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Random Variables Random Variables

Random Variables

When an experiment is performed, we may be interested in some
function of the outcome as opposed to the actual outcome itself.

Example: In tossing dice, we may be interested in the sum of the two
dice and not concerned about the separate values of each die.

That is, we may be interested in knowing that the sum is 7 and may
not be concerned over whether the actual outcome was (1, 6), (2, 5),
(3, 4), (4, 3), (5, 2) or (6, 1).

Example: In flipping a coin, we may be interested in the total number
of heads that occur and not care at all about the actual head-tail
sequence that results.

These real valued functions defined on the sample space, are known
as random variables.

Because the value of a random variable is determined by the outcome
of the experiment, we may assign probabilities to the possible values
of the random variable.
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Random Variables Random Variables

Example

Suppose that our experiment consists of tossing 3 fair coins.

If we let Y denote the number of heads that appear, then Y is a
random variable taking on one of the values 0, 1, 2 and 3 with
respective probabilities

P{Y = 0} = P{(T ,T ,T )} = 1
8 ;

P{Y = 1} = P{(T ,T ,H), (T ,H,T ), (H ,T ,T )} = 3
8 ;

P{Y = 2} = P{(T ,H,H), (H,T ,H), (H ,H,T )} = 3
8 ;

P{Y = 3} = P{(H,H,H)} = 1
8 .

Since Y must take on one of the values 0 through 3, we must have

1 = P(

3⋃

i=0

{Y = i}) =
3∑

i=0

P{Y = i},

which, of course, is in accord with the preceding probabilities.
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Random Variables Random Variables

Example

Three balls are to be randomly selected without replacement from an
urn containing 20 balls numbered 1 through 20.

If we bet that at least one of the balls that are drawn has a number as
large as or larger than 17, what is the probability that we win the bet?

Let X denote the largest number selected.

Then X is a random variable taking on one of the values 3, 4, . . . , 20.

Assume that each of the
(20
3

)
possible selections are equally likely.

Then

P{X = i} =

(
i−1
2

)

(20
3

) , i = 3, . . . , 20.

This follows because the number of selections that result in the event
{X = i} is the number of selections that result in the ball i and two
of the balls 1 through i − 1 being chosen.
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Random Variables Random Variables

Example (Cont’d)

Now we compute:

P{X = 20} =
(192 )
(203 )

= 3
20 ; P{X = 19} =

(182 )
(203 )

= 51
380 ;

P{X = 18} =
(172 )
(203 )

= 34
285 ; P{X = 17} =

(162 )
(203 )

= 2
19 .

The event {X ≥ 17} is the union of the disjoint events {X = i},
i = 17, 18, 19, 20.

Thus, the probability of our winning the bet is

P{X ≥ 17} =
3

20
+

51

380
+

34

285
+

2

19
.
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Random Variables Random Variables

Example

Independent trials consisting of the flipping of a coin having
probability p of coming up heads are continually performed until
either a head occurs or a total of n flips is made.

If we let X denote the number of times the coin is flipped, then X is
a random variable taking on one of the values 1, 2, 3, . . . , n. Then:

P{X = 1} = P{H} = p;
P{X = 2} = P{(T ,H)} = (1− p)p;
P{X = 3} = P{(T ,T ,H)} = (1− p)2p;

...
P{X = n − 1} = P{(T ,T , . . . ,T

︸ ︷︷ ︸

n−2

,H)} = (1− p)n−2p;

P{X = n} = P{(T ,T , . . . ,T
︸ ︷︷ ︸

n−1

,T ), (T ,T , . . . ,T
︸ ︷︷ ︸

n−1

,H)}

= (1− p)n−1.
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Random Variables Random Variables

Example

Three balls are randomly chosen from an urn containing 3 white, 3
red and 5 black balls.

We win $1 for each white ball selected;
We lose $1 for each red ball selected.

Let X denote our total winnings from the experiment.

X is a random variable taking on the possible values 0,±1,±2,±3
with respective probabilities:

P{X = 0} =
(53)+(

3
1)(

3
1)(

5
1)

(113 )
= 55

165 ;

P{X = 1} = P{X = −1} =
(31)(

5
2)+(

3
2)(

3
1)

(113 )
= 39

165 ;

P{X = 2} = P{X = −2} =
(32)(

5
1)

(113 )
= 15

165 ;

P{X = 3} = P{X = −3} =
(33)
(113 )

= 1
165 .
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Random Variables Random Variables

Example (Cont’d)

These probabilities are obtained, for instance, by noting that:

In order for X to equal 0, either all 3 balls selected must be black or 1
ball of each color must be selected;
The event {X = 1} occurs either if 1 white and 2 black balls are
selected or if 2 white and 1 red is selected.
...

The probability that we win money is given by

3∑

i=1

P{X = i} =
55

165
=

1

3
.
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Random Variables Random Variables

Example

Suppose that there are N distinct types of coupons and that each
time one obtains a coupon, it is, independently of previous selections,
equally likely to be any one of the N types.

Let T be the number of coupons that needs to be collected until one
obtains a complete set of at least one of each type.

Rather than derive P{T = n} directly, let us start by considering the
probability that T is greater than n.
To do so, fix n and define the events A1,A2, . . . ,AN as follows:

Aj is the event that no type j coupon is contained among the first n
coupons collected, j = 1, . . . ,N .

Hence,

P{T > n} = P(
⋃N

j=1 Aj)

=
∑

j P(Aj)−
∑

j1<j2
P(Aj1Aj2) + · · ·

+ (−1)k+1
∑

j1<j2<···<jk
P(Aj1Aj2 · · ·Ajk ) + · · ·

+ (−1)N+1P(A1A2 · · ·AN).
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Random Variables Random Variables

Example (Cont’d)

Now, Aj will occur if each of the n coupons collected is not of type j .

Each of the coupons will not be of type j with probability N−1
N

.

By the assumed independence of the types of successive coupons,
P(Aj) = (N−1

N
)n.

Also, the event Aj1Aj2 will occur if none of the first n coupons
collected is of either type j1 or type j2.

Again using independence, we see that P(Aj1Aj2) = (N−2
N

)n.

The same reasoning gives P(Aj1Aj2 · · ·Ajk ) = (N−k
N

)n.

We see that, for n > 0,

P{T > n} = N(N−1
N

)n −
(
N
2

)
(N−2

N
)n +

(
N
3

)
(N−3

N
)n − · · ·

+ (−1)N
(

N
N−1

)
( 1
N
)n

=
∑N−1

i=1

(
N
i

)
(N−i

N
)n(−1)i+1.

