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Saturation The Great and the Good

Subsection 1

The Great and the Good
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Saturation The Great and the Good

Intuition Behind Monster Models

In arguments which involve several structures and maps between
them, things usually go smoother when the maps are inclusions.

There are at least two good mathematical reasons for this:

First, if the maps are inclusions, then diagrams automatically commute.
Second, if A is a substructure of B, then we can specify A by giving B

and dom(A); there is no need to describe the relations of A as well as
those of B.

Thoughts of this kind have led to the use of big models, sometimes
known as monster models.

Informally, a big model is a structure M such that every commutative
diagram of structures and maps that we want to consider is
isomorphic to a diagram of inclusions between substructures of M.

Of course a structure M with this property cannot exist.

It would have to contain isomorphic copies of all structures.
So its domain would be a proper class and not a set.
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Saturation The Great and the Good

Splendid Models

We demand something less by calling a model M splendid if the
following holds:

Suppose L+ is a first-order language got by adding a new relation
symbol R to L. If N is an L+-structure such that M ≡N |L, then we
can interpret R by a relation S on the domain of M so that (M ,S)≡N .

Informally this says that M is compatible with any extra structural
features which are consistent with Th(M).

Example (Equivalence Relations):

Let M be a structure consisting of an equivalence relation with two
equivalence classes, whose cardinalities are ω and ω1.

Then M is not splendid.

Take an elementary extension N where the two equivalence classes
have the same size;
Add a bijection between these classes.
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Saturation The Great and the Good

Big and Monster Models

For any cardinal λ, we shall say that M is λ-big if (M ,a) is splendid
whenever a is a sequence of fewer than λ elements of M.

Thus, splendid is the same as 0-big.

One can define a big model (or monster model) to be a model
which is λ-big for some cardinal λ (which is taken “large enough to
cover everything interesting”).

This is vague, but in practice there is no need to make it more precise.

In stability theory one is interested in the models of some complete
first-order theory T ; the usual habit is to choose a big model of T
without specifying how large λ is.

It will emerge that every structure has λ-big elementary extensions for
any λ.
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Saturation The Great and the Good

Types Revisited

Let A be an L-structure and X a set of elements of A.

Write L(X ) for the first-order language formed from L by adding
constants for the elements of X .

If n<ω, then a complete n-type over X with respect to A is a set
of the form

{φ(x0, . . . ,xn−1) :φ is in L(X ) and B |=φ(b)},

where B is an elementary extension of A and b is an n-tuple of
elements of B .

We write this n-type as tpB(b/X ).

We say that b realizes this n-type in B .

We write Sn(X ;A) for the set of all complete n-types over X with
respect to A.

A type is an n-type for some n<ω.
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Saturation The Great and the Good

Saturation, Homogeneity and Universality

Let λ be a cardinal.

We say that A is λ-saturated if, for every set X of elements of A, if
|X | <λ, then all complete 1-types over X with respect to A are
realized by elements in A.

We say that A is saturated if A is |A|-saturated.

We say that A is λ-homogeneous if, for every pair of sequences a, b
of length less than λ, if (A,a)≡ (A,b) and d is any element of A, then
there is an element c such that (A,a,c)≡ (A,b,d).

We say that A is homogeneous if A is |A|-homogeneous.

We say that A is λ-universal when, if B is any L-structure of
cardinality <λ and B ≡A, then B is elementarily embeddable in A.
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Saturation The Great and the Good

From Large to Smaller Cardinalities

The following is straightforward from the definitions.

Lemma

Let A be a structure and suppose that κ<λ.

If A is λ-big, then it is κ-big;

If A is λ-saturated, then it is κ-saturated;

If A is λ-homogeneous, then it is κ-homogeneous;

If A is λ-universal, then it is κ-universal.
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Saturation The Great and the Good

Relations Between the Concepts

The simplest links between these concepts run as follows:

λ-Homogeneous

λ-Big ==⇒ λ-Saturated
===

===
==⇒

λ-Universal

=========⇒
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Saturation The Great and the Good

Big and Saturated

Theorem

Suppose A is λ-big. Then A is λ-saturated.

Suppose A is a λ-big L-structure.

Let a be a sequence of fewer than λ elements of A.

Let B be an elementary extension of A and b an element of A.

We must show that tpB(b/a) is realized in A.

Let L+ be obtained by L by adding a unary relation symbol R .

Make B into an L+-structure B+ by interpreting R as {b}.

By λ-bigness, there is a relation S on domA, with (A,S ,a)≡ (B+,a).

Now B+ |= “Exactly one element satisfies R(x)”.

So S is a singleton {c}.

Clearly c realizes tpB(b/a).
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Saturation The Great and the Good

Saturation and Homogeneity

Lemma

Let A be an L-structure and λ a cardinal. The following are equivalent:

(a) A is λ-saturated.

(b) For every L-structure B and every pair of sequences a, b of elements
of A, B respectively, if a and b have the same length <λ and
(A,a)≡ (B ,b), and d is any element of B , then there is an element c
of A such that (A,a,c)≡ (B ,b,d).

(a)⇒(b): Assume (a). Suppose a,b are as in the hypothesis of (b).

By Elementary Amalgamation, there are an elementary extension D of
A and an elementary embedding f :B →D, such that f b = a.

Since f is elementary, if d is in B , then (D ,a, f (d))≡ (B ,b,d).

But a contains fewer than λ elements and A is λ-saturated.

So A contains an element c , such that tpA(c/a)= tpD(f (d)/a).

Then (A,a,c)≡ (D ,a, f (d))= (B ,b,d), as required.
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Saturation The Great and the Good

Saturation and Homogeneity (Cont’d)

The implication (b)⇒(a) is immediate from the definitions.

Let tpB(b/a) be a complete 1-type with respect to A.

By (b), there exists c in A, such that

(A,a,c)≡ (B ,a,b).

This clearly implies that tpB(b/a)= tpA(c/a).

Thus, every complete 1-type with respect to A is realized by an
element of A. So A is λ-saturated.

Theorem

If A is λ-saturated, then A is λ-homogeneous.

The definition of λ-homogeneity is the special case of Part (b) of the
preceding lemma where A=B .
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Saturation The Great and the Good

Using Saturation to Build Maps

The preceding lemma can be applied over and over again, to build up
maps between structures.

Lemma

Let L be a first-order language and A an L-structure.

(a) Suppose A is λ-saturated, B is an L-structure and a,b are sequences of

elements of A,B, respectively, such that (A,a)≡ (B ,b). Suppose a,b have
length < λ, and let d be a sequence of elements of B, of length ≤λ. Then
there is a sequence c of elements of A, such that (A,a,c)≡ (B ,b,d).

(b) The same holds if we replace λ-saturated by λ-homogeneous and add the
assumption that A=B.
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Saturation The Great and the Good

Using Saturation to Build Maps (Cont’d)

We prove (a). The proof of (b) is similar.

By induction, we define a sequence c = (ci : i <λ) of elements of A so
that, for each i ≤λ,

(A,a,c |i)≡ (B ,b,d |i).

For i = 0, (B ,b)≡ (A,a). This holds by hypothesis.

There is nothing to do at limit ordinals, since any formula of L has
only finitely many free variables.

Suppose then that c |i has just been chosen and i <λ.

Now A is λ-saturated and c |i has length <λ.

By a previous lemma, there exists an element ci in A such that

(A,a,c |i ,ci )≡ (B ,b,d |i ,di ).
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Saturation The Great and the Good

Saturation and Universality

Theorem

Let L be a first-order language and A a λ-saturated L-structure. Then A is
λ+-universal.

We have to show that, if B is an L-structure of cardinality ≤λ and
B ≡A, then there is an elementary embedding e :B →A.

List the elements of B as d = (di : i <λ), with repetitions allowed.

By the lemma there is a sequence c in A, such that (B ,d)≡ (A,c).

By the Elementary Diagram Lemma, there is an elementary
embedding of B into A taking d to c .

