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Sets and Classes Set Inclusion

Subsection 1

Set Inclusion
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Sets and Classes Set Inclusion

Sets, Membership and Subsets

The word set will mean a subset of a given set X , called a space or
the whole or entire space or the universe under consideration.

The elements of X are called points.

If x is a point of X and E is a subset of X , the notation x ∈ E means
that x belongs to E , i.e., that one of the points of E is x .

The negated statement that “x does not belong to E” will be
denoted by x 6∈ E .

Example:

For every point x of X , we have x ∈ X ;
For no point x of X do we have x 6∈ X .

If E and F are subsets of X , the notation E ⊆ F or F ⊇ E means
that E is a subset of F , i.e., that every point of E belongs to F .

In particular, we have E ⊆ E for every set E .

George Voutsadakis (LSSU) Measure Theory January 2023 4 / 49



Sets and Classes Set Inclusion

Equality and the Empty Set

Two sets E and F are called equal if and only if they contain exactly
the same points. Equivalently, if and only if E ⊆ F and F ⊆ E .

As a consequence:

The only way to prove that two sets are equal is to show, in two
steps, that every point of either set belongs also to the other.

We admit into the class of sets a set containing no points, called the
empty set and denoted by ∅.

Note that:

For every set E , we have ∅ ⊆ E ⊆ X .
For every point x , we have x 6∈ ∅.
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Sets and Classes Set Inclusion

Classes

Besides sets of points, we also consider sets of sets.

Example:

Let X be the real line.

Then an interval is a set, i.e., a subset of X .

The set of all intervals is a set of sets.

To enhance clarity, we always use the word class for a set of sets.

The same notations and terminology are used for classes as for sets.

Example:

If E is a set and E is a class of sets, then E ∈ E means that the set
E belongs to (is a member of, is an element of) the class E .

If E and F are classes, then E ⊆ F means that every set of E

belongs also to F , i.e., that E is a subclass of F .
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Sets and Classes Set Inclusion

Collections

On rare occasions we shall also consider sets of classes.

We use the word collection for sets of classes.

Example:

Let X be the Euclidean plane.

Let E y be the class of all intervals on the horizontal line at distance y

from the origin.

Each E y is a class.

The set of all these classes is a collection.
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Sets and Classes Set Inclusion

Some Properties

(1) The relation ⊆ between sets (subsets of X ) is always reflexive and
transitive. It is symmetric if and only if X is empty.

(2) Let X be the class of all subsets of X (including, of course, ∅ and X ).

Let x be a point of X .

Let E be a subset of X (a member of X ).

Let E be a class of subsets of X (a subclass of X ).

If u and v vary independently over the five symbols x ,E ,X ,E ,X ,
then some of the fifty relations of the forms

u ∈ v or u ⊆ v

are necessarily true, some are possibly true, some are necessarily false,
and some are meaningless.

u ∈ v is meaningless unless the right term is a subset of a space of
which the left term is a point;
u ⊆ v is meaningless unless u and v are both subsets of the same
space.
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Sets and Classes Unions and Intersections

Subsection 2

Unions and Intersections
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Sets and Classes Unions and Intersections

Unions

Let E be any class of subsets of X .

The union of the sets of E is the set of all those points of X which
belong to at least one set of the class E .

The union of E is denoted by

⋃

E or
⋃

{E : E ∈ E}.
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Sets and Classes Unions and Intersections

Set-Building Using Properties

Suppose we are given any set of objects, generically denoted by x .
Assume, for each x , π(x) is a proposition concerning x .
Then the symbol

{x : π(x)}

denotes the set of those points x for which π(x) is true.
Suppose {πn(x)} is a sequence of propositions concerning x .
The set of those points x for which πn(x) is true, for every n, is

{x : π1(x), π2(x), . . .}.

Suppose, to every element γ of a certain index set Γ there
corresponds a proposition πγ(x) concerning x .
Then the set of all those points x for which the proposition πγ(x) is
true, for every γ in Γ, is denoted by

{x : πγ(x), γ ∈ Γ}.
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Sets and Classes Unions and Intersections

Examples of Set-Builder Notation

We have {x : x ∈ E} = E and {E : E ∈ E} = E .

