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Modeling with a Branching Process

Galton and Watson in the 1870s used a branching process while
seeking a quantitative explanation for the phenomenon of the
disappearance of family names, even in a growing population.

Assume each male in a given family has a probability pk of having k

sons.

The goal is to determine the probability that, after n generations, an
individual had no male descendants.

Suppose at time n = 0 there is one individual.

He dies and is replaced at time n = 1 by a random number of
offspring N.

These offspring also die and are replaced at time n = 2, each
independently, by a random number of further offspring, having the
same distribution as N.
...
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The Branching Process

Take, for each n ∈ N, a sequence of independent random variables
(Nn

k )k∈N, each with the same distribution as N.

Set X0 = 1.

Define inductively, for n ≥ 1,

Xn = Nn
1 + · · · + Nn

Xn−1
.

Then Xn gives the size of the population in the n-th generation.

The process (Xn)n≥0 is a Markov chain on I = {0, 1, 2, . . .} with
absorbing state 0.
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Transience of the Branching Process

We exclude the case where P(N = 1) = 1.

We have P(Xn = 0|Xn−1 = i) = P(N = 0)i .

Suppose P(N = 0) > 0.
Then state i leads to 0.
Every state i ≥ 1 is transient.
Suppose P(N = 0) = 0.
Then P(N ≥ 2) > 0.
So, for i ≥ 1, i leads to j , for some j > i , and j does not lead to i .

Hence, i is transient in any case.

We deduce that with probability 1, one of the following happens:

Xn = 0, for some n;
Xn → ∞, as n → ∞.
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The Probability Generating Function

Further information on (Xn)n≥0 is obtained by exploiting the
branching structure.

The probability generating function, defined for 0 ≤ t ≤ 1, is

φ(t) = E(tN) =

∞∑

k=0

tkP(N = k).

Conditional on Xn−1 = k , we have

Xn = Nn
1 + · · ·+ Nn

k .

So
E(tXn |Xn−1 = k) = E(tN

n
1+···+Nn

k ) = φ(t)k .
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The Probability Generating Function (Cont’d)

It follows that

E(tXn) =

∞∑

k=0

E(tXn |Xn−1 = k)P(Xn−1 = k) = E(φ(t)Xn−1).

By induction, we find that

E(tXn) = φ(n)(t),

where φ(n) is the n-fold composition φ ◦ · · · ◦ φ.

In principle, this gives the entire distribution of Xn, though φ(n) may
be a rather complicated function.

George Voutsadakis (LSSU) Markov Chains April 2024 8 / 79



Applications in Biology and Queueing Theory Markov Chains in Biology

Probability of Survival

Suppose µ = E(N).

We have

E(Xn) = lim
tր1

d

dt
E(tXn) = lim

tր1

d

dt
φ(n)(t) =

(
lim
tր1

φ′(t)

)n

= µn.

Moreover,
P(Xn = 0) = φ(n)(0).

But state 0 is absorbing.

So we have

q = P(Xn = 0 for some n) = lim
n→∞

φ(n)(0).
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Probability of Survival (Cont’d)

φ(t) = E(tN) is a convex function with φ(1) = 1.

Set
r = inf {t ∈ [0, 1] : φ(t) = t}.

Then φ(r) = r by continuity.

φ is increasing and 0 ≤ r .

So we have φ(0) ≤ r .

By induction,
φ(n)(0) ≤ r , for all n.

It follows that q ≤ r .
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Probability of Survival (Cont’d)

On the other hand

q = lim
n→∞

φ(n+1)(0) = lim
n→∞

φ(φ(n)(0)) = φ(q).

So also q ≥ r .

We conclude that q = r .

We consider two cases.

Suppose, first, φ′(1) > 1.
Then we must have q < 1.
Suppose, next, φ′(1) ≤ 1.
Now either φ′′ = 0 or φ′′ > 0 everywhere in [0, 1).
So we must have q = 1.

We have shown that the population survives with positive probability
if and only if µ > 1, where µ is the mean of the offspring distribution.
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Branching Processes and Random Walks

We explore a connection between branching processes and random
walks.

Suppose that in each generation we replace individuals by their
offspring one at a time.

So if Xn = k , then it takes k steps to obtain Xn+1.

The population size then performs a random walk (Ym)m≥0 with step
distribution N − 1.

Define stopping times:

T0 = 0;
Tn+1 = Tn + YTn

, for n ≥ 0.

Observe that
Xn = YTn

, for all n.
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Branching Processes and Random Walks (Cont’d)

(Ym)m≥0 jumps down by at most 1 each time;

So (Xn)n≥0 hits 0 if and only if (Ym)m≥0 hits 0.

Moreover, we can use the Strong Markov Property and a variation of
the argument of a previous example to see that if
qi = P(Ym = 0 for some m|Y0 = i) then qi = qi1, for all i .

So

q1 = P(N = 0) +

∞∑

k=1

qi1P(N = i) = φ(q1).