The probability that T equals n can now be obtained by using

P{T = n} = P{T > n − 1} − P{T > n}.
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Random Variables Random Variables

Example

Another random variable of interest is the number Dn of distinct
types of coupons that are contained in the first n selections.

To compute P{Dn = k}, we start by fixing attention on a particular
set of k distinct types.

We determine the probability that this set constitutes the set of
distinct types obtained in the first n selections.

In order for this to be the situation, it is necessary and sufficient that,
of the first n coupons obtained:

A: Each is one of these k types;
B: Each of these k types is represented.

Each coupon selected will be one of the k types with probability k
N
.

So the probability that A will be valid is ( k
N
)n.
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Random Variables Random Variables

Example (Cont’d)

Also, given that a coupon is of one of the (fixed) k types, it is easy to
see that it is equally likely to be of any one of these k types.

Hence, the conditional probability of B given that A occurs is the
same as the probability that a set of n coupons, each equally likely to
be any of k possible types, contains a complete set of all k types.

This is the probability that the number needed to amass a complete
set, when choosing among k types, is less than or equal to n.

So, it is obtainable from

k−1∑

i=1

(
k

i

)(
k − i

k

)n

(−1)i+1.
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Random Variables Random Variables

Example (Cont’d)

We obtained:

P(A) = ( k
N
)n;

P(B |A) = 1−
∑k−1

i=1

(
k
i

)
(k−i

k
)n(−1)i+1.

Moreover, there are
(
N
k

)
possible choices for the set of k types.

Hence, we arrive at

P{Dn = k} =
(
N
k

)
P(AB)

=
(
N
k

)
( k
N
)n[1−

∑k−1
i=1

(
k
i

)
(k−i

k
)n(−1)i+1].
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Random Variables Random Variables

Cumulative Distribution Function

For a random variable X , the function F defined by

F (x) = P{X ≤ x}, −∞ < x < ∞,

is called the cumulative distribution function, or, more simply, the
distribution function, of X .

Thus, the distribution function specifies, for all real values x , the
probability that the random variable is less than or equal to x .

Now, suppose that a ≤ b.

Note that the event {X ≤ a} is contained in the event {X ≤ b}.

Thus, F (a), the probability of the former, is less than or equal to
F (b), the probability of the latter.

In other words, F (x) is a nondecreasing function of x .
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Random Variables Discrete Random Variables

Subsection 2

Discrete Random Variables
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Random Variables Discrete Random Variables

Discrete Random Variables and Probability Mass

A random variable that can take on at most a countable number of
possible values is said to be discrete.

For a discrete random variable X , we define the probability mass

function p(a) of X by

p(a) = P{X = a}.

The probability mass function p(a) is positive for at most a countable
number of values of a.

That is, if X must assume one of the values x1, x2, . . ., then

p(xi ) ≥ 0, for i = 1, 2, . . . ,
p(x) = 0, for all other values of x .

Since X must take on one of the values xi , we have
∑∞

i=1 p(xi) = 1.
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Random Variables Discrete Random Variables

Graphical Representation of Probability Mass

The probability mass function is often presented in a graphical format
by plotting p(xi) on the y -axis against xi on the x-axis.

Example: If the probability mass func-
tion of X is

p(0) =
1

4
, p(1) =

1

2
, p(2) =

1

4
,

we can represent this function graphi-
cally as in the diagram:
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Random Variables Discrete Random Variables

Another Example

Similarly, a graph of the probability mass function of the random
variable representing the sum when two dice are rolled is depicted
below:
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Random Variables Discrete Random Variables

Example

The probability mass function of a random variable X is given by

p(i) = cλi

i ! , i = 0, 1, 2, . . ., where λ is some positive value. Find:
(a) P{X = 0};
(b) P{X > 2}.

First, we determine c :
∑∞

i=0 p(i) = 1 ⇒ c
∑∞

i=0
λi

i ! = 1
∑∞

i=0
xi

i !
=ex

=⇒ ceλ = 1 ⇒ c = e−λ.

(a) P{X = 0} = e−λ λ0

0! = e−λ.

(b)

P{X > 2} = 1− P{X ≤ 2}
= 1− P{X = 0} − P{X = 1} − P{X = 2}

= 1− e−λ − λe−λ − λ2e−λ

2 .
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Random Variables Discrete Random Variables

Probability Mass and Cumulative Distribution

The cumulative distribution function F can be expressed in terms
of p(a) by

F (a) =
∑

all x ≤ a

p(x).

If X is a discrete random variable whose possible values are
x1, x2, x3, . . ., where x1 < x2 < x3 < · · · , then the distribution
function F of X is a step function.

That is:

The value of F is constant in the intervals [xi−1, xi );
It then takes a step (or jump) of size p(xi ) at xi .
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Random Variables Discrete Random Variables

Example

Suppose X has a probability mass function given by

p(1) =
1

4
, p(2) =

1

2
, p(3) =

1

8
, p(4) =

1

8
.

Then its cumulative distribution fun-
ction is

F (a) =







0, if a < 1
1
4 , if 1 ≤ a < 2
3
4 , if 2 ≤ a < 3
7
8 , if 3 ≤ a < 4
1, if 4 ≤ a.

Note that the size of the step at any of the values 1, 2, 3 and 4 is
equal to the probability that X assumes that particular value.
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Random Variables Expected Value

Subsection 3

Expected Value

George Voutsadakis (LSSU) Probability October 2020 24 / 101



Random Variables Expected Value

Expected Value

If X is a discrete random variable having a probability mass function
p(x), then the expectation, or the expected value, of X , denoted
by E [X ], is defined by

E [X ] =
∑

x :p(x)>0

xp(x).

In words, the expected value of X is a weighted average of the
possible values that X can take on, each value being weighted by the
probability that X assumes it.
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Random Variables Expected Value

Example

Suppose the probability mass function of X is given by

p(0) =
1

2
= p(1).

Then

E [X ] = 0 ·
1

2
+ 1 ·

1

2
=

1

2
.

It is just the ordinary average of the two possible values, 0 and 1, that
X can assume.

Suppose, on the other hand, that p(0) = 1
3 , p(1) =

2
3 ,

Then

E [X ] = 0 ·
1

3
+ 1 ·

2

3
=

2

3
.

This is a weighted average of the two possible values 0 and 1, where
(since p(1) = 2p(0)) value 1 is given twice as much weight as value 0.
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Random Variables Expected Value

Example

Let X be the outcome when we roll a fair die.

Find E [X ].