We note that, actually, λ-saturation is exactly λ-homogeneity plus
λ-universality.
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Saturation The Great and the Good

λ-Saturation and Multi-Variate Types

Theorem

Let L be a first-order language, A an L-structure, λ an infinite cardinal and
y any tuple of variables. Suppose A is λ-saturated. Let a be a sequence of
fewer than λ elements of A, and Φ(x ,y) a set of formulas of L, such that
for each finite subset Ψ of Φ, A |= ∃y

∧
Ψ(a,y). Then there is a tuple b of

elements of A, such that A |=
∧
Φ(a,b).

By the Compactness Theorem, there is an elementary extension B of
A containing a tuple d = (d0, . . . ,dm−1), such that B |=

∧
Φ(a,d).

Now (A,a)≡ (B ,a). Since λ is infinite, d has fewer than λ elements.

By the previous lemma, there is c in A, such that (A,a,c)≡ (B ,a,d).

Hence, A |=
∧
Φ(a,c).
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Saturation The Great and the Good

Saturation, Homogeneity and Isomorphism

Theorem

Let A and B be elementarily equivalent L-structures of the same cardinality
λ.

(a) If A and B are both saturated then A∼=B .

(b) If A and B are both homogeneous and realize the same n-types over
;, for all n<ω, then A∼=B .

(a) First assume that λ is infinite.

List the elements of A as (ai : i <λ) and those of B as (bi : i <λ).

Claim: There are sequences c ,d of elements of A and B , respectively,
both of length λ, such that, for each i <λ, (A,a |i ,c |i )≡ (B ,d |i ,b |i ).

The proof is by induction on i .

Again the case i = 0 is given in the theorem hypothesis.

Moreover, there is nothing to do at limit ordinals.
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Saturation The Great and the Good

Saturation, Homogeneity and Isomorphism (Part (a) Cont’d)

Suppose the condition has been established for some i <λ.

Then fewer than λ parameters have been chosen (since λ is infinite).

By saturation of B, we find di , such that
(A,a |i ,ai ,c |i )≡ (B ,d |i ,di ,b |i );
By saturation of A we find ci , such that
(A,a |i ,ai ,c |i ,ci )≡ (B ,d |i ,di ,b |i ,bi ).

At the end of the construction, the Diagram Lemma gives us an
embedding f :A→B , such that f (a)= d and f (c)= b.

The embedding is onto B since b includes all the elements of B .

Now assume that λ is finite.

A previous theorem gives an elementary embedding f :A→B .

But A and B both have cardinality λ.

So f must be an isomorphism.
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Saturation The Great and the Good

Saturation, Homogeneity and Isomorphism (Part (b))

(b) We can assume that λ is infinite.

Claim: If i <λ and b is a sequence in B of length i , then there is a
sequence a of elements of A such that (A,a)≡ (B ,b). (And the same
with A and B transposed.)

The proof is by induction on i . Since the hypotheses are symmetrical
in A and B , we only prove one way round.

If i is finite, the Claim is given by the theorem hypothesis.
If i is infinite we distinguish two cases:

Suppose that i is a cardinal.
Then we build up a so that for each j < i , (A,a |j )≡ (B ,b |j ).
The theorem hypothesis gives the case j = 0.
If j is a limit ordinal, there is nothing to do.
Suppose (A,a |j )≡ (B ,b |j ) for some j . By the induction hypothesis,
since |j +1| < i , there is a sequence c = (ck : k ≤ j) in A such that

(A,c)≡ (B ,b |(j+1)). Then (A,a |j )≡ (A,c |j ). So by the homogeneity of

A, there is aj , such that (A,a |j ,aj )≡ (A,c)≡ (B ,b |(j+1)).

George Voutsadakis (LSSU) Model Theory January 2024 20 / 90



Saturation The Great and the Good

Saturation, Homogeneity and Isomorphism (Part (b) Cont’d)

Suppose i is not a cardinal. We reduce to the case where it is a cardinal
by rearranging the elements of b into a sequence of order-type |i |.

To prove the theorem, we go back and forth as in (a).

For example, to find di :

First, use the Claim to find e in D, such that (A,a |i ,ai ,c |i )≡ (B ,e);

Then, by the homogeneity of B, find di so that (B ,e)≡ (B ,d |i ,di ,b |i ).
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Saturation The Great and the Good

Example: Finite Structures

Suppose the structure A is finite.

Then any structure elementarily equivalent to A is isomorphic to A.

It follows that A is λ-big for all cardinals λ.

In particular A is saturated and homogeneous.

This is an exceptional case, but it explains why the word “infinite”
keeps appearing.
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Saturation The Great and the Good

More Examples Without Details

Let K be a field.

Let λ an infinite cardinal ≥ |K |.

If A is a vector space of dimension λ over K , then A is λ-big.
If A is infinite but has dimension less than λ, then A is no longer
λ-saturated.

Every algebraically closed field A of infinite transcendence degree over
the prime field is |A|-big and hence saturated.

Every countable ω-categorical structure is saturated.

So every countable dense linear ordering without endpoints is
ω-saturated.
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Subsection 2

Big Models Exist
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Saturation Big Models Exist

Existence of λ-Big Models

The cardinal µ<λ is the sum of all cardinals µκ with κ<λ.

Example: If λ= κ+, then µ<λ is just µκ.

Theorem

Let L be a first-order language, A an L-structure and λ a regular cardinal
> |L|. Then A has a λ-big elementary extension B , such that |B | ≤ |A|<λ.

If A is finite, then A is already λ-big for any cardinal λ.

So we can assume henceforth that A is infinite.

Let C and D be structures. We call D is an expanded elementary

extension of C if D is an expansion of some elementary extension of
C .

An expanded elementary chain is a chain (Ci : i < κ) of structures,
such that whenever i < j < κ, Cj is an expanded elementary extension
of Ci .
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Saturation Big Models Exist

Existence of λ-Big Models II

Using the Tarski-Vaught Theorem on elementary chains it is not hard
to see that each expanded elementary chain has a union D which is an
expanded elementary extension of every structure in the chain.

Let
⋃
i<κCi be the union of the expanded elementary chain (Ci : i < κ).

Put µ= (|A|+ |L|+)<λ. Then µ=µ<λ ≥λ. The ordinal µ2 ·λ consists of
µ ·λ copies of µ laid end to end. The object will be to construct B (or
rather, an expansion of B) as the union of an expanded elementary
chain (Ai : 0< i <µ ·λ), where for each i <µ ·λ, the domain of Ai is
the ordinal µ · i . Then B will have cardinality |µ2 ·λ| =µ as required.

The ordinals <µ2 ·λ will be called witnesses. We can regard them
either as elements of the structure to be built, or as new constants
which will be used as names of themselves.
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Saturation Big Models Exist

Existence of λ-Big Models III

Since A is infinite, we can suppose without loss that A has cardinality
µ by the Upward Löwenheim-Skolem Theorem.

Identify dom(A) with the ordinal µ ·1=µ and put A1 =A.

At limit ordinals δ<µ we put Aδ =
⋃

0<i<δAi .

It remains to define Ai+1 when Ai has been defined.

Suppose L0 is a first-order language and L′,L′′ are first-order languages
got by adding new relation symbols R ′,R ′′, respectively to L0.

We say that theories T ′,T ′′ in L′,L′′, respectively, are conjugate if T ′′

comes from T ′ by replacing R ′ by R ′′ throughout.
List as ((Xi ,Ti) : 0< i <µ ·λ) the set of “all” pairs (Xi ,Ti), where:

Xi is a set of fewer than λ witnesses;
Ti is a complete theory in the first-order language Li formed by adding
to L the witnesses in Xi and one new relation symbol Ri .