Each non-negative solution of this equation provides a non-negative
solution of the hitting probability equations.

So we deduce that q1 is the smallest non-negative root of the
equation q = φ(q).

This agrees with the generating function approach.
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Epidemics

In an idealized population we might suppose that:

All pairs of individuals make contact randomly and independently at a
common rate, whether infected or not.

For an idealized disease we might suppose that:

On contact with an infective, individuals themselves become infective
and remain so for an exponential random time, after which they either
die or recover.

This idealized model is unrealistic.

However, it is the simplest mathematical model to incorporate the
basic features of an epidemic.

We explore the consequences for the progress of the epidemic.
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Formalization of the Model

Denote:

The number of susceptibles by St ;
The number of infectives by It .

In the idealized model,
Xt = (St , It)

performs a Markov chain on (Z+)2 with transition rates:

q(s,i)(s−i ,i+1) = λsi , for some λ ∈ (0,∞);
q(s,i)(s,i−1) = µi , for some µ ∈ (0,∞).

Since St + It does not increase, we effectively have a finite state-space.
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Features of the Model

The states (s, 0), for s ∈ Z
+, are all absorbing.

All the other states are transient.

All the communicating classes are singletons.

The epidemic must therefore eventually die out.

The absorption probabilities give the distribution of the number of
susceptibles who escape infection.
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Behavior in a Large Population

We analyze the behavior in a large population, of size N, say.

Consider the proportions

sNt =
St

N
and iNt =

It

N
.

Suppose that

λ =
ν

N
.

where ν is independent of N.

Consider a sequence of models as N → ∞.

Choose
sN0 → s0 and iN0 → i0.
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Behavior in a Large Population (Cont’d)

It can be shown that as N → ∞ the process (sNt , iNt ) converges to the
solution (st , it) of the differential equations

d
dt
st = −νst it ;

d
dt
it = νst it − µit ,

starting from (s0, i0).

This means that

E

[∣∣∣(sNt , iNt )− (st , it)
∣∣∣
]
→ 0, for all t ≥ 0.

We will not prove this result, but will give an example of another
easier asymptotic calculation.
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Spreading of a Rumor

Consider the case where:

S0 = N − 1;
I0 = 1;
λ = 1

N
;

µ = 0.

This can be given an alternative interpretation.

A rumor is begun by a single individual who tells it to everyone she
meets.

They in turn pass the rumor on to everyone they meet.

We assume that each individual meets another randomly at the jump
times of a Poisson process of rate 1.

We look at how long it takes until everyone knows the rumor.
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Spreading of a Rumor (Cont’d)

Suppose i people know the rumor.
Then N − i people do not.
The rate at which the rumor is passed on is

qi =
i(N − i)

N
.

The expected time until everyone knows the rumor is then
∑N−1

i=1 q−1
i =

∑N−1
i=1

N
i(N−i)

=
∑N−1

i=1 (1
i
+ 1

N−i
)

= 2
∑N−1

i=1
1
i
∼ 2 logN.

This is not a limit but, rather, an asymptotic equivalence.

The fact that the expected time grows with N is related to the fact
that we do not scale I0 with N.

When the rumor is known by very few or by almost all, the proportion
of “infectives” changes very slowly.
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The Wright-Fisher Model in Population Genetics

This is the discrete-time Markov chain on {0, 1, . . . ,m} with
transition probabilities

pij =

(
m

j

)(
i

m

)j (
m − i

m

)m−j

.

In each generation there are m alleles.

Some are of type A and some of type a.

The types of alleles in generation n + 1 are found by choosing
randomly (with replacement) from the types in generation n.
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The Wright-Fisher Model (Cont’d)

Let Xn denote the number of alleles of type A in generation n.

Then (Xn)n≥0 is a Markov chain with transition probabilities pij .

This can be viewed as a model of inheritance for a particular gene
with two alleles A and a.

We suppose that each individual has two genes.

So the possibilities are AA, Aa and aa.

Let us take m to be even with m = 2k .
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The Wright-Fisher Model (Cont’d)

Suppose that:
Individuals in the next generation are obtained by mating randomly
chosen individuals from the current generation;
Offspring inherit one allele from each parent.

We allow that both parents may be the same.

In particular, it is not required that parents be of opposite sex.

E.g., assume generation n is

AA aA AA AA aa.

Then each gene in generation n + 1 is, independently:
A with probability 7

10 ;
a with probability 3

10 .

We might, for example, get

aa aA Aa AA AA.

The structure of pairs of genes is irrelevant to (Xn)n≥0.

(Xn)n≥0 counts the number of alleles of type A.
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The Wright-Fisher Model (Absorbing and Transient States)

The communicating classes of (Xn)n≥0 are {0}, {1, . . . ,m − 1}, {m}.

States 0 and m are absorbing and {1, . . . ,m − 1} is transient.

The hitting probabilities for state m (pure AA) are given by

hi = Pi(Xn = m for some n) =
i

m
.

This can be seen by noticing that (Xn)n≥0 is a martingale.