Since the die is fair, we get

p(1) = p(2) = p(3) = p(4) = p(5) = p(6) =
1

6
.

Thus, we obtain

E [X ] = 1 · 1
6 + 2 · 1

6 + 3 · 1
6

+ 4 · 1
6 + 5 · 1

6 + 6 · 1
6

= 7
2 .
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Random Variables Expected Value

The Indicator Variable of an Event

We say that I is an indicator variable for the event A if

I =

{
1, if A occurs
0, if Ac occurs.

Find E [I ].

By definition,

p(1) = P(A), p(0) = 1− P(A).

Hence, we have
E [I ] = P(A).

That is, the expected value of the indicator variable for the event A is
equal to the probability that A occurs.
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Random Variables Expected Value

Example

A contestant on a quiz show is presented with two questions,
Question 1 and Question 2.

He is to attempt to answer them in some order he chooses.

If he decides to try Question i first, then he will be allowed to go on to
question j , j 6= i , only if his answer to question i is correct.
If his initial answer is incorrect, he is not allowed to answer the other
question.

The contestant is to receive Vi dollars if he answers question i
correctly, i = 1, 2.

E.g., he will receive V1 + V2 dollars if he answers both questions
correctly.

Suppose the probability that he knows the answer to Question i is Pi .

Which question should he attempt to answer first so as to maximize
his expected winnings?
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Random Variables Expected Value

Example (Cont’d)

Assume that the events Ei , i = 1, 2, that he knows the answer to
question i are independent events.

If he attempts to answer Question 1 first, then he will win
0 with probability 1− P1;
V1 with probability P1(1− P2);
V1 + V2 with probability P1P2.

Hence, his expected winnings in this case will be
V1P1(1− P2) + (V1 + V2)P1P2.
If he attempts to answer Question 2 first, his expected winnings will be
(by symmetry), V2P2(1 − P1) + (V1 + V2)P1P2.

Therefore, it is better to try question 1 first if

V1P1(1− P2) ≥ V2P2(1− P1).

This is equivalent to
V1P1

1− P1
≥

V2P2

1− P2
.
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Random Variables Expected Value

Example

A school class of 120 students is driven in 3 buses to a theater.

There are 36 students in one bus, 40 in another, and 44 in the third.

When the buses arrive, one of the 120 students is randomly chosen.

Let X be the number of students on the bus of the chosen student.

Find E [X ].

The randomly chosen student is equally likely to be any of the 120.

Hence,

P{X = 36} =
36

120
, P{X = 40} =

40

120
, P{X = 44} =

44

120
.

Hence,

E [X ] = 36 ·
3

10
+ 40 ·

1

3
+ 44 ·

11

30
=

1208

30
.
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Random Variables Expected Value

Expectation and Center of Gravity

The probability concept of expectation is analogous to the physical
concept of the center of gravity of a distribution of mass.

Consider a discrete random variable X having probability mass
function p(xi), i ≥ 1.

On a weightless rod, weights with mass p(xi ), i ≥ 1, are located at the
points xi , i ≥ 1;
Then the point at which the rod would be in balance is known as the
center of gravity.

By using elementary statics, one shows that this point is at E [X ].
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Random Variables Expectation of a Function of a Random Variable

Subsection 4

Expectation of a Function of a Random Variable
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Random Variables Expectation of a Function of a Random Variable

Expected Value of a Function of a Random Variable

Suppose that we are given a discrete random variable along with its
probability mass function and that we want to compute the expected
value of some function of X , say, g(X ).

One way to accomplish this is as follows:

Since g(X ) is itself a discrete random variable, it has a probability
mass function.
This can be determined from the probability mass function of X .
Once it has been determined, we can compute E [g(X )] by using the
definition of expected value.
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Random Variables Expectation of a Function of a Random Variable

Example

Let X denote a random variable that takes on any of the values −1, 0
and 1 with respective probabilities

P{X = −1} = 0.2, P{X = 0} = 0.5, P{X = 1} = 0.3.

Compute E [X 2].

Let Y = X 2.

Then the probability mass function of Y is given by:

P{Y = 1} = P{X = −1}+ P{X = 1} = 0.5;
P{Y = 0} = P{X = 0} = 0.5.

Hence,
E [X 2] = E [Y ] = 1 · 0.5 + 0 · 0.5 = 0.5.

Note that 0.5 = E [X 2] 6= (E [X ])2 = 0.12 = 0.01.
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Random Variables Expectation of a Function of a Random Variable

Computing the Expectation

Proposition

If X is a discrete random variable that takes on one of the values xi , i ≥ 1,
with respective probabilities p(xi ), then, for any real-valued function g ,

E [g(X )] =
∑

i

g(xi )p(xi ).

Suppose that yj , j ≥ 1, represent the different values of g(xi ), i ≥ 1.

Then, grouping all the g(xi ) having the same value gives
∑

i g(xi )p(xi) =
∑

j

∑

i :g(xi )=yj
g(xi )p(xi)

=
∑

j

∑

i :g(xi )=yj
yjp(xi )

=
∑

j yj
∑

i :g(xi )=yj
p(xi)

=
∑

j yjP{g(X ) = yj}

= E [g(X )].
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Random Variables Expectation of a Function of a Random Variable

Example (Revisited)

Let X denote a random variable that takes on any of the values −1, 0
and 1 with respective probabilities

P{X = −1} = 0.2, P{X = 0} = 0.5, P{X = 1} = 0.3.

Compute E [X 2].

We apply the Proposition:

E{X 2} = (−1)2 · 0.2 + 02 · 0.5 + 12 · 0.3

= 1 · (0.2 + 0.3) + 0 · 0.5

= 0.5.
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Random Variables Expectation of a Function of a Random Variable

Example

A product that is sold seasonally yields a net profit of b dollars for
each unit sold and a net loss of ℓ dollars for each unit left unsold
when the season ends.

The number of units of the product that are ordered at a specific
department store during any season is a random variable having
probability mass function p(i), i ≥ 0.

If the store must stock this product in advance, determine the number
of units the store should stock so as to maximize its expected profit.

Let X denote the number of units ordered.

If s units are stocked, then the profit P(s) can be expressed as

P(s) =

{
bX − (s − X )ℓ, if X ≤ s

sb, if X > s.
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Random Variables Expectation of a Function of a Random Variable

Example (Cont’d)

Hence, the expected profit equals

E [P(s)] =
∑s

i=0[bi − (s − i)ℓ]p(i) +
∑∞

i=s+1 sbp(i)
= (b + ℓ)

∑s
i=0 ip(i)− sℓ

∑s
i=0 p(i) + sb[1−

∑s
i=0 p(i)]

= (b + ℓ)
∑s

i=0 ip(i)− (b + ℓ)s
∑s

i=0 p(i) + sb

= sb + (b + ℓ)
∑s

i=0(i − s)p(i).