Consider also the following sets:

{t : 0 ≤ t ≤ 1} (the closed unit interval);
{(x , y) : x2 + y2 = 1} (the circumference of the unit circle in the
plane);
{n2 : n = 1, 2, . . .} (the set of those positive integers which are
squares).

In accordance with the preceding notation, the upper and lower
bounds (supremum and infimum) of a set E of real numbers are
denoted by

sup {x : x ∈ E} and inf {x : x ∈ E}.

respectively.
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Sets and Classes Unions and Intersections

Pairs and Singletons

The brace {. . .} notation will be reserved for the formation of sets.

Example: If x and y are points, then {x , y} denotes the set whose
only elements are x and y .

It is important logically to distinguish between:

The point x and the set {x} whose only element is x .
The set E and the class {E} whose only element is E .

Example:

The empty set ∅ contains no points;
The class {∅} contains exactly one set, the empty set.
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Sets and Classes Unions and Intersections

Unions of Special Classes of Sets

For the union of special classes of sets special notations are used:

If E = {E1,E2}, then
⋃

E =
⋃

{Ei : i = 1, 2} is denoted by E1 ∪ E2.
If E = {E1, . . . ,En} is a finite class of sets, then

⋃

E = E1 ∪ · · · ∪ En

or
⋃n

i=1 Ei .
If {En} is an infinite sequence of sets, then the union of the terms of
this sequence is denoted by

E1 ∪ E2 ∪ · · · or

∞
⋃

i=1

Ei .

If, to every element γ of an index set Γ there corresponds a set Eγ ,
then the union of the class of sets {Eγ : γ ∈ Γ} is denoted by

⋃

γ∈Γ Eγ

or
⋃

γ
Eγ .

If the index set Γ is empty, we adopt the convention
⋃

γ
Eγ = ∅.

The relations of the empty set ∅ and the whole space X to the
formation of unions are given by: E ∪ ∅ = E and E ∪ X = X .

More generally, we have E ⊆ F if and only if E ∪ F = F .
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Sets and Classes Unions and Intersections

Intersection

Let E be any class of subsets of X .

The intersection of the sets of E is the set of all those points of X
which belong to every set of E .

It is denoted by
⋂

E or
⋂

{E : E ∈ E}.

For the intersection of special classes of sets special notations are
used:

If E = {E1,E2}, then
⋂

E =
⋂

{Ei : i = 1, 2} is denoted by E1 ∩ E2.
If E = {E1, . . . ,En} is a finite class of sets, then

⋂

E = E1 ∩ · · · ∩ En

or
⋂n

i=1 Ei .
If {En} is an infinite sequence of sets, then the intersection of the
terms of this sequence is denoted by E1 ∩ E2 ∩ · · · or

⋂∞

i=1 Ei .
If, to every element γ of an index set Γ there corresponds a set Eγ ,
then the intersection of the class {Eγ : γ ∈ Γ} is denoted by

⋂

γ∈Γ Eγ

or
⋂

γ
Eγ .

George Voutsadakis (LSSU) Measure Theory January 2023 15 / 49



Sets and Classes Unions and Intersections

Intersection of the Empty Class

If the index set Γ is empty, we adopt the convention
⋂

γ∈Γ Eγ = X .

There are several heuristic motivations for this convention:
Suppose Γ1 and Γ2 are two (non empty) index sets for which Γ1 ⊆ Γ2.
Then clearly

⋂

γ∈Γ1
Eγ ⊇

⋂

γ∈Γ2
Eγ .

Therefore to the smallest possible Γ, i.e., the empty, we should make
correspond the largest possible intersection.
Consider the identity

⋂

γ∈Γ1∪Γ2

Eγ =
⋂

γ∈Γ1

Eγ ∩
⋂

γ∈Γ2

Eγ ,

valid for all non empty index sets Γ1 and Γ2.
If we want it valid for arbitrary Γ1 and Γ2, then we must have, for every
Γ,

⋂

γ∈Γ

Eγ =
⋂

γ∈Γ∪∅

Eγ =
⋂

γ∈Γ

Eγ ∩
⋂

γ∈∅

Eγ .