Alternatively one can check that

hi =
m∑

j=0

pijhj .

According to this model, genetic diversity eventually disappears.
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The Moran Model

The Moran model is the birth-and-death chain on {0, 1, . . . ,m} with
transition probabilities

pi ,i−1 =
i(m − i)

m2
, pii =

i2 + (m − i)2

m2
, pi ,i+1 =

i(m − i)

m2
.

It has the following genetic interpretation.

A population consists of individuals of two types, a and A.

At time n:
We choose randomly one individual from the population;
We add a new individual of the same type;
Then we choose, again randomly, one individual from the population;
We remove the chosen individual.

In this way, we obtain the population at time n + 1.

The same individual may be chosen to give birth and to die.

In this case there is no change in the make-up of the population.
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Differences and Similarities with Wright-Fisher

Let Xn denote the number of type A individuals at time n.

Then (Xn)n≥0 is a Markov chain with transition matrix P .

There are some differences from the Wright-Fisher model.

The Moran model cannot be interpreted in terms of a species where
genes come in pairs, or where individuals have more than one parent;
In the Moran model we only change one individual at a time, not the
whole population.

The basic Markov chain structure is the same.

The communicating classes are {0}, {1, . . . ,m − 1}, {m}, absorbing
states 0 and m and transient class {1, . . . ,m − 1};
The Moran model is reversible, and, like the Wright-Fisher model, is a
martingale.
The hitting probabilities are given by Pi (Xn = m for some n) = i

m
.
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Mean Time of Absorption

We can also calculate explicitly the mean time to absorption

ki = Ei(T ),

where T is the hitting time of {0,m}.
The simplest method is to:

Fix j ;
Write equations for the mean time k

j
i spent in j , starting from i , before

absorption.

k
j
i = δij + (pi ,i−1k

j
i−1 + piik

j
i + pi ,i+1k

j
i+1), i = 1, . . . ,m − 1;

k
j
0 = k j

m = 0.

Then, for i = 1, . . . ,m − 1

k
j
i+1 − 2k ji + k

j
i−1 = −δij

m2

j(m − j)
.
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Mean Time of Absorption (Cont’d)

We found, for i = 1, . . . ,m − 1,

k
j
i+1 − 2k ji + k

j
i−1 = −δij

m2

j(m − j)
.

This has solution

k
j
i =

{
i
j
k
j
j for i ≤ j

m−i
m−j

k
j
j for i ≥ j

.
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Mean Time of Absorption (Cont’d)

k
j
j is determined by

(
m − j − 1

m − j
− 2 +

j − 1

j

)
k
j
j = −

m2

j(m − j)
.

This gives
k
j
j = m.

Hence,

ki =

m−1∑

j=1

k
j
i = m





i∑

j=1

m − i

m − j
+

m−1∑

j=i+1

i

j



 .
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The Case of Large m and i = pm, 0 < p < 1

The main interest lies in the case where:

m is large;
i = pm, for some p ∈ (0, 1).

Then, as m → ∞,

kpm
m2 = (1− p)

∑mp
j=1

1
m−j

+ p
∑m−1

j=mp+1
1
j

→ − (1− p) log (1− p)− p log p.

So, as m → ∞,

Epm(T ) ∼ −m2{(1− p) log (1− p) + p log p}.
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The Case of Large m and i = pm, 0 < p < 1

We found

Epm(T ) ∼ −m2{(1− p) log (1− p) + p log p}.

For the Wright-Fisher model, one has

Epm(T ) ∼ −2m{(1− p) log (1− p) + p log p}.

This has the same functional form in p and differs by a factor of m
2 .

This factor is partially explained by the fact that:

The Moran model deals with one individual at a time;
The Wright-Fisher model changes all m at once.
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Subsection 2

Queues and Queueing Networks
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Basic Elements of Queues

Queues form in many circumstances and it is important to be able to
predict their behavior.

The basic mathematical model for queues runs as follows.

There is a succession of customers wanting service;
On arrival each customer must wait until a server is free, giving priority
to earlier arrivals;
Probabilistically, it is assumed that:

The times between arrivals are independent random variables of the

same distribution;

The times taken to serve customers are also independent random

variables, of some other distribution.

The main quantity of interest is the random process (Xt)t≥0 recording
the number of customers in the queue at time t.

This is always taken to include both those being served and those
waiting to be served.
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Preview of Some Special Cases

In cases where inter-arrival times and service times have exponential
distributions, (Xt)t≥0 turns out to be a continuous-time Markov

chain.

In this case many questions about the queue can be answered.

If the inter-arrival times only are exponential, an analysis is still
possible.

One exploits:

The memorylessness of the Poisson process of arrivals;
A certain discrete-time Markov chain embedded in the queue.
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M/M/1 Queue

M/M/1 means memoryless inter-arrival times/memoryless service

times/one server.

Let us suppose that:

The inter-arrival times are exponential of parameter λ;
The service times are exponential of parameter µ.