To determine the optimum value of s, let us investigate what happens
to the profit when we increase s by 1 unit.

By substitution, we see that the expected profit in this case is given by

E [P(s + 1)] = b(s + 1) + (b + ℓ)
∑s+1

i=0 (i − s − 1)p(i)
= b(s + 1) + (b + ℓ)

∑s
i=0(i − s − 1)p(i).

Therefore,

E [P(s + 1)] − E [P(s)] = b − (b + ℓ)
s∑

i=0

p(i).
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Random Variables Expectation of a Function of a Random Variable

Example (Cont’d)

We found E [P(s + 1)]− E [P(s)] = b − (b + ℓ)
∑s

i=0 p(i).

Thus, stocking s + 1 units will be better than stocking s units
whenever

s∑

i=0

p(i) <
b

b + ℓ
.

Because the left-hand side is increasing in s while the right-hand side
is constant, the inequality will be satisfied for all values of s ≤ s∗,
where s∗ is the largest value of s satisfying the equation.

Note that

E [P(0)] < · · · < E [P(s∗)] < E [P(s∗ + 1)] > E [P(s∗ + 2)] > · · · .

Hence, stocking s∗ + 1 items will lead to a maximum expected profit.
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Random Variables Expectation of a Function of a Random Variable

Linearity of Expectation

Corollary

If a and b are constants, then

E [aX + b] = aE [X ] + b.

E [aX + b] =
∑

x :p(x)>0(ax + b)p(x)

= a
∑

x :p(x)>0 xp(x) + b
∑

x :p(x)>0 p(x)

= aE [X ] + b.

The expected value of a random variable X , E [X ], is also referred to
as the mean or the first moment of X .

The quantity E [X n], n ≥ 1, is called the nth moment of X .

By the preceding proposition

E [X n] =
∑

x :p(x)>0

xnp(x).
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Subsection 5

Variance
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Random Variables Variance

Measuring the Variation of a Distribution

Let X be a random variable.

Let F be its distribution function.

E [X ] yields the weighted average of the possible values of X , but it
does not tell us anything about the variation, or spread, of the values.

Example: Consider random variables W ,Y and Z having probability
mass functions determined by:

W = 0 with probability 1,

Y =

{
− 1, with probability 1

2
+ 1, with probability 1

2

, Z =

{
− 100, with probability 1

2
+ 100, with probability 1

2

All of W ,Y ,Z have the same expectation 0.

But there is a much greater spread in the possible values of Y than in
those of W (which is a constant) and in the possible values of Z than
in those of Y .
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Random Variables Variance

The Variance

We expect X to take on values around its mean E [X ].

So a reasonable way of measuring the possible variation of X is to
look at how far apart X is from its mean, on average.

One possible way to measure this variation is to consider the quantity
E [|X − µ|], where µ = E [X ].

It turns out to be mathematically inconvenient to deal with this
quantity.

So a more tractable quantity is usually considered:

The expectation of the square of the difference between X and µ.

Definition

If X is a random variable with mean µ, then the variance of X , denoted
by Var(X ), is defined by

Var(X ) = E [(X − µ)2].
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Random Variables Variance

An Alternative Formula for the Variance

An alternative formula for Var(X ) is derived as follows:

Var(X ) = E [(X − µ)2]

=
∑

x(x − µ)2p(x)

=
∑

x(x
2 − 2µx + µ2)p(x)

=
∑

x x
2p(x)− 2µ

∑

x xp(x) + µ2
∑

x p(x)

= E [X 2]− 2µ2 + µ2

= E [X 2]− µ2.

That is,
Var(X ) = E [X 2]− (E [X ])2.

In words, the variance of X is equal to the expected value of X 2

minus the square of its expected value.
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Random Variables Variance

Example

Calculate Var(X ) if X represents the outcome when a fair die is rolled.

We found in a previous example

E [X ] = 1 · 1
6 + 2 · 1

6 + 3 · 1
6

+ 4 · 1
6 + 5 · 1

6 + 6 · 1
6

= 7
2 .

Also,
E [X 2] = 12 · 1

6 + 22 · 1
6 + 32 · 1

6

+ 42 · 1
6 + 52 · 1

6 + 62 · 1
6

= 1
6 · 91.

Hence, Var(X ) = 91
6 − (72)

2 = 35
12 .
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Variance of Linear Function

For any constants a and b,

Var(aX + b) = a2Var(X ).

Let µ = E [X ].

From a previous corollary, E [aX + b] = aµ+ b.

Therefore,

Var(aX + b) = E [(aX + b − aµ− b)2]

= E [a2(X − µ)2]

= a2E [(X − µ)2]

= a2Var(X ).
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Random Variables Variance

Standard Deviation

(a) Returning to the terminology of mechanics:

The means was the center of gravity of a distribution of mass;
The variance represents the moment of inertia.

(b) The square root of the Var(X ) is called the standard deviation of X .

It is denoted by SD(X ).

That is,
SD(X ) =

√

Var(X ).
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Subsection 6

Bernoulli and Binomial Random Variables
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Bernoulli Random Variables

Suppose that a trial, or an experiment, whose outcome can be
classified as either a success or a failure is performed.

Let p, 0 ≤ p ≤ 1 be the probability that the trial is a success.

Consider the random variable X , such that:

X = 1 when the outcome is a success;
X = 0 when the outcome is a failure.

The probability mass function of X is given by

p(0) = P{X = 0} = 1− p,

p(1) = P{X = 1} = p.

A random variable X is said to be a Bernoulli random variable if its
probability mass function is given by the preceding equations for some
p ∈ (0, 1).
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Random Variables Bernoulli and Binomial Random Variables

Binomial Random Variables

Suppose now that n independent trials are performed.

Each of these results in a:

success with probability p;
failure with probability 1− p.

If X represents the number of successes that occur in the n trials, then
X is said to be a binomial random variable with parameters (n, p).

A Bernoulli random variable is just a binomial random variable with
parameters (1, p).

The probability mass function of a binomial random variable having
parameters (n, p) is given by

p(i) =

(
n

i

)

pi(1− p)n−i , i = 0, 1, . . . , n.
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Random Variables Bernoulli and Binomial Random Variables

Probability Mass of Binomial Random Variable

Fix a particular sequence of n outcomes containing i successes and
n − i failures.