Here “all” means that for each such pair (X ,T ), there is a pair
(Xi ,Ti), with X =Xi and T conjugate to Ti .
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Saturation Big Models Exist

Existence of λ-Big Models IV

Checking the arithmetic, note first that for each cardinal ν<λ:

The number of sets X consisting of ν witnesses is µν =µ;
The number of complete theories T (up to conjugacy) in the language
got by adding X and a relation symbol R to L is at most
2|L|+ν ≤ µ<λ = µ.

So the total number of pairs that we need is at most µ ·λ=µ.

The listing can be done so that:

1. The relation symbols Ri are all distinct;
2. Up to conjugacy, each possible pair (X ,T ) appears as (Xi ,Ti ) cofinally

often in the listing.

In fact µ ·λ consists of λ blocks of length µ.

We can make sure that each (X ,T ) appears at least once - up to
conjugacy - in each of these blocks.
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Saturation Big Models Exist

Existence of λ-Big Models V

Assume Ai has been defined with domain µ · i .

To define Ai+1, consider the pair (Xi ,Ti ).

Suppose some witness ≥µ · i appears in Xi .
Then we take Ai+1 to be an arbitrary elementary extension of Ai with
domain µ · (i +1) (possible using compactness).
Suppose every witness in Xi is an element of Ai .

Suppose Ti is inconsistent with the elementary diagram of Ai .
Then again we take Ai+1 to be an arbitrary elementary extension of Ai

with domain µ ·(i +1).
Suppose Ti is consistent with the elementary diagram of Ai .
Then some expanded elementary extension D of Ai is a model of Ti .
By the Downward Löwenheim-Skolem, assume D has cardinality µ.
So again (after adding at most µ elements if necessary) we can identify
the elements of D with the ordinals <µ ·(i +1).
This done, we take Ai+1 to be D .
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Saturation Big Models Exist

Existence of λ-Big Models VI

We have defined the chain (Ai : 0< i <µ ·λ).

We put B+ =
⋃

0<i<µ·λAi .

Let B =B+ |L.

The structure B+ is an expanded elementary extension of A.

So B is an elementary extension of A.

B is the union of a chain of length µ in which every structure has
cardinality µ.

So B has cardinality µ.
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Saturation Big Models Exist

Existence of λ-Big Models VII

We show that B is λ-big.

Suppose a is a sequence of fewer than λ elements of B .

Let C be a structure with a new relation symbol R , such that
(C |L,c)≡ (B ,a), for some sequence c in C .

Adjusting C , we can suppose without loss that c is a.

Now µ ·λ is an ordinal of cofinality λ and λ is regular.

So there is some j <µ ·λ such that all the witnesses in a are less than j .

Thus, (C |L,a)≡ (Aj ,a).

By Condition 2, for some i ≥ j , Ti is conjugate to Th(C ,a).

Then Th(Ai |L,a)∪Ti is consistent.

So by Condition 1 and a previous theorem, Ti is consistent with the
elementary diagram of Ai .

So, by construction, Ai+1 is a model of Ti .

Hence, B+ is also a model of Ti .

Thus, B expands to a model of Ti , as required.
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Saturation Big Models Exist

Consequences

Corollary

Let A be an L-structure and λ a cardinal ≥ |L|. Then A has a λ+-big (and,
hence, λ+-saturated) elementary extension of cardinality ≤ |A|λ.

Direct from the theorem.

Corollary

Let λ be any cardinal. Then every structure is elementarily equivalent to a
λ-big structure.

Thus, if we want to classify the models of a first-order theory T up to
elementary equivalence, it is enough to choose a cardinal λ and
classify the λ-big models up to elementary equivalence.

Since the λ-big models of T may be a much better behaved collection
than the models of T in general, this is real progress.
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Saturation Big Models Exist

Existence of λ-Homogeneous Models

Since every λ-big structure is λ-homogeneous, the preceding theorem
creates λ-homogeneous elementary extensions too.

If all we want is λ-homogeneity, we can get it with a smaller structure.

Theorem

Let L be a first-order language, A an L-structure and λ a regular cardinal.
Then A has a λ-homogeneous elementary extension C such that
|C | ≤ (|A|+ |L|)<λ.

By the preceding theorem, we have a λ-big elementary extension B of
A; never mind its cardinality. Write ν for (|A|+ |L|)<λ.

Note that ν≥λ. Otherwise ν= ν<λ = (ν<λ)ν ≥ 2ν > ν.

If D is any elementary substructure of B with cardinality at most ν,
we can find a structure D∗ with D 4D∗ 4B , such that:

If a and b are two sequences of elements of D, both of length <λ, and
(D,a)≡ (D,b), then, for every element c of D there is an element d of

D∗ such that (D,a,c)≡ (D∗,b,d).
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Saturation Big Models Exist

Existence of λ-Homogeneous Models (Cont’d)

We can find D∗ as the union of a chain of elementary substructures of
B , taking one such substructure for each triple (a,b,c), such that
(D ,a)≡ (D ,b) and c is in D. Such a chain is automatically elementary.
As we move one step up the chain, we choose the next structure so
that it contains some d with (D ,a,c)= (B ,b,d). This is possible since
B is λ-homogeneous.

The number of triples (a,b,c) is at most ν<λ = ν;
Each structure in the chain can be chosen of cardinality at most ν.

So the union D∗ can be found with cardinality at most ν.
Now we build a chain (Ai : i <λ) of elementary substructures of B , so
that for each i <λ, Ai+1 is A∗

i
. At limit ordinals we take unions.

Let C be
⋃
i<λAi . Then C has cardinality at most ν ·λ=ν.

Let (C ,a)= (C ,b), where a and b are sequences of length <λ in C .

Let c is an element of C . λ being regular, a, b, c must lie in some Ai .
So Ai+1 contains d with (C ,a,c)≡ (Ai+1,a,c)≡ (Ai+1,b,d)≡ (C ,b,d).
Thus C is λ-homogeneous.
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Saturation Big Models Exist

Consequences

A structure A is called strongly ω-homogeneous if, whenever a,b are
in A, such that (A,a)≡ (A,b), there exists an automorphism of A
taking a to b.

Corollary

Let A be an infinite L-structure and µ a cardinal ≥ |A|+ |L|.

(a) A has an ω-homogeneous elementary extension of cardinality µ.
In particular every complete and countable first-order theory with
infinite models has a countable homogeneous model.

(b) A has a strongly ω-homogeneous elementary extension B of cardinality
µ.
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Subsection 3

Syntactic Characterizations
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Saturation Syntactic Characterizations

Embedding a Structure in a λ-Saturated Structure

Recall that if A and B are L-structures, then “A⇛1 B” means that,
for every ∃1 first-order sentence φ of L, if A |=φ then B |=φ.

Theorem

Let L be a first-order language. Let A and B be L-structures, and suppose
B is |A|-saturated and A⇛1 B . Then A is embeddable in B .

List the elements of A as a= (ai : i <λ), where λ= |A|.

Claim: There is a sequence b = (bi : i <λ) of elements of B such that
for each i ≤λ, (A,a |i )⇛1 (B ,b |i).

The proof is by induction on i .

When i = 0, A⇛1 B by assumption.

When i is a limit ordinal, the condition holds at i provided it holds at
all smaller ordinals.

This leaves the case where i is a successor ordinal j +1.
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Saturation Syntactic Characterizations

Embedding a Structure in a λ-Saturated Structure (Cont’d)

Let x be the sequence of variables (xα :α< i).

Let Φ(x ,y) be the set of all ∃1 formulas φ(x ,y), such that
A |=φ(a |i ,ai).

For each finite set φ0, . . . ,φn−1 from Φ, A |= ∃y
∧
k<nφk(a |j ,y).

But ∃y
∧
k<nφk is equivalent to an ∃1 formula.

So, by the induction hypothesis, B |= ∃yφ(b |j ,y).

By a previous theorem, Φ(b |j ,y) is a type with respect to B .

Since j <λ and B is λ-saturated, this type is realized in B , say by bj .

Then (A,a |i)⇛1 (B ,b |i ) as required. This proves the claim.