Then the number of customers in the queue (Xt)t≥0 evolves as a
Markov chain with the following diagram:
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Markov Chain Justification

Suppose at time 0 there are i > 0 customers in the queue.

Denote by:

T the time taken to serve the first customer;
A the time of the next arrival.

Then the first jump time J1 is A ∧ T .

This is exponential of parameter λ+ µ.

Moreover,

XJ1 =

{
i − 1, if T < A,
i + 1, if T > A.

These events are independent of J1, with probabilities:

P(T < A) =
µ

λ+ µ
and P(T > A) =

λ

λ+ µ
.
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Markov Chain Justification (Cont’d)

If we condition on J1 = T , then A− J1 is exponential of parameter λ
and independent of J1.

The time already spent waiting for an arrival is forgotten.

Similarly, conditional on J1 = A, T − J1 is exponential of parameter µ
and independent of J1.

The case where i = 0 is simpler as there is no serving going on.

Hence, conditional on XJ1 = j , (Xt)t≥0 begins afresh from j at time
J1.

It follows that (Xt)t≥0 is the claimed Markov chain.
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Average Number of Customers

The M/M/1 queue evolves like a random walk, except that it does
not take jumps below 0.

Suppose λ > µ.
Then (Xt )t≥0 is transient, that is Xt → ∞ as t → ∞.
Thus, if λ > µ the queue grows without limit in the long term.
Suppose, next, λ < µ.
Then (Xt )t≥0 is positive recurrent with invariant distribution

πi =

(
1−

λ

µ

)(
λ

µ

)i

.

So when λ < µ, the average number of customers in the queue in
equilibrium is given by

Eπ(Xt) =

∞∑

i=1

Pπ(Xt ≥ i) =

∞∑

i=1

(
λ

µ

)i

=
λ

µ− λ
.
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Mean Continuously Busy Time

The mean time to return to 0 is given by

m0 =
1

q0π0
=

1

λ

1
µ−λ
µ

=
µ

λ(µ− λ)
.

So the mean length of time that the server is continuously busy is
given by

m0 −
1

q0
=

µ

λ(µ− λ)
−

1

λ
=

1

µ− λ
.
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Mean Waiting Time

Another quantity of interest is the mean waiting time for a typical

customer, when λ < µ and the queue is in equilibrium.

Conditional on finding a queue of length i on arrival, this is

i + 1

µ
.

So the overall mean waiting time is

Eπ
Xt + 1

µ
=

λ
µ−λ + 1

µ
=

µ
µ−λ

µ
=

1

µ− λ
.
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Mean Total Waiting Time

A rough check is available as we can calculate in two ways the
expected total time spent in the queue over an interval of length t.

We may multiply the average queue length by t.
We get

t · Eπ(Xt) =
λt

µ− λ
.

We may multiply the mean waiting time by the expected number of
customers λt.
We get

λt · Eπ
Xt + 1

µ
=

λt

µ− λ
.

The first calculation is exact but the second has not been fully
justified.
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M/M/s Queue

This is a variation on the last example where:

There is one queue;
There are s servers.

We assume that:

The arrival rate is λ;
The service rate by each server is µ.
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The Associated Markov Chain

If i servers are occupied, the first service is completed at the
minimum of i independent exponential times of parameter µ.

The first service time is therefore exponential of parameter iµ.

The total service rate increases to a maximum sµ when all servers are
working.

Suppose the queue size includes the customers being served.

Then the queue size (Xt)t≥0 performs a Markov chain with the
following diagram:

So this time we obtain a birth-and-death chain.
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Invariant Measures

If λ > sµ, the birth-and-death chain is transient; Otherwise, recurrent.

To find an invariant measure we look at the detailed balance equations

πiqi ,i+1 = πi+1qi+1,i .

If i ≤ s,
πi

π0
=

πi

πi−1
· · ·

π1

π0
=

λ

iµ
· · ·

λ

µ
=

(
λ

µ

)i
1

i !
.

Similarly, if i > s,

πi

π0
=

(
λ

µ

)i
1

s i−ss!
.

So we have

πi
π0

=

{
(λ/µ)i

i ! , for i = 0, 1, . . . , s
(λ/µ)i

s i−ss!
, for i = s + 1, s + 2, . . .

The queue is therefore positive recurrent when λ < sµ.
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Special Cases

There are two special cases when the invariant distribution has a
particularly nice form.

Suppose s = 1.
Then we are back to the preceding example.
The invariant distribution is geometric of parameter λ

µ ,

πi =

(
1−

λ

µ

)(
λ

µ

)i

.

Suppose s = ∞.
We normalize π by taking π0 = e−λ/µ.
Then

πi = e−λ/µ (λ/µ)
i

i !
.

So the invariant distribution is Poisson of parameter λ
µ .
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Number of Arrivals and Departures

The number of arrivals by time t is a Poisson process of rate λ.

Each arrival corresponds to an increase in Xt .

Each departure corresponds to a decrease in Xt .