The probability of this fixed sequence is, by the assumed
independence of trials, pi(1− p)n−i .

But the number of different sequences of n outcomes leading to i

successes and n − i failures is
(
n
i

)
.

Hence, p(i) =
(
n
i

)
pi(1− p)n−i .

By the binomial theorem, the probabilities sum to 1:

∞∑

i=0

p(i) =
n∑

i=0

(
n

i

)

pi(1− p)n−i = [p + (1− p)]n = 1.
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Random Variables Bernoulli and Binomial Random Variables

Example

Five fair coins are flipped.

If the outcomes are assumed independent, find the probability mass
function of the number of heads obtained.

Let X equal the number of heads (successes) that appear.

Then X is a binomial random variable with parameters
(n = 5, p = 1

2 ).

Hence

P{X = 0} =
(5
0

)
(12 )

0(12)
5 = 1

32 , P{X = 1} =
(5
1

)
(12 )

1(12 )
4 = 5

32 ,

P{X = 2} =
(5
2

)
(12 )

2(12)
3 = 10

32 , P{X = 3} =
(5
3

)
(12 )

3(12 )
2 = 10

32 ,

P{X = 4} =
(
5
4

)
(12 )

4(12)
1 = 5

32 , P{X = 5} =
(
5
5

)
(12 )

5(12 )
0 = 1

32 .
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Example

It is known that screws produced by a certain company will be
defective with probability 0.01, independently of each other.

The company sells the screws in packages of 10.

It offers a money-back guarantee that at most 1 of the 10 is defective.

What proportion of packages sold must the company replace?

Let X is the number of defective screws in a package.

Then X be a binomial random variable with parameters (10, 0.01).

Hence, the probability that a package will have to be replaced is

1− P{X = 0} − P{X = 1}

= 1−
(
10
0

)
(0.01)0(0.99)10 −

(
10
1

)
(0.01)1(0.99)9 ≈ 0.004.

Thus, only 0.4 percent of the packages will have to be replaced.
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Example

The following gambling game is known as the wheel of fortune:

A player bets on one of the numbers 1 through 6.

Three fair dice are then rolled.

If the number bet by the player appears i times, i = 1, 2, 3, then the
player wins i units;
If the number bet by the player does not appear on any of the dice,
then the player loses 1 unit.

Is this game fair to the player?

We assume that the dice act independently of each other.

Then the number of times that the number bet appears is a binomial
random variable with parameters (3, 16 ).
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Example (Cont’d)

Let X denote the player’s winnings in the game:

P{X = −1} =
(3
0

)
(16 )

0(56 )
3 = 125

216 ,

P{X = 1} =
(3
1

)
(16 )

1(56 )
2 = 75

216 ,

P{X = 2} =
(
3
2

)
(16 )

2(56 )
1 = 15

216 ,

P{X = 3} =
(3
3

)
(16 )

3(56 )
0 = 1

216 .

We determine whether or not this is a fair game for the player by
calculating E [X ].

From the preceding probabilities, we obtain

E [X ] =
−125 + 75 + 30 + 3

216
=

−17

216
.

Hence, in the long run, the player will lose 17 units per every 216
games he plays.
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Example

Suppose that a particular trait of a person is classified on the basis of
one pair of genes.

Suppose that d represents a dominant gene and r a recessive gene:

A person with dd genes is purely dominant;
One with rr is purely recessive;
One with rd is hybrid.

The purely dominant and the hybrid individuals look alike.

Children receive 1 gene from each parent.

Suppose 2 hybrid parents have a total of 4 children.

What is the probability that 3 of the 4 children have the outward
appearance of the dominant gene?
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Example (Cont’d)

Assume that each child is equally likely to inherit either of 2 genes
from each parent.

Then the probabilities that the child of 2 hybrid parents will have dd ,
rr and rd pairs of genes are, respectively, 1

4 ,
1
4 and 1

2 .

An offspring will have the outward appearance of the dominant gene
if its gene pair is either dd or rd .

Hence, the number of such children is binomially distributed with
parameters (4, 34).

The desired probability is, thus,

(
4

3

)(
3

4

)3 (1

4

)1

=
27

64
.
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Example

Consider a jury trial in which it takes 8 of the 12 jurors to convict the
defendant. That is, in order for the defendant to be convicted, at
least 8 of the jurors must vote him guilty.

Assume that jurors act independently.

Assume, also, that each makes the right decision whether or not the
defendant is guilty, with probability θ.

What is the probability that the jury renders a correct decision?

The problem, as stated, is incapable of solution, for there is not yet
enough information.

Suppose the defendant is innocent.

Then the probability of the jury’s rendering a correct decision is:

12∑

i=5

(
12

i

)

θi(1− θ)12−i .
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Random Variables Bernoulli and Binomial Random Variables

Example (Cont’d)

Suppose, on the other hand, that the defendant is guilty.

The the probability of a correct decision is

12∑

i=8

(
12

i

)

θi(1− θ)12−i .

Let α represent the probability that the defendant is guilty.

We condition on whether or not the defendant is guilty.

P(Correct Decision) = P(Correct Decision and Innocent)
+ P(Correct Decision and Guilty)

= P(Correct Decision|Innocent)P(Innocent)
+ P(Correct Decision|Guilty)P(Guilty)

= α
∑12

i=8

(12
i

)
θi(1− θ)12−i

+ (1− α)
∑12

i=5

(12
i

)
θi(1− θ)12−i .
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Example

A communication system consists of n components, each of which
will, independently, function with probability p.

The total system will be able to operate effectively if at least one-half
of its components function.

For what values of p is a 5-component system more likely to operate
effectively than a 3-component system?

The number of functioning components is a binomial random variable
with parameters (n, p).

The probability that a 5-component system will be effective is
(
5
3

)
p3(1− p)2 +

(
5
4

)
p4(1− p) + p5.

The corresponding probability for a 3-component system is
(
3
2

)
p2(1− p) + p3.

Hence, the 5-component system is better if

10p3(1− p)2 + 5p4(1− p) + p5 > 3p2(1− p) + p3.
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Example (Cont’d)

We find p:

10p3(1− p)2 + 5p4(1− p) + p5 > 3p2(1− p) + p3

10p3 − 20p4 + 10p5 + 5p4 − 5p5 + p5 > 3p2 − 3p3 + p3

6p5 − 15p4 + 12p3 − 3p2 > 0

3p2(2p3 − 5p2 + 4p − 1) > 0

3p2(2p3 − 2p2 − 3p2 + 3p + p − 1) > 0

3p2[2p2(p − 1)− 3p(p − 1) + (p − 1)] > 0

3p2(p − 1)(2p2 − 3p + 1) > 0

3p2(p − 1)(p − 1)(2p − 1) > 0

3p2(p − 1)2(2p − 1) > 0

2p − 1 > 0

p > 1
2 .
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Expectation of Binomial Random Variables

Let X be a binomial random variable with parameters n and p.

