + N_{X_{n-1}}^n.$$

- Then X_n gives the size of the population in the *n*-th generation.
- The process $(X_n)_{n\geq 0}$ is a Markov chain on $I = \{0, 1, 2, ...\}$ with absorbing state 0.

Transience of the Branching Process

- We exclude the case where $\mathbb{P}(N = 1) = 1$.
- We have $\mathbb{P}(X_n = 0 | X_{n-1} = i) = \mathbb{P}(N = 0)^i$.
 - Suppose P(N = 0) > 0. Then state *i* leads to 0. Every state *i* ≥ 1 is transient.
 - Suppose $\mathbb{P}(N = 0) = 0$. Then $\mathbb{P}(N \ge 2) > 0$. So, for $i \ge 1$, i leads to j, for some j > i, and j does not lead to i.
- Hence, *i* is transient in any case.
- We deduce that with probability 1, one of the following happens:
 - $X_n = 0$, for some *n*;
 - $X_n \to \infty$, as $n \to \infty$.

The Probability Generating Function

- Further information on (X_n)_{n≥0} is obtained by exploiting the branching structure.
- The probability generating function, defined for $0 \le t \le 1$, is

$$\phi(t) = \mathbb{E}(t^N) = \sum_{k=0}^{\infty} t^k \mathbb{P}(N=k).$$

• Conditional on $X_{n-1} = k$, we have

$$X_n = N_1^n + \cdots + N_k^n.$$

So

$$\mathbb{E}(t^{X_n}|X_{n-1}=k)=\mathbb{E}(t^{N_1^n+\cdots+N_k^n})=\phi(t)^k.$$

The Probability Generating Function (Cont'd)

It follows that

$$\mathbb{E}(t^{X_n})=\sum_{k=0}^{\infty}\mathbb{E}(t^{X_n}|X_{n-1}=k)\mathbb{P}(X_{n-1}=k)=\mathbb{E}(\phi(t)^{X_{n-1}}).$$

• By induction, we find that

$$\mathbb{E}(t^{X_n})=\phi^{(n)}(t),$$

where $\phi^{(n)}$ is the *n*-fold composition $\phi \circ \cdots \circ \phi$.

• In principle, this gives the entire distribution of X_n , though $\phi^{(n)}$ may be a rather complicated function.

Probability of Survival

- Suppose $\mu = \mathbb{E}(N)$.
- We have

$$\mathbb{E}(X_n) = \lim_{t \neq 1} \frac{d}{dt} \mathbb{E}(t^{X_n}) = \lim_{t \neq 1} \frac{d}{dt} \phi^{(n)}(t) = \left(\lim_{t \neq 1} \phi'(t)\right)^n = \mu^n.$$

Moreover,

$$\mathbb{P}(X_n=0)=\phi^{(n)}(0).$$

- But state 0 is absorbing.
- So we have

$$q = \mathbb{P}(X_n = 0 \text{ for some } n) = \lim_{n \to \infty} \phi^{(n)}(0).$$

Probability of Survival (Cont'd)

$$r = \inf \{t \in [0,1] : \phi(t) = t\}.$$

- Then $\phi(r) = r$ by continuity.
- ϕ is increasing and $0 \leq r$.
- So we have $\phi(0) \leq r$.
- By induction,

$$\phi^{(n)}(0) \leq r, \quad ext{for all } n.$$

• It follows that $q \leq r$.

Probability of Survival (Cont'd)

On the other hand

$$q = \lim_{n \to \infty} \phi^{(n+1)}(0) = \lim_{n \to \infty} \phi(\phi^{(n)}(0)) = \phi(q).$$

- So also $q \ge r$.
- We conclude that q = r.
- We consider two cases.
 - Suppose, first, $\phi'(1) > 1$. Then we must have q < 1.
 - Suppose, next, $\phi'(1) \leq 1$. Now either $\phi'' = 0$ or $\phi'' > 0$ everywhere in [0,1). So we must have q = 1.
- We have shown that the population survives with positive probability if and only if $\mu > 1$, where μ is the mean of the offspring distribution.

Branching Processes and Random Walks

- We explore a connection between branching processes and random walks.
- Suppose that in each generation we replace individuals by their offspring one at a time.
- So if $X_n = k$, then it takes k steps to obtain X_{n+1} .
- The population size then performs a random walk (Y_m)_{m≥0} with step distribution N − 1.
- Define stopping times:

•
$$T_0 = 0;$$

• $T_{n+1} = T_n + Y_{T_n}$, for $n \ge 0.$

Observe that

$$X_n = Y_{T_n}$$
, for all n .

Branching Processes and Random Walks (Cont'd)

- $(Y_m)_{m\geq 0}$ jumps down by at most 1 each time;
- So $(X_n)_{n\geq 0}$ hits 0 if and only if $(Y_m)_{m\geq 0}$ hits 0.
- Moreover, we can use the Strong Markov Property and a variation of the argument of a previous example to see that if q_i = P(Y_m = 0 for some m|Y₀ = i) then q_i = q₁ⁱ, for all i.

$$q_1=\mathbb{P}(N=0)+\sum_{k=1}^{\infty}q_1^i\mathbb{P}(N=i)=\phi(q_1).$$

- Each non-negative solution of this equation provides a non-negative solution of the hitting probability equations.
- So we deduce that q_1 is the smallest non-negative root of the equation $q = \phi(q)$.
- This agrees with the generating function approach.

Epidemics

- In an idealized population we might suppose that:
 - All pairs of individuals make contact randomly and independently at a common rate, whether infected or not.
- For an idealized disease we might suppose that:
 - On contact with an infective, individuals themselves become infective and remain so for an exponential random time, after which they either die or recover.
- This idealized model is unrealistic.
- However, it is the simplest mathematical model to incorporate the basic features of an epidemic.
- We explore the consequences for the progress of the epidemic.

Formalization of the Model

Denote:

- The number of susceptibles by S_t ;
- The number of infectives by I_t .
- In the idealized model,

$$X_t = (S_t, I_t)$$

performs a Markov chain on $(\mathbb{Z}^+)^2$ with transition rates:

•
$$q_{(s,i)(s-i,i+1)} = \lambda si$$
, for some $\lambda \in (0,\infty)$;
• $q_{(s,i)(s,i-1)} = \mu i$, for some $\mu \in (0,\infty)$.