Suppose that λ < sµ, so there is an invariant distribution.

Consider the queue in equilibrium.

The detailed balance equations hold.

Moreover, (Xt)t≥0 is non-explosive.

So by a previous theorem, for any T > 0, (Xt)0≤t≤T and
(XT−t)0≤t≤T have the same law.

It follows that, in equilibrium, the number of departures by time t is
also a Poisson process of rate λ.
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Comments

The fact that the number of departures by time t is also a Poisson
process of rate λ is slightly counter-intuitive.

One might imagine that the departure process runs in fits and starts
depending on the number of servers working.

But it turns out that the process of departures, in equilibrium, is just
as regular as the process of arrivals.
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A Telephone Exchange

A variation on the M/M/s queue is to turn away customers who
cannot be served immediately.

This might serve as a simple model for a telephone exchange, where
the maximum number of calls that can be connected at once is s.

When the exchange is full, additional calls are lost.

The maximum queue size or buffer size is s.

We get the following modified Markov chain diagram:
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A Telephone Exchange (Cont’d)

We can find the invariant distribution of this finite Markov chain by
solving the detailed balance equations.

This time we get a truncated Poisson distribution

πi =
(λ/µ)i

i !∑s
j=0

(λ/µ)j

j!

.

The long run proportion of time that the exchange is full equals the
long run proportion of calls that are lost.

By the Ergodic Theorem, it is given by

πs =
(λ/µ)s

s!∑s
j=0

(λ/µ)j

j!

.

This is known as Erlang’s formula.
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Queues in Series

Suppose that arriving customers have two service requirements.

They arrive as a Poisson process of rate λ;
They are seen first by server A;
They are seen then by server B.

For simplicity, we assume that the service times are independent
exponentials.

Service by A is an exponential of parameter α;
Service by B is an exponential of parameter β.

We compute the average queue length at B.
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Queues in Series (Cont’d)

Let (Xt)t≥0 be the queue length at A.

Let (Yt)t≥0 be the queue length at B.

Then (Xt)t≥0 is simply an M/M/1 queue.

Suppose λ > α.
Then (Xt )t≥0 is transient.
So there is eventually always a queue at A.
Moreover, departures form a Poisson process of rate α.
Suppose λ < α.
Then, by the reversibility argument of a previous example, the process
of departures from A is Poisson of rate λ, provided queue A is in
equilibrium.
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Queues in Series (Cont’d)

The question about queue length at B is not precisely formulated.

One needs to specify that the queues should be in equilibrium.

If λ ≥ α, there is no equilibrium.

We may treat arrivals at B as a Poisson process of rate α ∧ λ.

Suppose α ∧ λ < β.
By a previous example, the average queue length at B, when in
equilibrium, is given by

α ∧ λ

β − (α ∧ λ)
.

Suppose α ∧ λ > β.
Then (Yt )t≥0 is transient.
Now the queue at B grows without limit.
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Queues in Series (Cont’d)

There is an equilibrium for both queues if λ < α and λ < β.

The fact that, in equilibrium, the output from A is Poisson greatly
simplifies the analysis of the two queues in series.

For example, the average time taken by one customer to obtain both
services is given by

1

α− λ
+

1

β − λ
.
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Closed Migration Process

Consider a single particle in a finite state-space I which performs a
Markov chain with irreducible Q-matrix Q.

We know there is a unique invariant distribution π.

The holding times of the chain may be thought of as service times, by
a single server at each node i ∈ I .

Suppose that there are N particles in the state-space.

They move as before except that they must queue for service at every
node.

Suppose we do not care to distinguish between the particles.

Then this is a new process (Xt)t≥0 with state-space Ĩ = N
I .

Xt = (ni : i ∈ I ) if at time t there are ni particles at state i .

In fact, this new process is also a Markov chain.
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Q-Matrix of the Closed Migration Process

Suppose (Xt)t≥0 has Q-matrix Q̃.

Define a function δi : Ĩ → Ĩ by

(δin)j = nj + δij .

Thus, δi adds a particle at i .

Then, for i 6= j , the non-zero transition rates are given by

q̃(δin, δjn) = qij , n ∈ Ĩ , i , j ∈ I .

Observe that we can write the invariant measure equation πQ = 0 in
the form

πi
∑

j 6=i

qij =
∑

j 6=i

πjqji .
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Invariant Measure

For n = (ni : i ∈ I ) we set

π̃(n) =
∏

i∈I

πni
i .

Then

π̃(δin)
∑

j 6=i q̃(δin, δjn) =
∏

k∈I π
nk
k (π

∑
j 6=i qji)

=
∏

k∈I π
nk
k (

∑
j 6=i πjqji)

=
∑

j 6=i π̃(δjn)q̃(δjn, δin).

Given m ∈ Ĩ , we can set m = δin, whenever mi ≥ 1.

On summing the resulting equations we obtain

π̃(m)
∑

n 6=m

q̃(m, n) =
∑

n 6=m

π̃(n)q̃(n,m).