We have
E [X k ] =

∑n
i=0 i

k
(
n
i

)
pi(1− p)n−i

=
∑n

i=1 i
k
(
n
i

)
pi(1− p)n−i .

Now we use the identity i
(
n
i

)
= n

(
n−1
i−1

)
:

E [X k ] = np
∑n

i=1 i
k−1

(
n−1
i−1

)
pi−1(1− p)n−i

= np
∑n−1

j=0 (j + 1)k−1
(
n−1
j

)
pj(1− p)n−1−j

= npE [(Y + 1)k−1],

where Y is a binomial random variable with parameters n− 1, p.

Setting k = 1 in the preceding equation yields E [X ] = np.
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Variance of Binomial Random Variables

For a binomial random variable with parameters (n, p):

E [X k ] = npE [(Y + 1)k−1], where Y is a binomial random variable with
parameters (n − 1, p);
E [X ] = np.

Set k = 2 in the preceding equation:

E [X 2] = npE [Y + 1]

= np[(n − 1)p + 1].

Since E [X ] = np, we get

Var(X ) = E [X 2]− (E [X ])2

= np[(n − 1)p + 1]− (np)2

= np(1− p).
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Monotonicity Properties of Probability Mass

Proposition

If X is a binomial random variable with parameters (n, p), where
0 < p < 1, then as k goes from 0 to n, P{X = k}

first increases monotonically;

then decreases monotonically,

reaching its largest value when k is the largest integer ≤ (n + 1)p.

Consider P{X=k}
P{X=k−1} and determine for what values of k it is > 1:

P{X = k}

P{X = k − 1}
=

n!
(n−k)!k!p

k(1− p)n−k

n!
(n−k+1)!(k−1)! p

k−1(1− p)n−k+1

=
(n − k + 1)p

k(1 − p)
.

Hence, P{X = k} ≥ P{X = k − 1} iff (n − k + 1)p ≥ k(1− p) iff
k ≤ (n + 1)p.
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Illustration

As an illustration of the proposition consider the graph of the
probability mass function of a binomial random variable with
parameters (10, 12).
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Example

Let X be a binomial random variable with parameters n = 6, p = 0.4.

Recall that P{X = k + 1} = p
1−p

n−k
k+1P{X = k}.

Starting with P{X = 0} = (0.6)6 and working recursively, we obtain

P{X = 0} = (0.6)6 ≈ 0.0467,

P{X = 1} = 4
6
6
1P{X = 0} ≈ 0.1866,

P{X = 2} = 4
6
5
2P{X = 1} ≈ 0.3110,

P{X = 3} = 4
6
4
3P{X = 2} ≈ 0.2765,

P{X = 4} = 4
6
3
4P{X = 3} ≈ 0.1382,

P{X = 5} = 4
6
2
5P{X = 4} ≈ 0.0369,

P{X = 6} = 4
6
1
6P{X = 5} ≈ 0.0041.
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Subsection 7

Poisson Random Variables
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Poisson Random Variables

A random variable X that takes on one of the values 0, 1, 2, . . . is said
to be a Poisson random variable with parameter λ if, for some
λ > 0,

p(i) = P{X = i} = e−λλ
i

i !
, i = 0, 1, 2, . . . .

This equation defines a probability mass function:

∞∑

i=0

p(i) = e−λ
∞∑

i=0

λi

i !
= e−λeλ = 1.
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Poisson and Binomial Random Variables

The Poisson random variable may be used as an approximation for a
binomial random variable with parameters (n, p) when n is large and
p is small enough so that np is of moderate size.

Suppose that X is a binomial random variable with parameters (n, p),
and let λ = np:

P{X = i} = n!
(n−i)!i !p

i(1− p)n−i

= n!
(n−i)!i ! (

λ
n
)i (1− λ

n
)n−i

= n(n−1)···(n−i+1)
ni

λi

i !

(1−λ

n
)n

(1−λ

n
)i
.

For n large and λ moderate,

(1−
λ

n
)n ≈ e−λ,

n(n − 1) · · · (n − i + 1)

ni
≈ 1, (1−

λ

n
)i ≈ 1.

Hence, for n large and λ moderate, P{X = i} ≈ e−λ λi

i ! .
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Random Variables Obeying the Poisson Law

Some examples of random variables that generally obey the Poisson
probability law are as follows:

1. The number of misprints on a page (or a group of pages) of a book;
2. The number of people in a community who survive to age 100;
3. The number of wrong telephone numbers that are dialed in a day;
4. The number of packages of dog biscuits sold in a store each day;
5. The number of customers entering a post office on a given day;
6. The number of vacancies occurring during a year in the federal judicial

system;
7. The number of α-particles discharged in a fixed period of time from

some radioactive material.
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Intuitive Justification

Each of the preceding are approximately Poisson because of the
Poisson approximation to the binomial.

Take, for instance, the number of misprints on a page of a book.

We can suppose that there is a small probability p that each letter
typed on a page will be misprinted.

Hence, the number of misprints on a page will be approximately
Poisson with λ = np, where n is the number of letters on a page.
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Example

Suppose that the number of typographical errors on a single page of
this book has a Poisson distribution with parameter λ = 1

2 .

Calculate the probability that there is at least one error on this page.

Let X denote the number of errors on this page.

We have

P{X ≥ 1} = 1− P{X = 0} = 1− e−1/2 (1/2)0

0!

= 1− e−1/2 = ≈ 0.393.
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Example

Suppose that the probability that an item produced by a certain
machine will be defective is 0.1.

Find the probability that a sample of 10 items will contain at most 1
defective item.

The desired probability is

(
10

0

)

(0.1)0(0.9)10 +

(
10

1

)

(0.1)1(0.9)9 = 0.7361.

The Poisson approximation, with λ = np = 10 · 0.1 = 1, yields the
value

e−1 1
0

0!
+ e−1 1

1

1!
= e−1 + e−1 ≈ 0.7358.
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Example

An experiment consists of counting the number of α particles given
off in a 1-second interval by 1 gram of radioactive material.

If we know from past experience that, on the average, 3.2 such α

particles are given off, what is a good approximation to the
probability that no more than two α particles will appear?