Hence (A,a)⇛1 (B ,b).

By the Diagram Lemma, there is an embedding f :A→B , such that
f (a)= b.
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Saturation Syntactic Characterizations

A Corollary

Corollary

Let L be a first-order language, T a theory in L and Φ(x) a set of formulas
of L (where the sequence x may be infinite). Suppose that whenever A and
B are models of T with A⊆B , and a is a sequence of elements of A such
that A |=

∧
Φ(a), we have B |=

∧
Φ(a). Then Φ is equivalent modulo T to a

set Ψ(x) of ∃1 formulas of L.

Putting new constants for the variables x , we can suppose that the
formulas in Φ are sentences. Let Ψ be the set of all ∃1 sentences ψ of
L such that T ∪Φ⊢ψ. It suffices to show that T ∪Ψ⊢

∧
Φ.

If T ∪Ψ has no models then this holds trivially.

If T ∪Ψ has models, let B ′ be one.
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Saturation Syntactic Characterizations

A Corollary (Cont’d)

We set Ψ= {ψ ∃1-sentence :T ∪Φ⊢ψ}. We must show T ∪Ψ⊢
∧
Φ.

Let B ′ be a model of T ∪Ψ. By a previous corollary, B ′ is elementarily
equivalent to a λ-saturated structure B , where λ≥ |L|.

Write U for the set of all ∀1 sentences of L which are true in B .

Claim: T ∪Φ∪U has a model.

Suppose not. By the Compactness Theorem there is a finite subset
{θ0, . . . ,θm−1} of U , such that T ∪Φ⊢¬θ0 ∨·· ·∨¬θm−1. Hence,
¬θ0∨·· ·∨¬θm−1 is equivalent to a sentence in Ψ. Thus, it is true in
B ′ and B , a contradiction.

Let A be a model of T ∪Φ∪U of cardinality ≤ |L|.

By the choice of U , A⇛1 B .

So A is embeddable in B , by the theorem.

Thus, since Φ is a set of ∃1 sentences, B |=
∧
Φ.

Thus, B ′ |=
∧
Φ.
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Saturation Syntactic Characterizations

Relation Symbols Fixed By Homomorphisms

Let L be a first-order language and R a relation symbol of L.

Let f :A→B be a homomorphism of L-structures.

We say that f fixes R if, for every tuple a of elements of A,

A |=R(a) if and only if B |=R(f (a)).

In this definition we allow R to be the equality symbol =.

The following properties hold.

f fixes = if and only if f is injective.
f fixes all relation symbols if and only if f is an embedding.
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Saturation Syntactic Characterizations

Relation Symbols Positive In Formulas

Let L be a first-order language and R a relation symbol of L.

Let φ be an L-formula.

φ is said to be negation normal if in φ the symbol ¬ never occurs
except immediately in front of an atomic formula.

We say that the relation symbol R is positive in φ if φ can be
brought to negation normal form in such a way that there are no
subformulas of the form ¬R(t).

Recall that a formula is positive if ¬ never occurs in it.

Up to logical equivalence, a formula φ is positive if and only if every
relation symbol, including =, is positive in φ.
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Saturation Syntactic Characterizations

Lyndon’s Theorem

Theorem

Let L be a first-order language, Σ a set of relation symbols of L (possibly
including =) and φ(x) a formula of L in which every relation symbol in Σ is
positive.

(a) If f :A→B is a surjective homomorphism of L-structures, and f fixes
all relation symbols (including possibly =) which are not in Σ, then f

preserves φ.

(b) Suppose that every surjective homomorphism between models of T
which fixes all relation symbols not in Σ preserves φ. Then φ is
equivalent modulo T to a formula ψ(x) of L in which every relation
symbol in Σ is positive.

(a) This is a variant of a previous theorem concerning positive formulas.

(b) We start along the same track as the proof of the preceding corollary.
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Saturation Syntactic Characterizations

Lyndon’s Theorem (Cont’d)

Replacing the variables x by distinct new constants, we can assume
that φ is a sentence. Let Θ be the set of all formulas of L in which
every relation symbol in Σ is positive.

We use Θ in the same way as we used ∃1 in the preceding theorem.

For L-structures C and D, write (C ,c)⇛Θ (D ,d) to mean that if θ(x)
is any formula in Θ such that C |= θ(c), then D |= θ(d).

So C ⇛Θ D means that every sentence in Θ true in C is also true in D.

In place of the previous theorem, we shall show the following.

Lemma

Let L,Σ and Θ be as in the theorem. Let λ be a cardinal ≥ |L|, and suppose
A and B are λ-saturated structures such that A⇛Θ B . Then there are
elementary substructures A′,B ′ of A,B , respectively, and a surjective
homomorphism f :A′ →B ′ which fixes all relation symbols not in Σ.
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Saturation Syntactic Characterizations

Lyndon’s Theorem (Proof of the Lemma)

We build up sequences a,b of elements of A,B , respectively, both of
length λ, in such a way that:

1. For every i ≤λ, (A,a |i )⇛Θ (B ,b |i );
2. a is the domain of an elementary substructure of A;
3. b is the domain of an elementary substructure of B.

The construction is by induction on i , as in the previous theorem.

In that proof, each aj was given and we found an element bj to match.

Here we sometimes choose the bj first and, then, an answering aj .

One can think of the process as a back-and-forth game of length λ
between A and B :

Player ∀ chooses an element aj (or bj );
Player ∃ has to find a corresponding element bj (or aj).

Player ∃ wins iff Condition 1 holds after λ steps.
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Saturation Syntactic Characterizations

Lyndon’s Theorem (Proof of the Lemma Cont’d)

Claim: Player ∃ can always win this game.

At the beginning of the game, A⇛Θ B by assumption.

Suppose i is a limit ordinal and (A,a |j)⇛Θ (B ,b |j ), for all j < i .

Since all formulas are finite, (A,a |i )⇛Θ (B ,b |i ).
Suppose i is a successor ordinal j +1. There are two cases, according
as player ∀ chooses from A or from B .

Suppose first that player ∀ has just chosen aj from A.
Let Φ(x ,y) be the set of all φ(x ,y) in Θ such that A |=φ(a |j ,aj ).
Φ is closed under conjunctions and existential quantification.
Exactly the same argument as in the proof of the previous theorem
shows that Φ(b |j ,y) is a type over b |j with respect to B.

So there exists b in B, such that (A,a |j ,aj )⇛Θ (B ,b |i ,b).
Let player ∃ choose bj to be this element b.
Suppose player ∀ chose bj from B. So player ∃ must find a suitable aj .
The argument is just the same but from right to left, using the set
{¬θ : θ ∈Θ} in place of Θ.
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Saturation Syntactic Characterizations

Lyndon’s Theorem (Proof of the Lemma Conclusion)

To enforce Conditions 2 and 3, we issue some instructions to player ∀.

As the play proceeds, he must keep a note of all the formulas of the
form φ(a |i ,y), with φ in L, such that A |= ∃yφ(a |i ,y).

For each such formula he must make sure that at some stage j later
than i , he chooses aj so that A |=φ(a |i ,aj).

He must do the same with B .

At the end of the play, Conditions 2 and 3 will hold by the Tarski-
Vaught Criterion.
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Saturation Syntactic Characterizations

Lyndon’s Theorem (Conclusion)

Finally suppose the game is played.

Assume a,b satisfying Conditions 1 and 2 have been found.

Let A′ be the substructure of A, with domain listed by a.

Let B ′ be the substructure of B , with domain listed by b.

All atomic formulas of L are in Θ.

By the Diagram Lemma, we get a homomorphism f :A′ →B ′ such
that f (a)= b.

Clearly f is surjective.

If R is a relation symbol not in Σ, then ¬R(z) is in Θ.

So Condition 1 implies that f fixes R .