So π̃ is an invariant measure for Q̃.
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Communicating Classes

The total number of particles is conserved.

So Q̃ has communicating classes

CN =

{
n ∈ Ĩ :

∑

i∈I

ni = N

}
.

The unique invariant distribution for the N-particle system is given by
normalizing π̃ restricted to CN .
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Open Migration Process

We consider a modification of the last example.

We make the following assumptions.

New customers, or particles, arrive at each node i ∈ I at rate λi .
Customers receiving service at node i leave the network at rate µi .

In this setting, like in a shopping center:

Customers enter the network;
They move from queue to queue according to a Markov chain;
Eventually, they leave.

This model includes:

The closed system of the last example;
The queues in series of a previous example.
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Formalism

Let
Xt = (X i

t : i ∈ I ),

where X i
t denotes the number of customers at node i at time t.

(Xt)t≥0 is a Markov chain in Ĩ = N
I .

The non-zero transition rates are given, for all n ∈ Ĩ and distinct
states i , j ∈ I , by:

q̃(n, δin) = λi ;
q̃(δin, δjn) = qij ;
q̃(δjn, n) = µj .

We shall assume that:

λi > 0, for some i ;
µj > 0, for some j .

Then Q̃ is irreducible on Ĩ .
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Invariant Measure

The system of invariant measure equations for an invariant measure is
replaced here by

πi


µi +

∑

j 6=i

qij


 = λi +

∑

j 6=i

πjqji .

This system has a unique solution, with πi > 0 for all i .

This may be seen by considering the invariant distribution for the
extended Q-matrix Q on I ∪ {∂} with off-diagonal entries

q∂j = λj , qij = qij , qi∂ = µi .

Summing over i ∈ I , we find
∑

i∈I

πiµi =
∑

i∈I

λi .
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Invariant Measure (Cont’d)

As in the last example, for n = (ni : i ∈ I ), set

π̃(n) =
∏

i∈I

πni
i .

Transitions from m ∈ Ĩ may be divided into:
Those where a new particle is added;
For each i ∈ I with mi ≥ 1, those where a particle is moved from i to
somewhere else.

For the first sort of transition

π̃(m) =
∑

j∈I q̃(m, δjm)

= π̃(m)
∑

j∈I λj

= π̃(m)
∑

j∈I πjµj

=
∑

j∈I π̃(δjm)q̃(δjm,m).

George Voutsadakis (LSSU) Markov Chains April 2024 61 / 79



Applications in Biology and Queueing Theory Queues and Queueing Networks

Invariant Measure (Cont’d)

For the second sort,

π̃(δin)(q̃(δin, n) +
∑

j 6=i q̃(δin, δjn))

=
∏

k∈I π
nk
k (πi (µi +

∑
j 6=i qij))

=
∏

k∈I π
nk
k (λi +

∑
j 6=i πjqji)

= π̃(n)q̃(n, δin) +
∑

j 6=i π̃(δjn)q̃(δjn, δin).

On summing these equations, we obtain

π̃(m)
∑

n 6=m

q̃(m, n) =
∑

n 6=m

π̃(n)q̃(n,m).

So π̃ is an invariant measure for Q̃.
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Queue Lengths

Suppose πi < 1, for all i .

Then π̃ has finite total mass

∏

i∈I

(1− πi).

Otherwise the total mass if infinite.

Hence, Q̃ is positive recurrent if and only if πi < 1 for all i .

In that case, in equilibrium, the individual queue lengths (X i
t : i ∈ I )

are independent geometric random variables with

P(X i
t = ni) = (1− πi)π

ni
i .
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M/G/1 Queue

The service requirements have often observable distributions which
are generally not exponential.

A better model in this case is the M/G/1 queue, where G indicates
that the service-time distribution is general.
We can characterize the distribution of a service time T in one of two
ways.

By its distribution function F (t) = P(T ≤ t);
By its Laplace transform

L(w) = E(e−wT ) =

∫ ∞

0

e−wtdF (t).

This integral is the Lebesgue-Stieltjes integral.

When T has a density function f (t) we can replace dF (t) by f (t)dt.

Then the mean service time µ is given by

µ = E(T ) = −L′(0+).
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Formalism

Let Xn be the queue size immediately following the n-th departure.

Let Yn be the number of arrivals during the n-th service time.

Then
Xn+1 = Xn + Yn+1 − 1Xn>0.

The case where Xn = 0 is different because then we get an extra
arrival before the (n + 1)-th service time begins.

By the Markov Property of the Poisson process, Y1,Y2, . . . are
independent and identically distributed.

It follows that (Xn)n≥0 is a discrete time Markov chain.

Indeed, except for visits to 0, (Xn)n≥0 behaves as a random walk with
jumps Yn − 1.
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Service Intensity and Generating Function

Let Tn denote the nth service time.

Conditional on Tn = t, Yn is Poisson of parameter λt.

So

E(Yn) =

∫ ∞

0
λtdF (t) = λµ.