Think of the gram of radioactive material as consisting of a large
number n of atoms.

According to past experience, in a single second, each of these has
probability 3.2

n
of disintegrating and sending off an α particle.

Thus, to a very close approximation, the number of α particles given
off will be a Poisson random variable with parameter
λ = np = n 3.2

n
= 3.2.

Hence, the desired probability is

P{X ≤ 2} = e−3.2 + 3.2e−3.2 +
(3.2)2

2
e−3.2 ≈ 0.3799.
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Expected Value of Poisson Random Variables

The Poisson random variable with parameter λ approximates a
binomial random variable with parameters n and p when n is large, p
is small, and λ = np.

Recall that a binomial random variable with parameters (n, p) has:

expected value np = λ;
variance np(1− p) = λ(1 − p) ≈ λ.

Thus, it would seem that both the expected value and the variance of
a Poisson random variable would equal its parameter λ.

We now verify this result:

E [X ] =
∑∞

i=0
ie−λλi

i ! = λ
∑∞

i=1
e−λλi−1

(i−1)!

= λe−λ
∑∞

j=0
λj

j! (letting j = i − 1)

= λ. (since
∑∞

j=0
λj

j! = eλ)
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Variance of Poisson Random Variables

To determine its variance, we first compute E [X 2]:

E [X 2] =
∑∞

i=0
i2e−λλi

i !

= λ
∑∞

i=1
ie−λλi−1

(i−1)!

= λ
∑∞

j=0
(j+1)e−λλj

j!

= λ[
∑∞

j=0
je−λλj

j! +
∑∞

j=0
e−λλj

j! ]

= λ(λ+ 1),

where the final equality follows because:
The first sum is the expected value of a Poisson random variable with
parameter λ;
The second is the sum of the probabilities of this random variable.

Therefore, since we have shown that E [X ] = λ, we obtain

Var(X ) = E [X 2]− (E [X ])2 = λ.
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Weakly Dependent Events

The Poisson distribution with parameter λ = np is a very good
approximation to the distribution of:

the number of successes in n independent trials when each trial has
probability p of being a success,

with the proviso that:

the number of trials n is large;
the probability p of success is small.

It remains a good approximation even when the trials are not
independent, provided that their dependence is weak.
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Example

Recall the matching problem in which n men randomly select hats
from a set consisting of one hat from each person.

From the point of view of the number of men who select their own
hat, we may regard the random selection as the result of n trials
where we say that trial i is a success if person i selects his own hat,
i = 1, . . . , n.

Let Ei , i = 1, . . . , n, be the event Ei = {trial i is a success}.
P{Ei} = 1

n
;

P{Ei |Ej} = 1
n−1 , j 6= i .

Thus, although the events Ei , i = 1, . . . , n, are not independent, their
dependence, for large n, appears to be weak.

Hence, it seems reasonable to expect that the number of successes
will approximately have a Poisson distribution with λ = n × 1

n
= 1.

Indeed, this was verified previously.
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Example

Suppose that each of n people is equally likely to have any of the 365
days of the year as his or her birthday.

We want to determine the probability that a set of n independent
people all have different birthdays.

A combinatorial argument was used to determine this probability,
which was shown to be less than 1

2 when n = 23.

We approximate this probability by using the Poisson approximation:

Consider a trial for each of the
(
n
2

)
pairs of individuals i and j , i 6= j .

Say trial i , j is a success if persons i and j have the same birthday.

Let Eij denote the event that trial i , j is a success.

The
(
n
2

)
events Eij , 1 ≤ i < j ≤ n, are not independent;

However, their dependence appears to be rather weak.

George Voutsadakis (LSSU) Probability October 2020 80 / 101



Random Variables Poisson Random Variables

Example (Cont’d)

P(Eij) =
1

365 .

Hence, it is reasonable to suppose that the number of successes
should approximately have a Poisson distribution with mean
(n2)
365 = n(n−1)

730 .

Therefore,

P{no 2 people have the same birthday} = P{0 successes}

≈ exp {−n(n−1)
730 }.

To determine the smallest integer n for which this probability is less
than 1

2 , note that exp {−n(n−1)
730 } ≤ 1

2 ⇔ exp {n(n−1)
730 } ≥ 2.

Taking logarithms of both sides, we obtain

n(n− 1) ≥ 730 log 2 ≈ 505.997.

This yields the solution n = 23, in agreement with the result of a
previous example.
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Random Variables Poisson Random Variables

Example

Suppose now that we wanted the probability that, among the n
people, no 3 of them have their birthday on the same day.

This becomes a difficult combinatorial problem;
However, it is simple to obtain a good approximation.

Imagine that we have a trial for each of the
(
n
3

)
triplets i , j , k , where

1 ≤ i < j < k ≤ n.

Call the i , j , k trial a success if persons i , j and k all have their
birthday on the same day.

The number of successes is approximately Poisson with λ
(
n
3

)
P{i , j , k have the same birthday} =

(
n
3

)
( 1
365 )

2

= n(n−1)(n−2)
6×(365)2

.

Hence, P{no 3 have the same birthday} ≈ exp {−n(n−1)(n−2)
799350 }.

This probability will be less than 1
2 when n is such that

n(n− 1)(n − 2) ≥ 799350 log 2 ≈ 554067.1, or n ≥ 84.
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Computing the Poisson Distribution Function

If X is Poisson with parameter λ, then

P{X = i + 1}

P{X = i}
=

e−λ λi+1

(i+1)!

e−λ λi

i !

=
λ

i + 1
.

To compute P{X = i}, we start with P{X = 0} = e−λ.

Then we use the preceding equation to compute successively:

P{X = 1} = λP{X = 0};
P{X = 2} = λ

2P{X = 1};
...

P{X = i + 1} = λ
i+1P{X = i}.
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Subsection 8

Expected Value of Sums of Random Variables
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Random Variables Expected Value of Sums of Random Variables

Sum of Random Variables

We suppose that the sample space S is either a finite or a countably
infinite set.

For a random variable X , let X (s) denote the value of X when s ∈ S

is the outcome of the experiment.

If X and Y are both random variables, then so is their sum.

That is, Z = X + Y is also a random variable.

Moreover, Z (s) = X (s) + Y (s).
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Random Variables Expected Value of Sums of Random Variables

Example

Suppose that the experiment consists of flipping a coin 5 times, with
the outcome being the resulting sequence of heads and tails.

Suppose X is the number of heads in the first 3 flips and Y is the
number of heads in the final 2 flips.

Let Z = X + Y .