• Since $S_t + I_t$ does not increase, we effectively have a finite state-space.

Features of the Model

- The states (s,0), for $s\in\mathbb{Z}^+$, are all absorbing.
- All the other states are transient.
- All the communicating classes are singletons.
- The epidemic must therefore eventually die out.
- The absorption probabilities give the distribution of the number of susceptibles who escape infection.

Behavior in a Large Population

- We analyze the behavior in a large population, of size N, say.
- Consider the proportions

$$s_t^N = rac{S_t}{N}$$
 and $i_t^N = rac{I_t}{N}$.

Suppose that

$$\lambda = \frac{\nu}{N}$$

where ν is independent of N.

• Consider a sequence of models as $N \to \infty$.

Choose

$$s_0^N
ightarrow s_0$$
 and $i_0^N
ightarrow i_0.$

Behavior in a Large Population (Cont'd)

• It can be shown that as $N \to \infty$ the process (s_t^N, i_t^N) converges to the solution (s_t, i_t) of the differential equations

$$\frac{d}{dt}s_t = -\nu s_t i_t;$$

$$\frac{d}{dt}i_t = \nu s_t i_t - \mu i_t$$

starting from (s_0, i_0) .

This means that

$$\mathbb{E}\left[\left|(s_t^N, i_t^N) - (s_t, i_t)
ight|
ight] o 0, ext{ for all } t \geq 0.$$

• We will not prove this result, but will give an example of another easier asymptotic calculation.

Spreading of a Rumor

- Consider the case where:
 - $S_0 = N 1;$ • $I_0 = 1;$ • $\lambda = \frac{1}{N};$ • $\mu = 0.$
- This can be given an alternative interpretation.
- A rumor is begun by a single individual who tells it to everyone she meets.
- They in turn pass the rumor on to everyone they meet.
- We assume that each individual meets another randomly at the jump times of a Poisson process of rate 1.
- We look at how long it takes until everyone knows the rumor.

Spreading of a Rumor (Cont'd)

- Suppose *i* people know the rumor.
- Then N i people do not.
- The rate at which the rumor is passed on is

$$q_i=\frac{i(N-i)}{N}.$$

• The expected time until everyone knows the rumor is then

$$\sum_{i=1}^{N-1} q_i^{-1} = \sum_{i=1}^{N-1} \frac{N}{i(N-i)}$$

= $\sum_{i=1}^{N-1} (\frac{1}{i} + \frac{1}{N-i})$
= $2 \sum_{i=1}^{N-1} \frac{1}{i} \sim 2 \log N$

- This is not a limit but, rather, an asymptotic equivalence.
- The fact that the expected time grows with *N* is related to the fact that we do not scale *l*₀ with *N*.
- When the rumor is known by very few or by almost all, the proportion of "infectives" changes very slowly.

George Voutsadakis (LSSU)

Markov Chains

The Wright-Fisher Model in Population Genetics

• This is the discrete-time Markov chain on $\{0, 1, \dots, m\}$ with transition probabilities

$$p_{ij} = \binom{m}{j} \left(\frac{i}{m}\right)^j \left(\frac{m-i}{m}\right)^{m-j}$$

- In each generation there are *m* alleles.
- Some are of type A and some of type a.
- The types of alleles in generation n + 1 are found by choosing randomly (with replacement) from the types in generation n.

The Wright-Fisher Model (Cont'd)

- Let X_n denote the number of alleles of type A in generation n.
- Then $(X_n)_{n\geq 0}$ is a Markov chain with transition probabilities p_{ij} .
- This can be viewed as a model of inheritance for a particular gene with two alleles A and a.
- We suppose that each individual has two genes.
- So the possibilities are AA, Aa and aa.
- Let us take m to be even with m = 2k.

The Wright-Fisher Model (Cont'd)

- Suppose that:
 - Individuals in the next generation are obtained by mating randomly chosen individuals from the current generation;
 - Offspring inherit one allele from each parent.
- We allow that both parents may be the same.
- In particular, it is not required that parents be of opposite sex.
- E.g., assume generation *n* is

Then each gene in generation n + 1 is, independently:

- A with probability $\frac{7}{10}$;
- a with probability $\frac{3}{10}$.

We might, for example, get

The structure of pairs of genes is irrelevant to (X_n)_{n≥0}.
(X_n)_{n≥0} counts the number of alleles of type A.

The Wright-Fisher Model (Absorbing and Transient States)

- The communicating classes of $(X_n)_{n\geq 0}$ are $\{0\}$, $\{1,\ldots,m-1\}$, $\{m\}$.
- States 0 and m are absorbing and $\{1, \ldots, m-1\}$ is transient.
- The hitting probabilities for state *m* (pure AA) are given by

$$h_i = \mathbb{P}_i(X_n = m \text{ for some } n) = \frac{i}{m}.$$

- This can be seen by noticing that $(X_n)_{n\geq 0}$ is a martingale.
- Alternatively one can check that

$$h_i=\sum_{j=0}^m p_{ij}h_j.$$

• According to this model, genetic diversity eventually disappears.

The Moran Model

• The Moran model is the birth-and-death chain on $\{0, 1, \ldots, m\}$ with transition probabilities

$$p_{i,i-1} = \frac{i(m-i)}{m^2}, \quad p_{ii} = \frac{i^2 + (m-i)^2}{m^2}, \quad p_{i,i+1} = \frac{i(m-i)}{m^2}.$$

- It has the following genetic interpretation.
- A population consists of individuals of two types, a and A.
- At time *n*:
 - We choose randomly one individual from the population;
 - We add a new individual of the same type;
 - Then we choose, again randomly, one individual from the population;
 - We remove the chosen individual.
- In this way, we obtain the population at time n + 1.
- The same individual may be chosen to give birth and to die.
- In this case there is no change in the make-up of the population.