ρ = E(Yn) is termed the service intensity.

We can compute the probability generating function

A(z) = E(zYn)

=
∫∞
0 E (zYn |Tn = t)dF (t)

=
∫∞
0 e−λt(1−z)dF (t)

= L(λ(1 − z)).
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Positive Recurrence

We set ρ = E(Yn) = λµ.

Suppose ρ < 1.

Let Zn be the number of visits of Xn to 0 before time n.

Then we have

Xn = X0 + (Y1 + · · · + Yn)− n + Zn.

So
E(Xn) = E(X0)− n(1− ρ) + E(Zn).

Take X0 = 0.

Since Xn ≥ 0, for all n, we have 0 < 1− ρ ≤ E(Zn/n).

By the Ergodic Theorem, as n → ∞, E(Zn/n) →
1
m0

, where m0 is the
mean return time to 0.

Hence, m0 ≤
1

1−ρ < ∞, showing that (Xn)n≥0 is positive recurrent.

George Voutsadakis (LSSU) Markov Chains April 2024 67 / 79



Applications in Biology and Queueing Theory Queues and Queueing Networks

Equilibrium

Suppose we start (Xn)n≥0 with its equilibrium distribution π.

Set

G (z) = E(zXn) =

∞∑

i=0

πiz
i .

Then
zG (z) = E(zXn+1+1)

= E(zXn+Yn+1+1Xn=0)

= E(zYn+1)(π0z +
∑∞

i=1 πiz
i)

= A(z)(π0z + G (z)− π0).

So
(A(z)− z)G (z) = π0A(z)(1− z).
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Equilibrium (Cont’d)

We obtained (A(z)− z)G (z) = π0A(z)(1− z).

Rewrite A(z)−z
1−z

= π0A(z)
G(z) .

Equivalently,

A(1)− z

1− z
−

A(1)− A(z)

1− z
=

π0A(z)

G (z)
.

As z ր 1, the left approaches 1− A′(1−) = 1− ρ.
As z ր 1, since G(1) = 1 = A(1), the right approaches π0.

So we must have:

π0 = 1− ρ;
m0 =

1
1−ρ ;

G(z) = (1 − ρ)(1− z) A(z)
A(z)−z

.

A is given explicitly in terms of the service time distribution.

So we can now obtain, in principle, the full equilibrium distribution.
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Mean Queue Length

We now obtain the mean queue length.

Start again with (A(z)− z)G (z) = π0A(z)(1− z).

Differentiate, recalling π0 = 1− ρ,

(A(z)− z)G ′(z) + (A′(z)− 1)G (z) = (1− ρ){A′(z)(1− z)− A(z)}.

Substitute G (z) = (1− ρ)(1− z) A(z)
A(z)−z

to obtain

G ′(z) = − A′(z)−1
A(z)−z

G (z) + (1− ρ)A
′(z)(1−z)−A(z)

A(z)−z

= − (1− ρ)(1 − z)A(z)(A
′(z)−1)

(A(z)−z)2
+ (1− ρ)A

′(z)(1−z)−A(z)
A(z)−z

= (1− ρ)A′(z) 1−z
A(z)−z

− (1− ρ)A(z) (A
′(z)−1)(1−z)+A(z)−z

(A(z)−z)2
.

Now note, using l’Hôpital’s Rule, that:
limzր1 (1− ρ)A′(z) 1−z

A(z)−z
= (1− ρ)ρ 1

1−ρ = ρ;

limzր1
(A′(z)−1)(1−z)+A(z)−z

(A(z)−z)2 = limzր1
A′′(z)(1−z)

2(A′(z)−1)(A(z)−z) =
A′′(1−)
2(1−ρ)2 .
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Mean Queue Length (Cont’d)

We found:
G ′(z) = (1− ρ)A′(z) 1−z

A(z)−z
− (1− ρ)A(z) (A

′(z)−1)(1−z)+A(z)−z

(A(z)−z)2 ;

limzր1 (1− ρ)A′(z) 1−z
A(z)−z

= ρ;

limzր1
(A′(z)−1)(1−z)+A(z)−z

(A(z)−z)2 = A′′(1−)
2(1−ρ)2 .

Now we obtain
E(Xn) = G ′(1−)

= ρ+ A′′(1−)
2(1−ρ)

= ρ+ λ2 L′′(0+)
2(1−ρ)

= ρ+ λ2 E(T 2)
2(1−ρ) .

In the case of the M/M/1 queue, we have
ρ = λ

µ ;

E(T 2) = 2
µ2 .

Consequently, E(Xn) = ρ+ (λ/µ)2

1−(λ/µ) =
ρ

1−ρ = λ
µ−λ .
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Mean Queueing Time

Consider the queue (Xn)n∈Z in equilibrium.

Suppose that the customer who leaves at time 0 has spent:

Time Q queueing to be served;
Time T being served.

Note that the customers in the queue at time 0 are precisely those
who arrived during the queueing and service times of the departing
customer.