The rest of the argument is much as in the proof of the preceding
corollary.
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Saturation Syntactic Characterizations

Lyndon’s Preservation Theorem

Corollary (Lyndon’s Preservation Theorem)

Let T be a theory in a first-order language L and φ(x) a formula of L
which is preserved by all surjective homomorphism between models of T .
Then φ is equivalent modulo T to a positive formula ψ(x) of L.

Let Σ in the theorem be the set of all relation symbols of L, including
the symbol =.

Using the same argument, we can replace φ and ψ in this corollary by
sets Φ, Ψ of formulas.
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Saturation Syntactic Characterizations

Keisler Games

Let L be a first-order language and λ an infinite cardinal.

A Keisler sentence of length λ in L is an infinitary expression of the
form

Q0x0Q1x1 · · ·Qixi · · ·︸ ︷︷ ︸
i<λ

∧
Φ,

where:
Each Qi is either ∀ or ∃;
Φ is a set of formulas φ(x0,x1, . . .) of L.

If χ is the Keisler sentence above and A is an L-structure, then the
Keisler game G (χ,A) involves λ steps and is played as follows:

At the i-th step, one of the players chooses an element ai of A.
Player ∀ makes the choice if Qi is ∀;
Player ∃ makes the choice otherwise.

At the end of the play, player ∃ wins if A |=
∧
Φ(a0,a1, . . .).

A |= χ means that player ∃ has a winning strategy for G (χ,A).
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Saturation Syntactic Characterizations

Finite Approximations to Keisler Senences

A finite approximation to the Keisler sentence

Q0x0Q1x1 · · ·Qixi · · ·︸ ︷︷ ︸
i<λ

∧
Φ

is a sentence Q
∧
Ψ, where:

Ψ is a finite subset of Φ;
Q is a finite subsequence of the quantifier prefix, containing quantifiers
to bind all the free variables of Ψ.

We denote by app(χ) the set of all finite approximations to the Keisler
sentence χ.
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Saturation Syntactic Characterizations

Keisler Formulas

These definitions adapt in an obvious way to give:

Keisler formulas χ(w);
Keisler games G(χ(w),A,c).

A |= χ(c) holds if player ∃ has a winning strategy for G (χ(w ),A,c).

In particular, let χ be the Keisler sentence

Q0x0Q1x1 · · ·Qixi · · ·︸ ︷︷ ︸
i<λ

∧
Φ

and α be an ordinal <λ.

We write χα(xi : i <α) for the Keisler formula got from χ by removing
the quantifiers Qixi , i <α.
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Saturation Syntactic Characterizations

Detaching the Leftmost Quantifier

The following lemma tells us that we can detach the leftmost
quantifier Q0x0 of a Keisler sentence and treat it exactly like an
ordinary quantifier.

The lemma generalizes to cover also Keisler formulas χ(w ).

Lemma

With the notation above, we have A |=χ iff A |=Q0x0χ
1(x0).

Suppose first that Q0 is ∀. If A |= χ, then the initial position in G (χ,A)
is winning for player ∃. So every choice a of player ∀ puts player ∃ into
winning position in G (χ1,A,a). Hence A |= χ1(a). So A |= ∀x0χ

1(x0).

The converse, and the corresponding arguments for the case Q0 =∃,
are similar.
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Saturation Syntactic Characterizations

Keisler Games and Saturation

Theorem

Let A be a non-empty L-structure, λ an infinite cardinal and χ a Keisler
sentence of L of length λ.

(a) If A |= χ, then A |=
∧

app(χ).

(b) If A |=
∧

app(χ) and A is λ-saturated then A |=χ.

(a) Let χ=Q0x0Q1x1 · · ·Qixi · · ·︸ ︷︷ ︸
i<λ

∧
Φ.

Suppose α<λ, θ(xi : i <α) is a finite approximation to χα, and a is a
sequence of elements of A, such that A |=χα(a). We show A |= θ(a).

Use induction on the number n of quantifiers in the prefix of θ.

If n= 0, then θ is a conjunction of formulas φ(xi : i <α) from Φ.

If A |= χα(a), then player ∃ has a winning strategy for G (χα,A,a).

Therefore, A |= θ(a).
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Saturation Syntactic Characterizations

Keisler Games and Saturation (Part (a) Cont’d)

Suppose n> 0.

Let the quantifier prefix of θ begin with a universal quantifier ∀xβ.

Then β≥α and we can write θ as ∀xβθ
′(xi : i ≤β) (note that none of

the variables xi , with i >α are free in θ).

If A |= χα(a), then player ∃ has a winning strategy for G (χα,A,a).

Let players play this game through the steps Qixi , α≤ i <β, with
player ∃ using her winning strategy. Let b be the sequence of elements
chosen (possible because A is not empty).

Then A |=χβ(a,b).

By the preceding lemma, A |= ∀xβχ
β+1(a,b,xβ).

So, for every element c of A, A |=χβ+1(a,b,c).

By the induction hypothesis, A |= θ′(a,b,c). Thus, A |= θ(a).

The argument when θ begins with an existential quantifier is similar.

Finally putting α= 0, we get Part (a).
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Saturation Syntactic Characterizations

Keisler Games and Saturation (Part (b))

(b) Assume A is λ-saturated and A |=
∧

app(x).

Player ∃ should adopt the following rule for playing G (χ,A):

Always choose so that for each α<λ, if b is the sequence of elements
chosen before the α-th step, then A |=

∧
app(χα)(b).

Suppose she succeeds in following this rule until the end of the game.

Then a sequence a of length λ has been chosen, with A |=
∧
Φ(a).

So, in that case, she wins G (χ,A).

Claim: ∃ can follow this rule.

Suppose she has followed this rule up to the choice of b = (bi : i <α).

So, it holds that A |=
∧

app(χα)(b).
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Saturation Syntactic Characterizations

Keisler Games and Saturation (Part (b) Cont’d)

First suppose that Qα is ∃. Without loss write any finite
approximation θ to χα as ∃xαθ

′(xi : i ≤α). To maintain the rule,
player ∃ has to choose an element bα so that A |= θ′(b,bα), for each
θ ∈ app(χα). Now A is λ-saturated and b has length less than λ.
Hence we only need show that if {θ0, . . . ,θn−1} is a finite set of
formulas in app(χα), then A |= ∃xα(θ

′
0, . . . ,θ′n−1)(b,xα). But clearly

there is some finite approximation θ to χα which begins with ∃xα and
is such that θ′ implies θ′0, . . . ,θ′n−1. By assumption A |= θ(b), in other

words A |= ∃xαθ
′(b,xα). This completes the argument when Qα is ∃.

Next suppose that Qα is ∀, and let θ′(xi : i ≤α) be a finite
approximation to χα+1. Then ∀xαθ

′ is a finite approximation to χα.
So, by assumption, A |= ∀xαθ

′(b,xα). Hence A |= θ′(b,bα) regardless
of the choice of bα. So player ∀ can never break player ∃’s rule.

Limit ordinals are no threat to player ∃’s rule.

So she can follow the rule and win. Therefore, A |= χ.
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Saturation Syntactic Characterizations

Generalization to Keisler Formulas

The preceding theorem generalizes to Keisler formulas χ(w) with
fewer than λ free variables w .

Part (a) of the theorem reads

If A |= χ(b), then A |= (
∧

app(χ))(b).

Part (b) takes the form

if A |=
∧

app(χ)(b) and A is λ-saturated, then A |= χ(b).
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Saturation Syntactic Characterizations

Relating the First and Last Theorems of the Section

Let L be a first-order language. Let A and B be L-structures, and
suppose B is |A|-saturated and A⇛1 B .

We list the elements of A as a= (ai : i <λ).

Let x be the sequence of variables (xi : i <λ).

Write Θ for the set of ∃1 formulas θ(x) of L, such that A |= θ(a).

Let χ be the sentence ∃0x0∃1x1 · · ·
∧
Θ.

Then
∧

app(χ) is a conjunction of ∃1 sentences true in A.