Differences and Similarities with Wright-Fisher

- Let X_n denote the number of type A individuals at time n.
- Then $(X_n)_{n\geq 0}$ is a Markov chain with transition matrix *P*.
- There are some differences from the Wright-Fisher model.
 - The Moran model cannot be interpreted in terms of a species where genes come in pairs, or where individuals have more than one parent;
 - In the Moran model we only change one individual at a time, not the whole population.
- The basic Markov chain structure is the same.
 - The communicating classes are $\{0\}$, $\{1, \ldots, m-1\}$, $\{m\}$, absorbing states 0 and *m* and transient class $\{1, \ldots, m-1\}$;
 - The Moran model is reversible, and, like the Wright-Fisher model, is a martingale.
 - The hitting probabilities are given by $\mathbb{P}_i(X_n = m \text{ for some } n) = \frac{i}{m}$.

Mean Time of Absorption

• We can also calculate explicitly the mean time to absorption

$$k_i = \mathbb{E}_i(T),$$

where T is the hitting time of $\{0, m\}$.

- The simplest method is to:
 - Fix *j*;
 - Write equations for the mean time k_i^j spent in j, starting from i, before absorption.

$$\begin{aligned} k_i^j &= \delta_{ij} + (p_{i,i-1}k_{i-1}^j + p_{ii}k_i^j + p_{i,i+1}k_{i+1}^j), \ i = 1, \dots, m-1; \\ k_0^j &= k_m^j = 0. \end{aligned}$$

• Then, for $i = 1, \ldots, m-1$

$$k_{i+1}^{j} - 2k_{i}^{j} + k_{i-1}^{j} = -\delta_{ij} \frac{m^{2}}{j(m-j)}$$

Mean Time of Absorption (Cont'd)

• We found, for $i = 1, \ldots, m - 1$,

$$k_{i+1}^j - 2k_i^j + k_{i-1}^j = -\delta_{ij} \frac{m^2}{j(m-j)}.$$

This has solution

$$k_i^j = \left\{ egin{array}{cc} rac{j}{j}k_j^j & ext{for } i\leq j \ rac{m-i}{m-j}k_j^j & ext{for } i\geq j \end{array}
ight.$$

Mean Time of Absorption (Cont'd)

• k_j^j is determined by

$$\left(\frac{m-j-1}{m-j}-2+\frac{j-1}{j}\right)k_j^j=-\frac{m^2}{j(m-j)}.$$

$$k_j^j = m$$

• Hence,

$$k_i = \sum_{j=1}^{m-1} k_i^j = m \left\{ \sum_{j=1}^i \frac{m-i}{m-j} + \sum_{j=i+1}^{m-1} \frac{i}{j} \right\}.$$

The Case of Large m and i = pm, 0

• The main interest lies in the case where:

- *m* is large;
- i = pm, for some $p \in (0, 1)$.

• Then, as $m \to \infty$,

$$\begin{array}{rcl} \frac{k_{pm}}{m^2} & = & (1-p)\sum_{j=1}^{mp}\frac{1}{m-j} + p\sum_{j=mp+1}^{m-1}\frac{1}{j} \\ & \rightarrow & -(1-p)\log{(1-p)} - p\log{p}. \end{array}$$

• So, as $m \to \infty$,

$$\mathbb{E}_{pm}(T) \sim -m^2\{(1-p)\log{(1-p)} + p\log{p}\}.$$

The Case of Large m and i = pm, 0

• We found

$$\mathbb{E}_{pm}(T) \sim -m^2\{(1-p)\log{(1-p)} + p\log{p}\}.$$

• For the Wright-Fisher model, one has

$$\mathbb{E}_{pm}(T) \sim -2m\{(1-p)\log{(1-p)} + p\log{p}\}.$$

- This has the same functional form in p and differs by a factor of $\frac{m}{2}$.
- This factor is partially explained by the fact that:
 - The Moran model deals with one individual at a time;
 - The Wright-Fisher model changes all *m* at once.

Subsection 2

Queues and Queueing Networks

Basic Elements of Queues

- Queues form in many circumstances and it is important to be able to predict their behavior.
- The basic mathematical model for queues runs as follows.
 - There is a succession of customers wanting service;
 - On arrival each customer must wait until a server is free, giving priority to earlier arrivals;
 - Probabilistically, it is assumed that:
 - The times between arrivals are independent random variables of the same distribution;
 - The times taken to serve customers are also independent random variables, of some other distribution.
- The main quantity of interest is the random process (X_t)_{t≥0} recording the number of customers in the queue at time t.
- This is always taken to include both those being served and those waiting to be served.

Preview of Some Special Cases

- In cases where inter-arrival times and service times have exponential distributions, $(X_t)_{t\geq 0}$ turns out to be a *continuous-time Markov chain*.
- In this case many questions about the queue can be answered.
- If the inter-arrival times only are exponential, an analysis is still possible.
- One exploits:
 - The memorylessness of the Poisson process of arrivals;
 - A certain discrete-time Markov chain embedded in the queue.

M/M/1 Queue

- M/M/1 means memoryless inter-arrival times/memoryless service times/one server.
- Let us suppose that:
 - The inter-arrival times are exponential of parameter λ ;
 - The service times are exponential of parameter μ .
- Then the number of customers in the queue (X_t)_{t≥0} evolves as a Markov chain with the following diagram:

Markov Chain Justification

- Suppose at time 0 there are i > 0 customers in the queue.
- Denote by:
 - T the time taken to serve the first customer;
 - A the time of the next arrival.
- Then the first jump time J_1 is $A \wedge T$.
- This is exponential of parameter $\lambda + \mu$.
- Moreover,

$$X_{J_1} = \begin{cases} i-1, & \text{if } T < A, \\ i+1, & \text{if } T > A. \end{cases}$$

These events are independent of J_1 , with probabilities:

$$\mathbb{P}(T < A) = rac{\mu}{\lambda + \mu}$$
 and $\mathbb{P}(T > A) = rac{\lambda}{\lambda + \mu}$.
Markov Chain Justification (Cont'd)

- If we condition on $J_1 = T$, then $A J_1$ is exponential of parameter λ and independent of J_1 .
- The time already spent waiting for an arrival is forgotten.
- Similarly, conditional on $J_1 = A$, $T J_1$ is exponential of parameter μ and independent of J_1 .
- The case where i = 0 is simpler as there is no serving going on.
- Hence, conditional on $X_{J_1} = j$, $(X_t)_{t \ge 0}$ begins a fresh from j at time J_1 .
- It follows that $(X_t)_{t\geq 0}$ is the claimed Markov chain.