So, conditional on Q + T = t, X0 is Poisson of parameter λt.

Hence,

G (z) = E(e−λ(Q+T )(1−z)) = M(λ(1− z))L(λ(1 − z)),

where M is the Laplace transform M(w) = E(e−wQ).

George Voutsadakis (LSSU) Markov Chains April 2024 72 / 79



Applications in Biology and Queueing Theory Queues and Queueing Networks

Mean Queueing Time (Cont’d)

We have
G (z) = M(λ(1− z))L(λ(1 − z)),

where M is the Laplace transform M(w) = E(e−wQ).

Recall that:
A(z) = L(λ(1− z));

G(z) = (1 − ρ)(1− z) A(z)
A(z)−z

.

Setting w = λ(1− z), we obtain

M(w) = G(z)
A(z)

M(w) =
(1−ρ)w

λ

A(z)

A(z)−(1−w
λ
)

A(z)

M(w) = (1− ρ)wλ
1

L(w)−(1−w
λ
)

M(w) = (1− ρ) w
w−λ(1−L(w)) .
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Mean Queueing Time (Cont’d)

We obtained
M(w) = (1− ρ)

w

w − λ(1− L(w))
.

Differentiation and l’Hôpital’s Rule yield the mean queueing time

E(Q) = −M ′(0+)

= − (1− ρ) limw→0+
w+λL(w)−λ−w(1+λL′ (w))

(w+λL(w)−λ)2

= − (1− ρ) limw→0+
λL(w)−λ−wλL′(w)
(w+λL(w)−λ)2

= − (1− ρ) limw→0+
λL′(w)−λL′(w)−λwL′′(w)
2(w+λL(w)−λ)(1+λL′ (w))

= − (1− ρ) limw→0+
−λL′′(w)−λwL′′′(w)

2(1+λL′(w))2+2λL′′(w)(w+λL(w)−λ)

= − (1− ρ) limw→0+
−λL′′(w)

2(1+λL′(w))2

= (1− ρ) λL′′(0+)
2(1+λL′(0+))2

= λE(T 2)
2(1−ρ) .
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Busy Period

We turn to the busy period S .

Consider the Laplace transform

B(w) = E(e−wS ).

Let T be the service time of the first customer in the busy period.

Let N be the number of customers arriving while the first customer is
served.

This is Poisson of parameter λt.

Conditional on T = t, we have

S = t + S1 + · · · + SN ,

where S1,S2, . . . are independent, with the same distribution as S .
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Busy Period (Cont’d)

Now we have

B(w) =
∫∞
0 E(e−wS |T = t)dF (t)

=
∫∞
0 e−wte−λt(1−B(w))dF (t)

= L(w + λ(1− B(w))).

Using B(w), we can obtain moments by differentiation.

E(S) = − B ′(0+)

= − L′(0+)(1− λB ′(0+))

= µ(1 + λE(S)).

So the mean length of the busy period is given by E(S) = µ
1−ρ .
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M/G/∞ Queue

Arrivals at this queue form a Poisson process, of rate λ, say.

Service times are independent, with a common distribution function

F (t) = P(T ≤ t).

There are infinitely many servers.

So all customers receive service at once.

Suppose there are no customers at time 0.

Let Xt be the number of customers being served at time t.

Let Nt be the number of arrivals by time t.

This is a Poisson random variable of parameter λt.

Condition on Nt = n.

Label the times of the n arrivals randomly by A1, . . . ,An.

By a previous theorem, A1, . . . ,An are independent and uniformly
distributed on the interval [0, t].

George Voutsadakis (LSSU) Markov Chains April 2024 77 / 79



Applications in Biology and Queueing Theory Queues and Queueing Networks

M/G/∞ Queue (Cont’d)

For each of these customers, service is incomplete at time t with
probability

p =
1

t

∫ t

0
P(T > s)ds =

1

t

∫ t

0
(1− F (s))ds .

Hence, conditional on Nt = n, Xt is binomial of parameters n and p.

Then

P(Xt = k) =
∑∞

n=0 P(Xt = k |Nt = n)P(Nt = n)

=
∑∞

n=k

(
n
k

)
pk(1− p)n−ke−λt (λt)

n

n!

= e−λt (λpt)
k

k!

∑∞
n=k

(λ(1−p)t)n−k

(n−k)!

= e−λt (λpt)
k

k! eλ(1−p)t = e−λpt (λpt)
k

k! .

So we have shown that Xt is Poisson of parameter λ
∫ t

0 (1− F (s))ds .
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M/G/∞ Queue (Cont’d)

We have shown that Xt is Poisson of parameter λ
∫ t

0 (1− F (s))ds .

Recall that
∫ ∞

0
(1− F (s))ds =

∫ ∞

0
E(1T>t)dt = E

∫ ∞

0
1T>tdt = E(T ).

Assume E(T ) < ∞.

Then the queue size has a limiting distribution, which is Poisson of
parameter

λE(T ).
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