Hence, since A⇛1 B , B |=
∧

app(χ).

By Part (b) of the preceding theorem, it follows that B |=χ.

Therefore, A is embeddable in B .
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Saturation Ultraproducts and Ultrapowers

Subsection 4

Ultraproducts and Ultrapowers
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Saturation Ultraproducts and Ultrapowers

Direct Products

Let L be a signature and I a non-empty set.

Suppose that for each i ∈ I a non-empty L-structure Ai is given.

The direct product (or Cartesian product or, simply, product)∏
i∈I Ai (or

∏
i Ai for short) is the L-structure B defined as follows:

Write X for the set of all maps a : I →
⋃
i∈I dom(Ai ), such that for each

i ∈ I , a(i) ∈ dom(Ai ). We put dom(B)=X .
For each constant c of L we take cB to be the element a of X , such
that a(i)= cAi , for each i ∈ I .
For each n-ary function symbol F of L and n-tuple a= (a0, . . . ,an−1)
from X , we define FB (a) to be the element b of X such that for each
i ∈ I , b(i)=FAi (a0(i), . . . ,an−1(i)).
For each n-ary relation symbol R of L and n-tuple a from X , we put a
in RB iff for every i ∈ I , (a0(i), . . . ,an−1(i)) ∈R

Ai .

The structure Ai is called the i -th factor of the product.

If I = {0, . . . ,n−1}, we write A0×·· ·×An−1 for
∏

i Ai .
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Saturation Ultraproducts and Ultrapowers

Filters, Ultrafilters and Principal Ultrafilters

By a filter over a non-empty set I we mean a non-empty set F of
subsets of I such that:

1. ; 6∈F ;
2. X ∈F and X ⊆Y ⊆ I imply Y ∈F ;
3. X ,Y ∈F implies X ∩Y ∈F .

In particular I ∈F by the second condition and the fact that F 6= ;.

A filter F is called an ultrafilter if it has the further property:

For every set X ⊆ I , exactly one of X , I \X is in F .

Given an element i ∈ I , the set U of all subsets X of I , such that i ∈X
is an ultrafilter over I .

Ultrafilters of this form are called principal.

George Voutsadakis (LSSU) Model Theory January 2024 62 / 90



Saturation Ultraproducts and Ultrapowers

The Boolean Value

Let L be a first-order language and I a non-empty set.

Let (Ai : i ∈ I ) a family of non-empty L-structures.

Let φ(x) be a formula of L.

Let a be a tuple of elements of the product
∏

i Ai .

We define the boolean value of φ(a), in symbols ‖φ(a)‖, to be the
set

‖φ(a)‖ := {i ∈ I :Ai |=φ(a(i))}.

Note the following properties:

‖φ∧ψ‖ = ‖φ‖∩‖ψ‖;
‖φ∨ψ‖ = ‖φ‖∪‖ψ‖;
‖¬φ‖= I \‖φ‖.
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Saturation Ultraproducts and Ultrapowers

Boolean Value and Quantification

The property for the existential quantifier should say that ‖∃xφ(x)‖ is
the union of the sets ‖φ(a)‖, with a in

∏
i Ai .

Something stronger is true, both for
∏

i Ai and for some of its
substructures C .

We say that C respects ∃ if, for every formula φ(x) of L with
parameters from C ,

‖∃xφ(x)‖ = ‖φ(a)‖, for some element a of C .

Claim:
∏

i Ai respects ∃.

For each i ∈ ‖∃xφ(x)‖, choose an element ai , such that Ai |=φ(ai ).

Consider the element a of
∏

i Ai , such that a(i)= ai , i ∈ ‖∃xφ(x)‖
(invoking the axiom of choice).
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Saturation Ultraproducts and Ultrapowers

The Equivalence Relation ∼

Let L be a first-order language and I a non-empty set.

Let (Ai : i ∈ I ) a family of non-empty L-structures.

Let F a filter over I .

Form the product
∏

I Ai and, using F , define a relation ∼ on
dom

∏
I Ai by

a∼ b iff ‖a= b‖ ∈F .

Claim: ∼ is an equivalence relation.

Reflexive: For each element a of
∏

I Ai , ‖a= a‖= I ∈F .
Symmetric: This is clear.
Transitive: ‖a= b‖∩‖b = c‖⊆ ‖a= c‖.
So if ‖a= b‖,‖b = c‖ ∈F , then ‖a= c‖ ∈F .

Thus, ∼ is an equivalence relation.

We write a/F for the equivalence class of the element a.
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Saturation Ultraproducts and Ultrapowers

The L-structure D

We define an L-structure D as follows:

The domain dom(D) is the set of equivalence classes a/F , with
a ∈ dom

∏
I Ai .

For each constant symbol c of L we put cD = a/F , where a(i)= cAi ,
for each i ∈ I .
Let F be an n-ary function symbol of L, and a0, . . . ,an−1 elements of∏

I Ai . We define FD(a0/F , . . . ,an−1/F )= b/F , where
b(i)=FAi (a0(i), . . . ,an−1(i)), for each i ∈ I .
Finally if R is an n-ary relation symbol of L and a0, . . . ,an−1 are
elements of

∏
I Ai , then we put (a0/F , . . . ,an−1/F ) ∈RD iff

‖R(a0, . . . ,an−1)‖ ∈F
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Saturation Ultraproducts and Ultrapowers

Soundness of the Definition

Claim: The definition of D is sound.

Let F be an n-ary function symbol.
Suppose that ai ∼ a′

i
, i < n.

We must show F (a0, . . . ,an−1)∼F (a′
0

, . . . ,a′
n−1

).
Since ai ∼ a′

i
, ‖ai = a′

i
‖ ∈F .

Since F is a filter,
⋂
i<n ‖ai = a′

i
‖ ∈F .

But
⋂
i<n ‖ai = a′

i
‖⊆ ‖F (a0, . . . ,an−1)=F (a′

0
, . . . ,a′

n−1
)‖.

So, again by the filter property, ‖F (a0, . . . ,an−1)=F (a′
0

, . . . ,a′
n−1

)‖ ∈F .
This proves that F (a0, . . . ,an−1)∼F (a′

0
, . . . ,a′

n−1
).

Let R be an n-ary relation symbol.
Suppose that ‖R(a0, . . . ,an−1)‖ ∈F and ai ∼ a′

i
, i < n.

We must show ‖R(a′
0

, . . . ,a′
n−1

)‖ ∈F .
Since ai ∼ a′

i
, ‖ai = a′

i
‖ ∈F .

Since F is a filter,
⋂
i<n ‖ai = a′

i
‖∩‖R(a0, . . . ,an−1)‖ ∈F .

But
⋂
i<n ‖ai = a′

i
‖∩‖R(a0, . . . ,an−1)‖ ⊆ ‖R(a′

0
, . . . ,a′

n−1
)‖.

So, again by the filter property, ‖R(a0, . . . ,an−1)‖ ∈F .
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Reduced Products

The L-structure D is called the reduced product of (Ai : i ∈ I ) over
F , in symbols

∏
I Ai/F .

When F is an ultrafilter, the structure is called the ultraproduct of
(Ai : i ∈ I ) over F .

For every unnested atomic formula φ(x) of L and every tuple a of
elements of

∏
I Ai ,

∏

I

Ai/F |=φ(a/F ) iff ‖φ(a)‖ ∈F .

Note that
∏

I Ai itself is just the reduced product
∏

I Ai/{I }.

So every direct product is a reduced product.
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Saturation Ultraproducts and Ultrapowers

Reduced Products and Relativized Reducts

Theorem

Let L and L+ be signatures and P a 1-ary relation symbol of L+. Let
(Ai : i ∈ I ) be a non-empty family of non-empty L+-structures such that
(Ai)P is defined and F a filter over I . Then (

∏
I Ai/F )P =

∏
I ((Ai )P)/F .