Average Number of Customers

- The M/M/1 queue evolves like a random walk, except that it does not take jumps below 0.
 - Suppose $\lambda > \mu$. Then $(X_t)_{t \ge 0}$ is transient, that is $X_t \to \infty$ as $t \to \infty$. Thus, if $\lambda > \mu$ the queue grows without limit in the long term.
 - Suppose, next, $\lambda < \mu$. Then $(X_t)_{t \ge 0}$ is positive recurrent with invariant distribution

$$\pi_i = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^i.$$

So when $\lambda < \mu,$ the average number of customers in the queue in equilibrium is given by

$$\mathbb{E}_{\pi}(X_t) = \sum_{i=1}^{\infty} \mathbb{P}_{\pi}(X_t \ge i) = \sum_{i=1}^{\infty} \left(\frac{\lambda}{\mu}\right)^i = \frac{\lambda}{\mu - \lambda}.$$

Mean Continuously Busy Time

• The mean time to return to 0 is given by

$$m_0=rac{1}{q_0\pi_0}=rac{1}{\lambda}rac{1}{rac{\mu-\lambda}{\mu}}=rac{\mu}{\lambda(\mu-\lambda)}.$$

• So the *mean length of time that the server is continuously busy* is given by

$$m_0-\frac{1}{q_0}=\frac{\mu}{\lambda(\mu-\lambda)}-\frac{1}{\lambda}=\frac{1}{\mu-\lambda}$$

Mean Waiting Time

- Another quantity of interest is the *mean waiting time for a typical customer*, when $\lambda < \mu$ and the queue is in equilibrium.
- Conditional on finding a queue of length *i* on arrival, this is

$$\frac{i+1}{\mu}$$

• So the overall mean waiting time is

$$\mathbb{E}_{\pi}\frac{X_t+1}{\mu} = \frac{\frac{\lambda}{\mu-\lambda}+1}{\mu} = \frac{\frac{\mu}{\mu-\lambda}}{\mu} = \frac{1}{\mu-\lambda}.$$

Mean Total Waiting Time

- A rough check is available as we can calculate in two ways the *expected total time spent in the queue* over an interval of length *t*.
 - We may multiply the average queue length by t.
 - We get

$$t \cdot \mathbb{E}_{\pi}(X_t) = \frac{\lambda t}{\mu - \lambda}.$$

 We may multiply the mean waiting time by the expected number of customers λt.

We get

$$\lambda t \cdot \mathbb{E}_{\pi} \frac{X_t + 1}{\mu} = \frac{\lambda t}{\mu - \lambda}.$$

 The first calculation is exact but the second has not been fully justified.

M/M/s Queue

- This is a variation on the last example where:
 - There is one queue;
 - There are *s* servers.
- We assume that:
 - The arrival rate is λ ;
 - The service rate by each server is μ .

The Associated Markov Chain

- If *i* servers are occupied, the first service is completed at the minimum of *i* independent exponential times of parameter μ.
- The first service time is therefore exponential of parameter $i\mu$.
- The total service rate increases to a maximum *s*µ when all servers are working.
- Suppose the queue size includes the customers being served.
- Then the queue size (X_t)_{t≥0} performs a Markov chain with the following diagram:

• So this time we obtain a birth-and-death chain.

Invariant Measures

If λ > sμ, the birth-and-death chain is transient; Otherwise, recurrent.
To find an invariant measure we look at the detailed balance equations

 $\pi_i q_{i,i+1} = \pi_{i+1} q_{i+1,i}.$

• If
$$i \leq s$$
,
$$\frac{\pi_i}{\pi_0} = \frac{\pi_i}{\pi_{i-1}} \cdots \frac{\pi_1}{\pi_0} = \frac{\lambda}{i\mu} \cdots \frac{\lambda}{\mu} = \left(\frac{\lambda}{\mu}\right)^i \frac{1}{i!}.$$

• Similarly, if i > s,

$$\frac{\pi_i}{\pi_0} = \left(\frac{\lambda}{\mu}\right)^i \frac{1}{s^{i-s}s!}.$$

So we have

$$\frac{\pi_i}{\pi_0} = \begin{cases} \frac{(\lambda/\mu)^i}{i!}, & \text{for } i = 0, 1, \dots, s\\ \frac{(\lambda/\mu)^i}{s^{i-s}s!}, & \text{for } i = s+1, s+2, \dots \end{cases}$$

• The queue is therefore positive recurrent when $\lambda < s\mu$.

Special Cases

- There are two special cases when the invariant distribution has a particularly nice form.
 - Suppose s = 1.

Then we are back to the preceding example.

The invariant distribution is geometric of parameter $\frac{\lambda}{\mu}$,

$$\pi_i = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^i.$$

• Suppose $s = \infty$. We normalize π by taking $\pi_0 = e^{-\lambda/\mu}$. Then

$$\pi_i = e^{-\lambda/\mu} \frac{(\lambda/\mu)^i}{i!}.$$

So the invariant distribution is Poisson of parameter $\frac{\lambda}{\mu}$.

Number of Arrivals and Departures

- The number of arrivals by time t is a Poisson process of rate λ .
- Each arrival corresponds to an increase in X_t .
- Each departure corresponds to a decrease in X_t .
- Suppose that $\lambda < s\mu$, so there is an invariant distribution.
- Consider the queue in equilibrium.
- The detailed balance equations hold.
- Moreover, $(X_t)_{t\geq 0}$ is non-explosive.
- So by a previous theorem, for any T > 0, $(X_t)_{0 \le t \le T}$ and $(X_{T-t})_{0 \le t \le T}$ have the same law.
- It follows that, in equilibrium, the number of departures by time t is also a Poisson process of rate λ.

Comments

- The fact that the number of departures by time t is also a Poisson process of rate λ is slightly counter-intuitive.
- One might imagine that the departure process runs in fits and starts depending on the number of servers working.
- But it turns out that the process of departures, in equilibrium, is just as regular as the process of arrivals.