Setting Eγ = X , γ in Γ, we get
⋂

γ∈∅
Eγ = X .
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Sets and Classes Unions and Intersections

Properties of Intersection and Disjoint Sets

Union and intersection are sometimes called join and meet,
respectively.

The relations of ∅ and X to the formation of intersections are given
by the identities

E ∩ ∅ = ∅ and E ∩ X = E .

More generally, we have E ⊆ F it and only if E ∩ F = E .

Two sets E and F are called disjoint if they have no points in
common, i.e. if E ∩ F = ∅.

A disjoint class is a class E of sets, such that every two distinct sets
of E are disjoint.

If E is a disjoint class, the union of the sets of E is referred to as a
disjoint union.
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Sets and Classes Unions and Intersections

Characteristic Functions

If E is any subset of X , the function χE , defined, for all x in X , by
the relations

χE (x) =

{

1, if x ∈ E

0, if x 6∈ E

is called the characteristic function of the set E .

The correspondence between sets and their characteristic functions is
one to one.

Moreover, all properties of sets and set operations may be expressed
by means of characteristic functions.

Example: Note that E = {x : χE (x) = 1}.
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Sets and Classes Unions and Intersections

Additional Properties of Set Theoretic Operations

(1) The formation of unions and intersections is commutative and
associative, i.e.,

E ∪ F = F ∪ E , E ∪ (F ∪ G ) = (E ∪ F ) ∪ G ;
E ∩ F = F ∩ E , E ∩ (F ∩ G ) = (E ∩ F ) ∩ G .

(2) Each of the two operations, the formation of unions and the formation
of intersections, is distributive with respect to the other, i.e.,

E ∩ (F ∪ G ) = (E ∩ F ) ∪ (E ∩ G );

E ∪ (F ∩ G ) = (E ∪ F ) ∩ (E ∪ G ).

More generally, we have:

F ∩
⋃

{E : E ∈ E} =
⋃

{F ∩ E : E ∈ E};

F ∪
⋂

{E : E ∈ E} =
⋂

{F ∪ E : E ∈ E}.
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Sets and Classes Unions and Intersections

Additional Properties of Set Theoretic Operations (Cont’d)

(3) Does the class of all subsets of X form a group with respect to either
of the operations ∪ and ∩?

(4) Note that:

χ∅(x) ≡ 0;
χX (x) ≡ 1;
The relation χE (x) ≤ χF (x) is valid, for all x in X , if and only if
E ⊆ F ;
If E ∩ F = A and E ∪ F = B, then

χA = χEχF ;

χB = χE + χF − χA

= χE + χF − χEχF .
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Sets and Classes Limits, Complements and Differences

Subsection 3

Limits, Complements and Differences
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Sets and Classes Limits, Complements and Differences

Limits

Let {En} be a sequence of subsets of X .

The set E ∗ of all those points of X which belong to En for infinitely
many values of n is called the superior limit of the sequence.

It is denoted by
E ∗ = lim sup

n
En.

The set E∗ of all those points of X which belong to En for all but a
finite number of values of n is called the inferior limit of the
sequence.

It is denoted by
E∗ = lim inf

n
En.

If it so happens that E ∗ = E∗, we write limn En to denote this set.
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Sets and Classes Limits, Complements and Differences

Monotone Sequences

Let {En} is a sequence of subsets of X .

If the sequence is such that:

En ⊆ En+1, for n = 1, 2, . . ., it is called increasing;
En ⊇ En+1, for n = 1, 2, . . ., it is called decreasing.

Both increasing and decreasing sequences will be referred to as
monotone.

It is easy to verify that if {En} is a monotone sequence, then limn En

exists and is equal to:
⋃

n En, if the sequence is increasing;
⋂

n En if the sequence is decreasing.
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Sets and Classes Limits, Complements and Differences

Complementation

The complement of a subset E of X is the set of all those points of
X which do not belong to E .

It is denoted by E ′.