Define f :
∏

I ((Ai )P)/F →
∏

I Ai/F by

∏

I

((Ai )P)/F ∋ a/F 7→ a/F ∈
∏

I

Ai/F .

One can check from the definition of reduced products that this
definition is sound.

Moreover f is an embedding with image (
∏

I Ai/F )P .
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Reduced Powers

When all the structures Ai are equal to a fixed structure A, we call∏
I A/F the reduced power AI/F .

If F is an ultrafilter, we call the structure the ultrapower of A over
F .

There is an embedding (as will follow from the next lemma)
e :A→AI/F defined by

e(b)= a/F ,

where a(i)= b, for all i ∈ I .

We call e the diagonal embedding.
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Reduced Products and Positive Primitive Formulas

Recall that a positive primitive (p.p.) formula is a first-order
formula of the form ∃y

∧
Φ, where Φ is a set of atomic formulas.

Lemma

Let L be a signature and φ(x) a p.p. formula of L. Let (Ai : i ∈ I ) be a
non-empty family of non-empty L-structures and a a tuple of elements of∏

I Ai . Let F be a filter over I . Then
∏

I Ai/F |=φ(a/F ) iff ‖φ(a)‖ ∈F .

By induction on the complexity of φ. If ψ≡ χ, ‖ψ‖ = ‖χ‖.

By a previous corollary, we may assume that φ is unnested.

For atomic formulas the result has bee asserted in a preceding slide.

Suppose the conclusion holds for φ(x), ψ(x). Then it holds for their
conjunction.
Suppose

∏
I Ai/F |= (φ∧ψ)(a/F ). By definition,

∏
I Ai/F |=φ(a/F )

and
∏

I Ai/F |=ψ(a/F ). By assumption, ‖φ(a)‖ and ‖ψ(a)‖ are both
in F . So ‖(φ∧ψ)(a)‖ ∈F .
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Reduced Products and Positive Primitive Formulas (Cont’d)

We continue the Induction:

We finish conjunction by looking at the converse.
Suppose ‖(φ∧ψ)(a)‖ ∈F . But ‖(φ∧ψ)(a)‖ ⊆ ‖φ(a)‖ and ‖(φ∧ψ)(a)‖
⊆ ‖ψ(a)‖. So ‖φ(a)| ∈F and ‖ψ(a)| ∈F . By the induction hypothesis,∏

I Ai/F |=φ(a/F ) and
∏

I Ai/F |=ψ(a/F ). So, by definition,∏
I Ai/F |= (φ∧ψ)(a/F ).

If the result holds for ψ(x ,y ) then it holds for ∃yψ(x ,y ).
From left to right, suppose

∏
I Ai/F |= ∃yψ(a/F ,y ). Then there are

elements b of
∏

I Ai such that
∏

I Ai/F |=ψ(a/F ,b/F ). So

‖ψ(a,b)‖ ∈F by assumption. But ‖ψ(a,b)‖⊆ ‖∃yψ(a,y )‖. So
‖∃yψ(a,y )‖ ∈F .
Conversely, suppose ‖∃yψ(a,y )‖ ∈F . Now

∏
I Ai respects ∃. So there

are elements b of
∏

I Ai , such that ‖ψ(a,b)‖ = ‖∃yψ(a,y )‖. Thus,
∏

I Ai/F |=ψ(a/F ,b/F ), by assumption. Hence
∏

I Ai |= ∃yψ(a/F ,y).
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Łoś’ Theorem

Theorem (Łoś’ Theorem)

Let L be a first-order language, (Ai : i ∈ I ) a non-empty family of
non-empty L-structures and U an ultrafilter over I . Then, for any formula
φ(x) of L and tuple a of elements of

∏
I Ai ,

∏

I

Ai/U |=φ(a/U ) iff ‖φ(a)‖ ∈U .

By induction on the complexity of φ. Comparing with the proof of the
preceding lemma, only one more thing is needed. Assuming the
conclusion holds for φ, we have to deduce it for ¬φ also. We have

∏
I Ai/U |=¬φ(a/U ) iff

∏
I Ai/U 6|=φ(a/U )

iff ‖φ(a)‖ 6∈U

iff I \‖φ(a)‖ ∈U

iff ‖¬φ(a)‖ ∈U .
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Saturation Ultraproducts and Ultrapowers

Constructing Elementary Extensions

Corollary

If AI /U is an ultrapower of A, then the diagonal map e :A→AI/U is an
elementary embedding.

By he corollary, we may regard A as an elementary substructure of
AI/U .

So ultrapowers give elementary extensions.

But this is useful only when ultrafilters are non-principal.
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The Finite Intersection Property and Ultrafilters

Let I be a nonempty set and W a set of subsets of I .

We say that W has the finite intersection property if for every finite
set X0, . . . ,Xm−1 of elements of W , X0∩·· ·∩Xm−1 is not empty.

Every filter over I has the finite intersection property.

Lemma

Let I be a nonempty set and W a set of subsets of I with the finite
intersection property. Then, there is an ultrafilter U over I , with W ⊆U .

Let L be the first-order language with the following signature:
Each subset of I is a constant;
There is one unary relation symbol P .

Let T be the theory

{P(a)→P(b) : a⊆ b}∪ {P(a)∧P(b)→P(c) : a∩b = c}

∪ {P(a)↔¬P(b) : b = I \a}∪ {P(a) : a ∈W }.
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The Finite Intersection Property and Ultrafilters (Claim)

Claim: T has a model.

Suppose T does not have a model. By the Compactness Theorem,
some finite subset U of T does not have a model.

Let X0, . . . ,Xm−1 be the elements a of W , such that “P(a)”∈U .

By hypothesis, W has the finite intersection property.

So there is some i ∈ I , such that i ∈X0∩·· ·∩Xm−1.

Let V be the principal ultrafilter consisting of all the subsets of I that
contain i . Then we form a model of U by:

Interpreting each subset of I as a name of itself;
Reading “P(c)” as “c ∈ V ”.

This proves the claim.

Let B be a model of T .

Define a set U of subsets of I by b ∈U if and only if B |=P(b).

By reading T , U is an ultrafilter containing all of W .
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Regular and Incomplete Filters

Let I be an infinite set.

Let F be a filter over I .

F is regular if there exists a countable G ⊆F , such that, for all i ∈ I ,

|{X ∈G : i ∈X }| <ω.

F is incomplete if there exists countable G ⊆F , such that
⋂

G 6∈F .
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Characterization of Regularity

Proposition

Let I be an infinite set and F be a filter over I . F is regular if and only if,
there exists a countable decreasing chain

I = I0 ⊇ I1 ⊇ I2 ⊇ ·· ·

of elements in F , such that
⋂
n In =;.

Suppose F is regular. Let G = {G0,G1, . . .} ⊆F be countable such
that, each i ∈ I is in finitely many elements of G . Take Ii =

⋂
j<i Gi ,

i ≥ 1. For every i ∈ I , there exists k , such that i 6∈Gk . Hence, i 6∈
⋂
n In.

This shows that
⋂
n In =;.

Suppose the given condition holds. Let G = {I0, I1, . . .}. Since i 6∈
⋂

G ,
there exists k , such that i 6∈ Ik . Hence, since the Ii ’s form a decreasing
sequence, |{Ij : i ∈ Ij }| <ω. Thus, F is regular.
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Regularity and Incompleteness

Proposition

Let I be an infinite set and F be an ultrafilter over I . F is regular if and
only if it is incomplete.

Suppose F is regular. Let G ⊆F be countable, such that, for each
i ∈ I , i is in finitely many G ∈G . Then

⋂
G =;. Hence,

⋂
G 6∈F . So

F is incomplete.

Suppose F is incomplete. Let G = {G0,G1, . . .} ⊆F be such that⋂
G 6∈F . Define

G ′
0 =G0\

⋂
G , G ′

i+1 =G ′
i ∩Gi+1, i ≥ 0.