A Telephone Exchange

- A variation on the M/M/s queue is to turn away customers who cannot be served immediately.
- This might serve as a simple model for a telephone exchange, where the maximum number of calls that can be connected at once is *s*.
- When the exchange is full, additional calls are lost.
- The maximum queue size or buffer size is s.
- We get the following modified Markov chain diagram:

A Telephone Exchange (Cont'd)

- We can find the invariant distribution of this finite Markov chain by solving the detailed balance equations.
- This time we get a truncated Poisson distribution

$$\pi_i = \frac{\frac{(\lambda/\mu)^i}{i!}}{\sum_{j=0}^s \frac{(\lambda/\mu)^j}{j!}}.$$

- The long run proportion of time that the exchange is full equals the long run proportion of calls that are lost.
- By the Ergodic Theorem, it is given by

$$\pi_{s} = \frac{\frac{(\lambda/\mu)^{s}}{s!}}{\sum_{j=0}^{s} \frac{(\lambda/\mu)^{j}}{j!}}.$$

• This is known as Erlang's formula.

Queues in Series

Suppose that arriving customers have two service requirements.

- They arrive as a Poisson process of rate λ ;
- They are seen first by server A;
- They are seen then by server B.
- For simplicity, we assume that the service times are independent exponentials.
 - Service by A is an exponential of parameter α ;
 - Service by B is an exponential of parameter β .
- We compute the average queue length at B.

Queues in Series (Cont'd)

- Let $(X_t)_{t\geq 0}$ be the queue length at A.
- Let $(Y_t)_{t\geq 0}$ be the queue length at B.
- Then $(X_t)_{t\geq 0}$ is simply an M/M/1 queue.
 - Suppose $\lambda > \alpha$.
 - Then $(X_t)_{t\geq 0}$ is transient.

So there is eventually always a queue at A.

Moreover, departures form a Poisson process of rate α .

• Suppose $\lambda < \alpha$.

Then, by the reversibility argument of a previous example, the process of departures from A is Poisson of rate λ , provided queue A is in equilibrium.

Queues in Series (Cont'd)

- The question about queue length at B is not precisely formulated.
- One needs to specify that the queues should be in equilibrium.
- If $\lambda \ge \alpha$, there is no equilibrium.
- We may treat arrivals at B as a Poisson process of rate $\alpha \wedge \lambda$.
 - Suppose $\alpha \wedge \lambda < \beta$.

By a previous example, the average queue length at B, when in equilibrium, is given by

$$\frac{\alpha \wedge \lambda}{\beta - (\alpha \wedge \lambda)}.$$

• Suppose $\alpha \wedge \lambda > \beta$.

Then $(Y_t)_{t>0}$ is transient.

Now the queue at B grows without limit.

Queues in Series (Cont'd)

- There is an equilibrium for both queues if $\lambda < \alpha$ and $\lambda < \beta$.
- The fact that, in equilibrium, the output from A is Poisson greatly simplifies the analysis of the two queues in series.
- For example, the average time taken by one customer to obtain both services is given by

$$rac{1}{lpha-\lambda}+rac{1}{eta-\lambda}.$$

Closed Migration Process

- Consider a single particle in a finite state-space *I* which performs a Markov chain with irreducible *Q*-matrix *Q*.
- We know there is a unique invariant distribution π .
- The holding times of the chain may be thought of as service times, by a single server at each node *i* ∈ *I*.
- Suppose that there are N particles in the state-space.
- They move as before except that they must queue for service at every node.
- Suppose we do not care to distinguish between the particles.
- Then this is a new process $(X_t)_{t\geq 0}$ with state-space $\widetilde{I} = \mathbb{N}^I$.
- $X_t = (n_i : i \in I)$ if at time t there are n_i particles at state i.
- In fact, this new process is also a Markov chain.

Q-Matrix of the Closed Migration Process

- Suppose $(X_t)_{t\geq 0}$ has Q-matrix \widetilde{Q} .
- Define a function $\delta_i : \widetilde{I} \to \widetilde{I}$ by

$$(\delta_i n)_j = n_j + \delta_{ij}.$$

- Thus, δ_i adds a particle at i.
- Then, for $i \neq j$, the non-zero transition rates are given by

$$\widetilde{q}(\delta_i n, \delta_j n) = q_{ij}, \quad n \in \widetilde{I}, \ i, j \in I.$$

• Observe that we can write the invariant measure equation $\pi Q = 0$ in the form

$$\pi_i \sum_{j \neq i} q_{ij} = \sum_{j \neq i} \pi_j q_{ji}.$$

Invariant Measure

• For $n = (n_i : i \in I)$ we set

$$\widetilde{\pi}(n)=\prod_{i\in I}\pi_i^{n_i}.$$

Then

$$\begin{aligned} \widetilde{\pi}(\delta_{i}n)\sum_{j\neq i}\widetilde{q}(\delta_{i}n,\delta_{j}n) &= \prod_{k\in I}\pi_{k}^{n_{k}}(\pi\sum_{j\neq i}q_{ji}) \\ &= \prod_{k\in I}\pi_{k}^{n_{k}}(\sum_{j\neq i}\pi_{j}q_{ji}) \\ &= \sum_{j\neq i}\widetilde{\pi}(\delta_{j}n)\widetilde{q}(\delta_{j}n,\delta_{i}n). \end{aligned}$$

• Given $m \in \tilde{I}$, we can set $m = \delta_i n$, whenever $m_i \ge 1$.

• On summing the resulting equations we obtain

$$\widetilde{\pi}(m)\sum_{n\neq m}\widetilde{q}(m,n)=\sum_{n\neq m}\widetilde{\pi}(n)\widetilde{q}(n,m).$$

• So $\tilde{\pi}$ is an invariant measure for \tilde{Q} .

Communicating Classes

- The total number of particles is conserved.
- So \widetilde{Q} has communicating classes

$$C_N = \left\{ n \in \widetilde{I} : \sum_{i \in I} n_i = N \right\}.$$

 The unique invariant distribution for the N-particle system is given by normalizing π̃ restricted to C_N.

Open Migration Process

- We consider a modification of the last example.
- We make the following assumptions.
 - New customers, or particles, arrive at each node $i \in I$ at rate λ_i .
 - Customers receiving service at node *i* leave the network at rate μ_i .
- In this setting, like in a shopping center:
 - Customers enter the network;
 - They move from queue to queue according to a Markov chain;
 - Eventually, they leave.
- This model includes:
 - The closed system of the last example;
 - The queues in series of a previous example.