The operation of forming complements satisfies the following
algebraic identities:

E ∩ E ′ = ∅, E ∪ E ′ = X ;

∅′ = X ; (E ′)′ = E ; X ′ = ∅;

if E ⊆ F , then E ′ ⊇ F ′.

We also have the De Morgan Laws:
The complement of the union is the intersection of the complements:

(
⋃

{E : E ∈ E})′ =
⋂

{E ′ : E ∈ E};

The complement of the intersection is the union of the complements:

(
⋂

{E : E ∈ E})′ =
⋃

{E ′ : E ∈ E}.
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Sets and Classes Limits, Complements and Differences

The Duality Principle

Duality Principle

Any valid identity among sets, obtained by forming unions, intersections,
and complements, remains valid if the symbols

⋂

, ⊆, ∅

are interchanged with
⋃

, ⊇, X ,

respectively (equality and complementation unchanged).
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Sets and Classes Limits, Complements and Differences

Difference and Symmetric Difference

If E and F are subsets of X , the difference between E and F , in
symbols E − F , is the set of all those points of E which do not
belong to F .
Note that:

X − F = F ′;
E − F = E ∩ F ′.

So E − F is also called the relative complement of F in E .

The operation of forming differences, similarly to the operation of
forming complements, interchanges

⋃

with
⋂

and ⊆ with ⊇.

Example: E − (F ∪ G ) = (E − F ) ∩ (E − G ).

The difference E − F is called proper if E ⊇ F .

The symmetric difference of two sets E and F , denoted by E △ F ,
is defined by

E △ F = (E − F ) ∪ (F − E ) = (E ∩ F ′) ∪ (E ′ ∩ F ).
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Sets and Classes Rings and Algebras

Subsection 4

Rings and Algebras
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Sets and Classes Rings and Algebras

Boolean Rings of Sets

A ring, or Boolean ring, of sets is a non empty class R of sets, such
that

if E ∈ R and F ∈ R, then E ∪ F ∈ R and E − F ∈ R.

In other words a ring is a non empty class of sets which is closed
under the formation of unions and differences.

The empty set belongs to every ring R.

Suppose R is a ring of sets. By definition, it is nonempty. Let E ∈ R.
But R is closed under difference. Hence, ∅ = E − E ∈ R.

A non empty class of sets closed under the formation of unions and
proper differences is a ring.

Let R be a nonempty class closed under unions and proper differences.

It suffices to show that it is closed under arbitrary differences.

Let E ,F ∈ R. Then E − F = (E ∪ F )− F ∈ R.
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Sets and Classes Rings and Algebras

Boolean Rings of Sets (Cont’d)

A ring is closed under the formation of symmetric differences and
intersections:

Let R be a ring and E ,F ∈ R.

Then, E △ F = (E − F ) ∪ (F − E ) ∈ R.

Moreover, E ∩ F = (E ∪ F )− (E △ F ) ∈ R .

If R is a ring and Ei ∈ R, i = 1, . . . , n, then
n
⋃

i=1

Ei ∈ R and

n
⋂

i=1

Ei ∈ R.

We use mathematical induction together with the associative laws of
union and intersection. E.g., in the case of union, we have:

For n = 1,
⋃1

i=1 Ei = E1 ∈ R.

Assume
⋃n−1

i=1 Ei ∈ R.

Then
⋃n

i=1 Ei =
⋃n−1

i=1 Ei ∪ En ∈ R.
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Sets and Classes Rings and Algebras

Examples of Boolean Rings

Two extreme but useful examples of rings are:

The class {∅} containing the empty set only;
The class of all subsets of X .

For an arbitrary set X , the class of all finite sets in X form a ring.

Let X = {x : −∞ < x < +∞} be the real line.

Let R be the class of all finite unions of bounded, left closed, and
right open intervals, i.e. the class of all sets of the form

n
⋃

i=1

{x : −∞ < ai ≤ x < bi < +∞}.

Then R is a ring.
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Sets and Classes Rings and Algebras

On the Definition of Rings: Union and Intersection

Union and intersection are treated asymmetrically in the definition of
rings.