Then G
′ = {G ′

0,G ′
1, . . .} ⊆F and

⋂
G

′ =;. Hence, F is regular.
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Regular Ultrafilters

Lemma

Let I be an infinite set. Then there is a regular ultrafilter F over I .

It suffices to prove the lemma for a set J of the same cardinality as I .

Let J be the set of all finite subsets of I .

For i ∈ I , let î = {X ∈ J : i ∈X }.

Set G = {î : i ∈ I }.

G has the finite intersection property: This holds since
{i0, . . . , in−1} ⊆ î0∩·· ·∩ în−1.

Hence G can be extended to an ultrafilter F over J.

Clearly G ⊆F , with |G | =ω.

Moreover, if X ∈ J, X is finite and X ∈ î means i ∈X .

So each X ∈ J is in finitely many elements of G .

This proves that F is regular.
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Saturation Ultraproducts and Ultrapowers

Cardinality and Realization Properties

Theorem

Let L be a first-order language, A an L-structure, I an infinite set and U a
regular ultrafilter over I .

(a) If φ(x) is a formula of L such that |φ(A)| is infinite, then
|φ(AI /U )| = |φ(A)||I |.

(b) If Φ(x) is a type over dom(A) with respect to A, and |Φ| ≤ |I |, then
some tuple a in AI/U realizes Φ.

(a) We first prove ≤. By Łoś’s theorem, each element of φ(AI /U ) is of
the form b/U , for some b such that ‖φ(b)‖ ∈U . Since we can change
b anywhere outside a set in U without affecting b/U , we can choose
b so that ‖φ(b)‖= I . This sets up an injection from φ(AI /U ) to the
set φ(A)I of all maps from I to φ(A).
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Cardinality and Realization Properties ((a) Cont’d)

Next we prove |φ(AI /U )| ≥ |φ(A)||I |.

Since U is regular, there are sets Xi , i ∈ I , in U such that for each
j ∈ I , the set Zj = {i ∈ I : j ∈Xi } is finite.

For each j ∈ I , let µj be a bijection taking the set φ(A)Zj (of all maps
from Zj to φ(A)) to φ(A). Such a µj exists since φ(A) is, by
hypothesis, infinite.

For each function f : I →φ(A), define f µ to be the map from I to
φ(A) such that, for each j ∈ I , f µ(j)=µj(f |Zj

).

Each function f µ : I →φ(A) is an element of AI .

By Łoś’s theorem f µ/U ∈φ(AI /U ).

We must show that if f ,g : I →φ(A), f 6= g , then f µ/U 6= gµ/U .

Suppose then that f (i) 6= g(i), for some i ∈ I .

Then f |Zj
6= g |Zj

whenever i ∈Zj , i.e., whenever j ∈Xi .

Hence Xi ⊆‖f µ 6= gµ‖. But Xi ∈U . So f µ/U 6= gµ/U .
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Cardinality and Realization Properties (Part (b))

(b) Since U is regular, there is a family {Xφ :φ ∈Φ} of sets in U , such
that for each i ∈ I the set Zi = {φ ∈Φ : i ∈Xφ} is finite.

But Φ is a type over dom(A).

So, for each i ∈ I , there is a tuple ai in A which satisfies Zi .

Let a be the tuple in AI , such that a(i)= ai , for each i .

Then, for each formula φ in Φ, if i ∈Xφ, then φ ∈Zi .

So A |=φ(ai). Thus, Xφ ⊆‖φ(a)‖.

By Łoś’s theorem, we deduce that AI/U |=φ(a).
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Arbitrarily Large Elementary Extensions

Corollary

Let L be a first-order language, A an L-structure and κ an infinite cardinal.
Then A has an elementary extension B , such that, for every formula φ(x)
of L, |φ(B)| is either finite or equal to |φ(A)|κ.

Consider an ultrafilter U over a set I of cardinality κ.

Then the conclusion follows from Part (a) of the preceding theorem
combined with a previous corollary.
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Saturation Ultraproducts and Ultrapowers

Keisler-Shelah Theorem

We present an important theorem characterizing elementary
equivalence using ultrapowers without proof.

Theorem (Keisler-Shelah Theorem)

Let L be a signature and let A,B be L-structures. The following are
equivalent:

(a) A≡B.

(b) There are a set I and an ultrafilter U over I , such that AI /U ∼=B I /U .

The proof uses some quite difficult combinatorics.

George Voutsadakis (LSSU) Model Theory January 2024 85 / 90



Saturation Ultraproducts and Ultrapowers

Robinson’s Joint Consistency Lemma

Corollary (Robinson’s Joint Consistency Lemma)

Let L1 and L2 be first-order languages and L= L1∩L2. Let T1 and T2 be
consistent theories in L1 and L2, respectively, such that T1∩T2 is a
complete theory in L. Then T1∪T2 is consistent.

Let A1,A2 be models of T1,T2 respectively.

Then since T1∩T2 is complete, A1 |L≡A2 |L.

By the Keisler-Shelah Theorem, there is an ultra-filter U over a set I ,
such that (A1 |L)

I /U ∼= (A2 |L)
I /U .

By a previous corollary, AI
1/U |=T1 and AI

2/U |=T2.

By a previous theorem:

AI
1
/U is an expansion of (A1 |L)

I/U ;

AI
2
/U is an expansion of an isomorphic copy of (A1 |L)

I/U .

So we can use AI
2/U as a template to expand AI

1/U to a model of T2.
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Limit Points of Theories of Structures

Let L be a first-order language.

Let S be the set of all theories in L which are of the form Th(A), for
some L-structure A.

Let X be a subset of S .

Let T a set of sentences of L.

We call T a limit point of X if:

1. For every sentence φ of L, exactly one of φ, ¬φ is in T ;
2. For every finite T0 ⊆T , there is T ′ ∈X with T0 ⊆T ′.

The following theorem is one way of showing that such a set T is in
fact an element of S .
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Characterization of Limit Points

Theorem

Let L be a first-order language, K a class of L-structures and T a limit
point of {Th(A) :A ∈K}. Then T is Th(B), for some ultraproduct B of
structures in K.

Let U be a regular ultrafilter over the set T .

Then there is a family {Xφ :φ ∈T } of sets in U , such that for each
i ∈T , the set Zi = {φ ∈T : i ∈Xφ} is finite.

Since T is a limit point of {Th(A) :A ∈K}, for each i ∈T , there is a
structure Ai ∈K, such that Ai |=Zi .

Define B =
∏

I Ai/U .

If i ∈Xφ then φ ∈Zi . So Ai |=φ.

Hence, Xφ ⊆‖φ‖, for each sentence φ in T .

By Łoś’s Theorem, B |=T .

So, T being a limit point, T =Th(B).
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Criterion for First-Order Axiomatizability

Corollary

Let L be a first-order language and K a class of L-structures. Then the
following are equivalent:

(a) K is axiomatizable by a set of sentences of L.

(b) K is closed under ultraproducts and isomorphic copies, and if A is an
L-structure such that some ultrapower of A lies in K, then A is in K.

(a)⇒(b) This follows from previous results.

(b)⇒(a) Suppose (b) holds. Let T be the set of all sentences of L
which are true in every structure in K. To prove (a) it suffices to show
that any model A of T lies in K.
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Criterion for First-Order Axiomatizability (Cont’d)

Claim: Th(A) is a limit point of {Th(C ) :C ∈K}.

For this, let U be a finite set of sentences of L which are true in A.

Then
∧
U is a sentence φ which is true in A.

Since A is a model of T , ¬φ 6∈T .

By the definition of T , some structure in K is a model of φ.

Thus, Th(A) is a limit point of {Th(C ) :C ∈K}.

By the preceding theorem, A is elementarily equivalent to some
ultraproduct of structures in K.

Hence, by (b), it is elementarily equivalent to some structure B in K.

By the Keisler-Shelah Theorem, some ultrapower of A is isomorphic to
an ultrapower of B .

So by (b) again, A is in K.
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