Formalism

Let

$$X_t = (X_t^i : i \in I),$$

where X_t^i denotes the number of customers at node *i* at time *t*. • $(X_t)_{t>0}$ is a Markov chain in $\tilde{I} = \mathbb{N}^{I}$.

- The non-zero transition rates are given, for all n ∈ *i* and distinct states i, j ∈ l, by:
 - $\widetilde{q}(n, \delta_i n) = \lambda_i;$
 - $\widetilde{q}(\delta_i n, \delta_j n) = q_{ij};$
 - $\widetilde{q}(\delta_j n, n) = \mu_j.$
- We shall assume that:
 - $\lambda_i > 0$, for some *i*;
 - $\mu_j > 0$, for some j.
- Then \widetilde{Q} is irreducible on \widetilde{I} .

Invariant Measure

 The system of invariant measure equations for an invariant measure is replaced here by

$$\pi_i\left(\mu_i+\sum_{j\neq i}q_{ij}\right)=\lambda_i+\sum_{j\neq i}\pi_jq_{ji}.$$

- This system has a unique solution, with $\pi_i > 0$ for all *i*.
- This may be seen by considering the invariant distribution for the extended Q-matrix \overline{Q} on $I \cup \{\partial\}$ with off-diagonal entries

$$\overline{q}_{\partial j} = \lambda_j, \quad \overline{q}_{ij} = q_{ij}, \quad \overline{q}_{i\partial} = \mu_i.$$

• Summing over $i \in I$, we find

$$\sum_{i\in I}\pi_i\mu_i=\sum_{i\in I}\lambda_i.$$

Invariant Measure (Cont'd)

• As in the last example, for $n = (n_i : i \in I)$, set

$$\widetilde{\pi}(n) = \prod_{i \in I} \pi_i^{n_i}.$$

- Transitions from $m \in I$ may be divided into:
 - Those where a new particle is added;
 - For each *i* ∈ *I* with *m_i* ≥ 1, those where a particle is moved from *i* to somewhere else.
- For the first sort of transition

$$\begin{aligned} \widetilde{\pi}(m) &= \sum_{j \in I} \widetilde{q}(m, \delta_j m) \\ &= \widetilde{\pi}(m) \sum_{j \in I} \lambda_j \\ &= \widetilde{\pi}(m) \sum_{j \in I} \pi_j \mu_j \\ &= \sum_{j \in I} \widetilde{\pi}(\delta_j m) \widetilde{q}(\delta_j m, m). \end{aligned}$$

Invariant Measure (Cont'd)

For the second sort,

$$\begin{aligned} \widetilde{\pi}(\delta_{i}n)(\widetilde{q}(\delta_{i}n,n) + \sum_{j\neq i} \widetilde{q}(\delta_{i}n,\delta_{j}n)) \\ &= \prod_{k\in I} \pi_{k}^{n_{k}}(\pi_{i}(\mu_{i} + \sum_{j\neq i} q_{ij})) \\ &= \prod_{k\in I} \pi_{k}^{n_{k}}(\lambda_{i} + \sum_{j\neq i} \pi_{j}q_{ji}) \\ &= \widetilde{\pi}(n)\widetilde{q}(n,\delta_{i}n) + \sum_{j\neq i} \widetilde{\pi}(\delta_{j}n)\widetilde{q}(\delta_{j}n,\delta_{i}n) \end{aligned}$$

• On summing these equations, we obtain

$$\widetilde{\pi}(m)\sum_{n\neq m}\widetilde{q}(m,n)=\sum_{n\neq m}\widetilde{\pi}(n)\widetilde{q}(n,m).$$

• So $\tilde{\pi}$ is an invariant measure for \tilde{Q} .

Queue Lengths

- Suppose $\pi_i < 1$, for all *i*.
- Then $\widetilde{\pi}$ has finite total mass

$$\prod_{i\in I}(1-\pi_i).$$

- Otherwise the total mass if infinite.
- Hence, \widetilde{Q} is positive recurrent if and only if $\pi_i < 1$ for all *i*.
- In that case, in equilibrium, the individual queue lengths (Xⁱ_t : i ∈ I) are independent geometric random variables with

$$\mathbb{P}(X_t^i = n_i) = (1 - \pi_i)\pi_i^{n_i}.$$

M/G/1 Queue

- The service requirements have often observable distributions which are generally not exponential.
- A better model in this case is the M/G/1 queue, where G indicates that the service-time distribution is general.
- We can characterize the distribution of a service time *T* in one of two ways.
 - By its distribution function $F(t) = \mathbb{P}(T \le t)$;
 - By its Laplace transform

$$L(w) = \mathbb{E}(e^{-wT}) = \int_0^\infty e^{-wt} dF(t).$$

- This integral is the Lebesgue-Stieltjes integral.
- When T has a density function f(t) we can replace dF(t) by f(t)dt.
- Then the mean service time μ is given by

$$\mu = \mathbb{E}(T) = -L'(0+).$$

Formalism

- Let X_n be the queue size immediately following the *n*-th departure.
- Let Y_n be the number of arrivals during the *n*-th service time.
- Then

$$X_{n+1} = X_n + Y_{n+1} - 1_{X_n > 0}.$$

- The case where $X_n = 0$ is different because then we get an extra arrival before the (n + 1)-th service time begins.
- By the Markov Property of the Poisson process, *Y*₁, *Y*₂,... are independent and identically distributed.
- It follows that $(X_n)_{n\geq 0}$ is a discrete time Markov chain.
- Indeed, except for visits to 0, $(X_n)_{n\geq 0}$ behaves as a random walk with jumps $Y_n 1$.

Service Intensity and Generating Function

- Let T_n denote the *n*th service time.
- Conditional on $T_n = t$, Y_n is Poisson of parameter λt .

So

$$\mathbb{E}(Y_n) = \int_0^\infty \lambda t dF(t) = \lambda \mu.$$

• $\rho = \mathbb{E}(Y_n)$ is termed the service intensity.

• We can compute the probability generating function

$$\begin{array}{rcl} A(z) & = & \mathbb{E}(z^{Y_n}) \\ & = & \int_0^\infty E(z^{Y_n}|T_n=t)dF(t) \\ & = & \int_0^\infty e^{-\lambda t(1-z)}dF(t) \\ & = & L(\lambda(1-z)). \end{array}$$

Positive Recurrence

• We set
$$\rho = \mathbb{E}(Y_n) = \lambda \mu$$
.