It is true that a ring is closed under the formation of intersections.
It is not true that a class of sets closed under the formation of
intersections and differences is necessarily closed also under the
formation of unions.
Consider, e.g., X = {a, b} and X = {∅, {a}, {b}}.

If a non empty class of sets is closed under the formation of
intersections, proper differences and disjoint unions, then it is a ring.

Suppose R is a nonempty class, closed under the formation of
intersections, proper differences and disjoint unions.

It suffices to show that R is closed under unions.

Let E ,F ∈ R. Then

E ∪ F = [E − (E ∩ F )] ∪ [F − (E ∩ F )] ∪ (E ∩ F ) ∈ R.
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Sets and Classes Rings and Algebras

Definition of Rings: Intersection and Symmetric Difference

It is easily possible to give a definition of rings which is more nearly
symmetric in its treatment of union and intersection.

A ring may be defined as a non empty class of sets closed under the
formation of intersections and symmetric differences.

Suppose R is a nonempty class closed under intersections and
symmetric differences.

It suffices to show it is closed under unions and differences.

Let E ,F ∈ R. Then we have:

E ∪ F = (E △ F )△ (E ∩ F ) ∈ R;

E − F = E △ (E ∩ F ) ∈ R.

In the latter form of the definition, if we replace intersection by union
we obtain a true statement:

A non empty class of sets closed under the formation
of unions and symmetric differences is a ring.
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Sets and Classes Rings and Algebras

Boolean Algebras of Sets

An algebra, or Boolean algebra, of sets is a non empty class R of
sets such that:

(a) if E ∈ R and F ∈ R, then E ∪ F ∈ R;
(b) if E ∈ R, then E ′ ∈ R.

Every algebra is a ring.

Let R be an algebra.

It suffices to show that it is closed under differences.

Let E ,F ∈ R. Then

E − F = E ∩ F ′ = (E ′ ∪ F )′ ∈ R.
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Sets and Classes Rings and Algebras

Boolean Algebras of Sets and Rings of Sets

The relation between the general concept of ring and the more special
concept of algebra is simple:

Proposition

A ring is an algebra if and only if it contains X .

Assume R is a ring that contains X .

We must show it is closed under complement.

Let E ∈ R. Then E ′ = X − E ∈ R.

Hence, R is an algebra.

Suppose, conversely, R is an algebra.

By the previous slide, it is a ring.

Since R 6= ∅, there exists E ∈ R.

By hypothesis, X = E ∪ E ′ ∈ R .

Thus R is a ring containing X .
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Sets and Classes Generated Rings and σ-Rings

Subsection 5

Generated Rings and σ-Rings
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Sets and Classes Generated Rings and σ-Rings

Ring Generated by a Class of Sets

Theorem

If E is any class of sets, then there exists a unique ring R0, such that:

E ⊆ R0;

If R is any other ring containing E , then R0 ⊆ R.

The ring R0, the smallest ring containing E , is called the ring

generated by E and will be denoted by R(E ).

The class of all subsets of X is a ring.

Hence, at least one ring containing E always exists.

The intersection of any collection of rings is also a ring.

Thus, the intersection of all rings containing E is clearly the smallest
ring containing E .

I.e., R0 =
⋂

{R : R a ring and E ⊆ R}.
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Sets and Classes Generated Rings and σ-Rings

Finite Coverings of Sets in R(E)

Theorem

If E is any class of sets, then, every set in R(E ) may be covered by a
finite union of sets in E .

The class R of all sets which may be covered by a finite union of sets
in E is a ring.

Let E ,F ∈ R. By hypothesis, there exist {E1, . . . ,Em} ⊆ E and
{F1, . . . ,Fn} ⊆ E , such that

E ⊆ E1 ∪ · · · ∪ Em, F ⊆ F1 ∪ · · · ∪ Fn.

Thus, E ∪ F ⊆ E1 ∪ · · · ∪ Em ∪ F1 ∪ · · · ∪ Fn. So E ∪ F ∈ R.
Also, E − F ⊆ E ⊆ E1 ∪ · · · ∪ Em. So E − F ∈ R.

Hence R is a ring.

R clearly contains E , since every set in E is covered by itself.

Since R is a ring containing E , by definition of R(E ), R ⊆ R(E ).
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Sets and Classes Generated Rings and σ-Rings

Countability of a Ring Generated by a Countable Class

Theorem

If E is a countable class of sets, then R(E ) is countable.

For any class C of sets, we write C
∗ for the class of all finite unions

of differences of sets of C . It is clear that, if C is countable, then so
is C

∗. Moreover, if ∅ ∈ C , then C ⊆ C
∗.

Assume, without any loss of generality, that ∅ ∈ E , and set:
E 0 = E ;
E n = E

∗
n−1, n = 1, 2, . . ..

Clearly, E ⊆
⋃

∞

n=0 En ⊆ R(E ). Also,
⋃

∞

n=0 En is countable.

We must show that
⋃

∞

n=1 En is a ring.
We have E = E 0 ⊆ E 1 ⊆ E 2 ⊆ · · ·. So, if A,B are any two sets in
⋃

∞

n=1 En, there exists n > 0, such that both A,B ∈ En.
We have A− B ∈ E n+1.
∅ ∈ E ⊆ E n. Hence, A ∪ B = (A− ∅) ∪ (B − ∅) ∈ E n+1.

We have proved that both A− B and A ∪ B belong to
⋃

∞

n=1 En.
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Sets and Classes Generated Rings and σ-Rings

σ-Rings

A σ-ring is a non empty class S of sets such that:

(a) if E ∈ S and F ∈ S , then E − F ∈ S ;
(b) if Ei ∈ S , i = 1, 2, . . ., then

⋃∞

i=1 Ei ∈ S .

Equivalently a σ-ring is a ring closed under the formation of
countable unions.

If S is a σ-ring and if Ei ∈ S , i = 1, 2, . . ., then
⋂

∞

i=1 Ei ∈ S ,

i.e. a σ-ring is closed under the formation of countable intersections.

Set E =
⋃

∞

i=1 Ei .

Then
⋂

∞

i=1 Ei = E −
⋃

∞

i=1(E − Ei ) ∈ S.

Thus, if S is a σ-ring and Ei ∈ S , i = 1, 2, . . ., then:

lim inf i Ei =
⋃∞

n=1

⋂∞

m=n Em ∈ S ;
lim supi Ei =

⋂∞

n=1

⋃∞

m=n Em ∈ S .
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Sets and Classes Generated Rings and σ-Rings

σ-Ring Generated by a Class of Sets

The truth and proof of the theorem asserting the existence of a ring
generated by a class of sets remain unaltered if we replace “ring” by
“σ-ring”.

Thus, we define the σ-ring S(E ) generated by any class E of sets as
the smallest σ-ring containing E .

Theorem

If E is any class of sets and E is any set in S = S(E ), then there exists a
countable subclass D of E , such that E ∈ S(D).

Consider the collection of those σ-subrings of S which are generated
by some countable subclass of E .

The union of this collection is a σ-ring containing E and contained in
S.

It is therefore identical with S.
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Restriction of a σ-Ring to a Subspace

For every class E of subsets of X and every subset A of X , we shall
denote by E ∩ A the class of all sets of the form E ∩ A with E ∈ E .

Theorem

If E is any class of sets and if A is any subset of X , then
S(E ) ∩ A = S(E ∩ A).

Consider the class

C = {B ∪ (C − A) : B ∈ S(E ∩ A) and C ∈ S(E )}.

C is a σ-ring.

(B1 ∪ (C1 − A)) − (B2 ∪ (C2 − A)) = (B1 − B2) ∪ ((C1 − C2)− A);
⋃∞

i=1(Bi ∪ (Ci − A)) =
⋃∞

i=1 Bi ∪ (
⋃∞

i=1 Ci − A).
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Restriction of a σ-Ring to a Subspace (Cont’d)

Moreover, E ⊆ C .

Suppose E ∈ E . Then E = (E ∩ A) ∪ (E − A) and
E ∩ A ∈ E ∩ A ⊆ S(E ∩ A). Hence E ∈ C .

It follows that S(E ) ⊆ C .