- Suppose $\rho < 1$.
- Let Z_n be the number of visits of X_n to 0 before time n.
- Then we have

$$X_n = X_0 + (Y_1 + \cdots + Y_n) - n + Z_n.$$

So

$$\mathbb{E}(X_n) = \mathbb{E}(X_0) - n(1-\rho) + \mathbb{E}(Z_n).$$

• Take $X_0 = 0$.

- Since $X_n \ge 0$, for all n, we have $0 < 1 \rho \le \mathbb{E}(Z_n/n)$.
- By the Ergodic Theorem, as $n \to \infty$, $\mathbb{E}(Z_n/n) \to \frac{1}{m_0}$, where m_0 is the mean return time to 0.

• Hence, $m_0 \leq \frac{1}{1-\rho} < \infty$, showing that $(X_n)_{n \geq 0}$ is positive recurrent.

Equilibrium

Suppose we start (X_n)_{n≥0} with its equilibrium distribution π.
Set ∝

$$G(z) = \mathbb{E}(z^{X_n}) = \sum_{i=0}^{\infty} \pi_i z^i.$$

Then

$$zG(z) = \mathbb{E}(z^{X_{n+1}+1}) = \mathbb{E}(z^{X_n+Y_{n+1}+1}x_{n=0}) = \mathbb{E}(z^{Y_{n+1}})(\pi_0 z + \sum_{i=1}^{\infty} \pi_i z^i) = A(z)(\pi_0 z + G(z) - \pi_0).$$

So

$$(A(z) - z)G(z) = \pi_0 A(z)(1 - z).$$

Equilibrium (Cont'd)

- We obtained $(A(z) z)G(z) = \pi_0 A(z)(1 z)$.
- Rewrite $\frac{A(z)-z}{1-z} = \frac{\pi_0 A(z)}{G(z)}$.
- Equivalently,

$$\frac{A(1)-z}{1-z} - \frac{A(1)-A(z)}{1-z} = \frac{\pi_0 A(z)}{G(z)}.$$

• As $z \nearrow 1$, the left approaches $1 - A'(1-) = 1 - \rho$.

• As $z \nearrow 1$, since G(1) = 1 = A(1), the right approaches π_0 .

So we must have:

•
$$\pi_0 = 1 - \rho;$$

• $m_0 = \frac{1}{1 - \rho};$
• $G(z) = (1 - \rho)(1 - z)\frac{A(z)}{A(z) - z}.$

• A is given explicitly in terms of the service time distribution.

• So we can now obtain, in principle, the full equilibrium distribution.

Mean Queue Length

- We now obtain the mean queue length.
- Start again with $(A(z) z)G(z) = \pi_0 A(z)(1 z)$.
- Differentiate, recalling $\pi_0 = 1 \rho$,

$$(A(z)-z)G'(z)+(A'(z)-1)G(z)=(1-\rho)\{A'(z)(1-z)-A(z)\}.$$

• Substitute $G(z) = (1 - \rho)(1 - z)\frac{A(z)}{A(z) - z}$ to obtain

$$\begin{aligned} G'(z) &= -\frac{A'(z)-1}{A(z)-z}G(z) + (1-\rho)\frac{A'(z)(1-z)-A(z)}{A(z)-z} \\ &= -(1-\rho)(1-z)\frac{A(z)(A'(z)-1)}{(A(z)-z)^2} + (1-\rho)\frac{A'(z)(1-z)-A(z)}{A(z)-z} \\ &= (1-\rho)A'(z)\frac{1-z}{A(z)-z} - (1-\rho)A(z)\frac{(A'(z)-1)(1-z)+A(z)-z}{(A(z)-z)^2} \end{aligned}$$

Now note, using l'Hôpital's Rule, that:

•
$$\lim_{z \nearrow 1} (1-\rho)A'(z)\frac{1-z}{A(z)-z} = (1-\rho)\rho\frac{1}{1-\rho} = \rho;$$

•
$$\lim_{z \nearrow 1} \frac{(A'(z)-1)(1-z)+A(z)-z}{(A(z)-z)^2} = \lim_{z \nearrow 1} \frac{A''(z)(1-z)}{2(A'(z)-1)(A(z)-z)} = \frac{A''(1-\rho)}{2(1-\rho)^2}.$$

Mean Queue Length (Cont'd)

• We found:

•
$$G'(z) = (1 - \rho)A'(z)\frac{1-z}{A(z)-z} - (1 - \rho)A(z)\frac{(A'(z)-1)(1-z)+A(z)-z}{(A(z)-z)^2};$$

• $\lim_{z \nearrow 1} (1 - \rho)A'(z)\frac{1-z}{A(z)-z} = \rho;$
• $\lim_{z \nearrow 1} \frac{(A'(z)-1)(1-z)+A(z)-z}{(A(z)-z)^2} = \frac{A''(1-)}{2(1-\rho)^2}.$

Now we obtain

$$\mathbb{E}(X_n) = G'(1-) \\ = \rho + \frac{A''(1-)}{2(1-\rho)} \\ = \rho + \lambda^2 \frac{L''(0+)}{2(1-\rho)} \\ = \rho + \lambda^2 \frac{\mathbb{E}(T^2)}{2(1-\rho)}.$$

• In the case of the M/M/1 queue, we have

•
$$\rho = \frac{\lambda}{\mu}$$
;
• $\mathbb{E}(T^2) = \frac{2}{\mu^2}$.
Consequently, $\mathbb{E}(X_n) = \rho + \frac{(\lambda/\mu)^2}{1-(\lambda/\mu)} = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu-\lambda}$

Mean Queueing Time

- Consider the queue $(X_n)_{n \in \mathbb{Z}}$ in equilibrium.
- Suppose that the customer who leaves at time 0 has spent:
 - Time *Q* queueing to be served;
 - Time T being served.
- Note that the customers in the queue at time 0 are precisely those who arrived during the queueing and service times of the departing customer.
- So, conditional on Q + T = t, X_0 is Poisson of parameter λt .

Hence,

$$G(z) = \mathbb{E}(e^{-\lambda(Q+T)(1-z)}) = M(\lambda(1-z))L(\lambda(1-z)),$$

where *M* is the Laplace transform $M(w) = \mathbb{E}(e^{-wQ})$.
Mean Queueing Time (Cont'd)

We have

$$G(z) = M(\lambda(1-z))L(\lambda(1-z)),$$

where *M* is the Laplace transform $M(w) = \mathbb{E}(e^{-wQ})$.

Recall that:

•
$$A(z) = L(\lambda(1-z));$$

• $G(z) = (1-\rho)(1-z)\frac{A(z)}{A(z)-z}$

• Setting $w = \lambda(1-z)$, we obtain

$$M(w) = \frac{G(z)}{A(z)}$$
$$M(w) = \frac{(1-\rho)\frac{w}{\lambda}\frac{A(z)}{A(z)-(1-\frac{w}{\lambda})}}{A(z)}$$
$$M(w) = (1-\rho)\frac{w}{\lambda}\frac{1}{L(w)-(1-\frac{w}{\lambda})}$$
$$M(w) = (1-\rho)\frac{w}{w-\lambda(1-L(w))}.$$

Mean Queueing Time (Cont'd)

We obtained

$$M(w) = (1-\rho)\frac{w}{w-\lambda(1-L(w))}$$

• Differentiation and l'Hôpital's Rule yield the mean queueing time

 $\mathbb{E}(Q) = -M'(0+)$ $= -(1-\rho)\lim_{w\to 0^+} \frac{w+\lambda L(w)-\lambda-w(1+\lambda L'(w))}{(w+\lambda L(w)-\lambda)^2}$ $= -(1-\rho)\lim_{w\to 0^+}\frac{\lambda L(w)-\lambda-w\lambda L'(w)}{(w+\lambda l(w)-\lambda)^2}$ $= -(1-\rho)\lim_{w\to 0^+} \frac{\lambda L'(w) - \lambda L'(w) - \lambda w L''(w)}{2(w+\lambda I(w) - \lambda)(1+\lambda I'(w))}$ $= -(1-\rho)\lim_{w\to 0^+} \frac{-\lambda L''(w) - \lambda w L'''(w)}{2(1+\lambda L'(w))^2 + 2\lambda L''(w)(w+\lambda L(w)-\lambda)}$ $= -(1-\rho)\lim_{w\to 0^+} \frac{-\lambda L''(w)}{2(1+\lambda L'(w))^2}$ $= (1-\rho)\frac{\lambda L''(0+)}{2(1+\lambda L'(0+))^2} = \frac{\lambda \mathbb{E}(T^2)}{2(1-\rho)}.$

Busy Period

- We turn to the busy period *S*.
- Consider the Laplace transform

$$B(w) = \mathbb{E}(e^{-wS}).$$

- Let T be the service time of the first customer in the busy period.
- Let *N* be the number of customers arriving while the first customer is served.
- This is Poisson of parameter λt .
- Conditional on T = t, we have

$$S=t+S_1+\cdots+S_N,$$

where S_1, S_2, \ldots are independent, with the same distribution as S.

Busy Period (Cont'd)

Now we have

$$B(w) = \int_0^\infty \mathbb{E}(e^{-wS}|T=t)dF(t)$$

=
$$\int_0^\infty e^{-wt}e^{-\lambda t(1-B(w))}dF(t)$$

=
$$L(w+\lambda(1-B(w))).$$

• Using B(w), we can obtain moments by differentiation.

$$egin{array}{rcl} \mathbb{E}(S) &=& -B'(0+) \ &=& -L'(0+)(1-\lambda B'(0+)) \ &=& \mu(1+\lambda \mathbb{E}(S)). \end{array}$$

• So the mean length of the busy period is given by $\mathbb{E}(S) = \frac{\mu}{1-\rho}$.

$M/G/\infty$ Queue

- Arrivals at this queue form a Poisson process, of rate λ , say.
- Service times are independent, with a common distribution function

$$F(t) = \mathbb{P}(T \leq t).$$

- There are infinitely many servers.
- So all customers receive service at once.
- Suppose there are no customers at time 0.
- Let X_t be the number of customers being served at time t.
- Let N_t be the number of arrivals by time t.
- This is a Poisson random variable of parameter λt .
- Condition on $N_t = n$.
- Label the times of the *n* arrivals randomly by A_1, \ldots, A_n .
- By a previous theorem, A_1, \ldots, A_n are independent and uniformly distributed on the interval [0, t].

$M/G/\infty$ Queue (Cont'd)

• For each of these customers, service is incomplete at time *t* with probability

$$p=rac{1}{t}\int_0^t\mathbb{P}(T>s)ds=rac{1}{t}\int_0^t(1-F(s))ds.$$

• Hence, conditional on $N_t = n$, X_t is binomial of parameters n and p. Then

$$\mathbb{P}(X_t = k) = \sum_{n=0}^{\infty} \mathbb{P}(X_t = k | N_t = n) \mathbb{P}(N_t = n)$$

$$= \sum_{n=k}^{\infty} {n \choose k} p^k (1-p)^{n-k} e^{-\lambda t} \frac{(\lambda t)^n}{n!}$$

$$= e^{-\lambda t} \frac{(\lambda p t)^k}{k!} \sum_{n=k}^{\infty} \frac{(\lambda (1-p)t)^{n-k}}{(n-k)!}$$

$$= e^{-\lambda t} \frac{(\lambda p t)^k}{k!} e^{\lambda (1-p)t} = e^{-\lambda p t} \frac{(\lambda p t)^k}{k!}.$$

• So we have shown that X_t is Poisson of parameter $\lambda \int_0^t (1 - F(s)) ds$.

$M/G/\infty$ Queue (Cont'd)

- We have shown that X_t is Poisson of parameter $\lambda \int_0^t (1 F(s)) ds$.
- Recall that

$$\int_0^\infty (1-F(s))ds = \int_0^\infty \mathbb{E}(1_{T>t})dt = \mathbb{E}\int_0^\infty 1_{T>t}dt = \mathbb{E}(T).$$

- Assume $\mathbb{E}(T) < \infty$.
- Then the queue size has a limiting distribution, which is Poisson of parameter

 $\lambda \mathbb{E}(T).$