Thus, S(E ) ∩ A ⊆ C ∩ A.

But, obviously, C ∩ A = S(E ∩ A).

Thus, S(E ) ∩ A ⊆ S(E ∩ A).

On the other hand:

S(E ) ∩ A is a σ-ring;
E ∩ A ⊆ S(E ) ∩ A.

These give the reverse inequality, S(E ∩ A) ⊆ S(E ) ∩ A.
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Subsection 6

Monotone Classes
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Monotone Class

It is impossible to give a constructive process for obtaining the σ-ring
generated by a class of sets.

By studying another type of class, less restricted than a σ-ring, it is
possible to obtain a technically very helpful theorem concerning the
structure of generated σ-rings.

A non empty class M of sets is monotone if, for every monotone
sequence {En} of sets in M , we have

lim
n

En ∈ M.
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Monotone Class Generated by a Class of Sets

Recall that:

The class of all subsets of X is a (σ-)ring;
The intersection of any collection of (σ-)rings is a (σ-)ring.

These facts enabled the definition of a (σ-)ring generated by a class
of sets.

It is also true for monotone classes that:

The class of all subsets of X is a monotone class;
The intersection of any collection of monotone classes is a monotone
class.

Thus, we may define the monotone class M(E ) generated by any
class E of sets as the smallest monotone class containing E .
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Monotone Rings and σ-Rings

Theorem

A σ-ring is a monotone class.

A monotone ring is a σ-ring.

The first assertion is obvious, since:
For an increasing sequence {En}, limn En =

⋃∞

n=1 En;
For a decreasing sequence {En}, limn En =

⋂∞

n=1 En.

To prove the second assertion we must show that a monotone ring is
closed under the formation of countable unions.

Suppose M be a monotone ring.

Let Ei ∈ M , i = 1, 2, . . ..

Since M is a ring,
⋃n

i=1 Ei ∈ M , n = 1, 2, . . ..

But {
⋃n

i=1 Ei} is an increasing sequence whose union is
⋃

∞

i=1 Ei .

Hence, since M is a monotone class,
⋃

∞

i=1 Ei ∈ M .
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Monotone Class and σ-Ring Generated by a Ring

Theorem

If R is a ring, then M(R) = S(R). Hence, if a monotone class contains a
ring R , then it contains S(R).

Since a σ-ring is a monotone class and R ⊆ S(R), it follows that
M(R) ⊆ S(R). The proof will be completed by showing that M(R)
is a σ-ring. Since R ⊆ M(R), it will then follow that S(R) ⊆ M(R).

For any set F , let K(F ) be the class of all those sets E for which:

E − F ∈ M(R);
F − E ∈ M(R);
E ∪ F ∈ M(R).

Observe that, because of the symmetric roles of E and F in the
definition of K(F ), the relations E ∈ K(F ) and F ∈ K(E ) are
equivalent.
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Monotone Class and σ-Ring Generated by a Ring (Cont’d)

We show, next, that, if K(F ) is not empty, then it is a monotone
class.

Suppose {En} is a monotone sequence of sets in K(F ).

Then
limn En − F = limn (En − F ) ∈ M(R);

F − limn En = limn (F − En) ∈ M(R);

F ∪ limn En = limn (F ∪ En) ∈ M(R).

So, if K(F ) is not empty, it is indeed a monotone class.
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Finishing the Proof

If E ∈ R and F ∈ R, then, by the definition of a ring, E ∈ K(F ).

This is true for every E in R .

It follows that R ⊆ K(F ).

Therefore, by definition of M(R), M(R) ⊆ K (F ).

Hence, if E ∈ M(R) and F ∈ R, then E ∈ K(F ).

It now follows that F ∈ K(E ).

Since this is true, for every F in R, we get, as before, M(R) ⊆ K (E ).

The validity of this relation, for every E in M(R) is equivalent to the
assertion that M(R) is a ring.

The desired conclusion follows from the preceding theorem.

The theorem does not tell us, given a ring R, how to construct the
generated σ-ring.

It tells us that, instead of studying the σ-ring generated by R, it is
sufficient to study the monotone class generated by R.
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