Then, for instance, for the outcome s = (h, t, h, t, h),

X (s) = 2,
Y (s) = 1,
Z (s) = X (s) + Y (s) = 3.

Clearly, the meaning is that the outcome (h, t, h, t, h) results in:

2 heads in the first three flips;
1 head in the final two flips;
A total of 3 heads in the five flips.
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Probability of an Event

Let p(s) = P({s}) be the probability that s is the outcome of the
experiment.

Any event A can be written as the finite or countably infinite union of
the mutually exclusive events {s}, s ∈ A.

It follows by the axioms of probability that

P(A) =
∑

s∈A

p(s).

When A = S , the preceding equation gives

1 =
∑

s∈S

p(s).
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Random Variables Expected Value of Sums of Random Variables

Expectation of a Random Variable

Proposition

Let X be a random variable over a sample space S . Then

E [X ] =
∑

s∈S

X (s)p(s).

Suppose that the distinct values of X are xi , i ≥ 1.

For each i , let Si be the event that X is equal to xi .

That is, Si = {s : X (s) = xi}.

Then,

E [X ] =
∑

i xiP{X = xi} =
∑

i xiP(Si)

=
∑

i xi
∑

s∈Si
p(s) =

∑

i

∑

s∈Si
xip(s)

=
∑

i

∑

s∈Si
X (s)p(s) =

∑

s∈S X (s)p(s),

where the final equality follows because S1,S2, . . . are mutually
exclusive events whose union is S .
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Example

Suppose that two independent flips of a coin that comes up heads
with probability p are made.

Let X denote the number of heads obtained:

P(X = 0) = P(t, t) = (1− p)2;
P(X = 1) = P(h, t) + P(t, h) = 2p(1− p);
P(X = 2) = P(h, h) = p2.

Thus, by the definition of expected value,

E [X ] = 0 · (1− p)2 + 1 · 2p(1− p) + 2 · p2 = 2p.

This agrees with

E [X ] = X (h, h)p2 + X (h, t)p(1− p)
+ X (t, h)(1− p)p + X (t, t)(1− p)2

= 2p2 + p(1− p) + (1− p)p
= 2p.
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Random Variables Expected Value of Sums of Random Variables

Expectation of a Sum of Random Variables

Corollary

For random variables X1,X2, . . . ,Xn,

E

[
n∑

i=1

Xi

]

=

n∑

i=1

E [Xi ].

Let Z =
∑n

i=1 Xi .

Then, by the proposition,

E [Z ] =
∑

s∈S Z (s)p(s)
=

∑

s∈S(X1(s) + X2(s) + · · ·+ Xn(s))p(s)
=

∑

s∈S X1(s)p(s) +
∑

s∈S X2(s)p(s)
+ · · · +

∑

s∈S Xn(s)p(s)
= E [X1] + E [X2] + · · · + E [Xn].
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Random Variables Expected Value of Sums of Random Variables

Example

Find the expected value of the sum obtained when n fair dice are
rolled.

Let X be the sum.

We will compute E [X ] by using the representation X =
∑n

i=1 Xi ,
where Xi is the upturned value on die i .

Xi is equally likely to be any of the values from 1 to 6.

Thus,

E [Xi ] =

6∑

i=1

i
1

6
=

21

6
=

7

2
.

This yields the result

E [X ] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E [Xi ] = 3.5n.
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Random Variables Expected Value of Sums of Random Variables

Example

Find the expected total number of successes that result from n trials
when trial i is a success with probability pi , i = 1, . . . , n.

Let

Xi =

{
1, if trial i is a success,
0, if trial i is a failure.

Then we are interested in the expected value of X =
∑n

i=1 Xi .

Note that, for all i , E [Xi ] = 1 · pi + 0 · (1− pi ) = pi .

hence, we obtain

E [X ] =

n∑

i=1

E [Xi ] =

n∑

i=1

pi .

Note how this result includes as a special case the expected value of a
binomial random variable: Since, it assumes independent trials and all
pi = p, it has mean np.
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Variance of Number of Successful Trials

(a) Derive an expression for the variance of the number of successful
trials in the preceding example.

(b) Then apply it to obtain the variance of a binomial random variable
with parameters n and p.

(a) Let X be the number of successful trials.

Use the same representation for X - namely, X =
∑n

i=1 Xi :

E [X 2] = E [(
∑n

i=1 Xi)(
∑n

j=1 Xj)]

= E [
∑n

i=1 Xi(Xi +
∑

j 6=i Xj)]

= E [
∑n

i=1 X
2
i +

∑n
i=1

∑

j 6=i XiXj ]

=
∑n

i=1 E [X
2
i ] +

∑n
i=1

∑

j 6=i E [XiXj ]

=
∑

i pi +
∑n

i=1

∑

j 6=i E [XiXj ],

where the final equation used that X 2
i = Xi .
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Variance of Number of Successful Trials (Cont’d)

The possible values of both Xi and Xj are 0 or 1.

Thus,

XiXj =

{
1, if Xi = 1,Xj = 1
0, otherwise.

Hence,

E [XiXj ] = P{Xi = 1,Xj = 1} = P(trials i and j are successes).

(b) If X is binomial, then, for i 6= j , the results of trial i and trial j are
independent, with each being a success with probability p.

Therefore, E [XiXj ] = p2, i 6= j .

Together with the first equation, the preceding equation shows that,
for a binomial random variable X , E [X 2] = np + n(n − 1)p2.

This implies that

Var(X ) = E [X 2]− (E [X ])2 = np + n(n − 1)p2 − n2p2 = np(1− p).
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Subsection 9

Properties of the Cumulative Distribution Function
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Random Variables Properties of the Cumulative Distribution Function

Continuity Properties of Probability

A sequence of events {En : n ≥ 1} is said to be an increasing

sequence if E1 ⊆ E2 ⊆ · · · ⊆ En ⊆ En+1 ⊆ · · · .

A sequence of events {En : n ≥ 1} is said to be a decreasing

sequence if E1 ⊇ E2 ⊇ · · · ⊇ En ⊇ En+1 ⊇ · · · .

If {En : n ≥ 1} is an increasing sequence of events, then we define a
new event, denoted by lim

n→∞
En, by lim

n→∞
En =

⋃∞
i=1 Ei .

Similarly, if {En : n ≥ 1} is a decreasing sequence of events, we define
lim
n→∞

En by lim
n→∞

En =
⋂∞

i=1 Ei .

Proposition (Continuity Properties of Probability)

If {En : n ≥ 1} is either an increasing or a decreasing sequence of events,
then

lim
n→∞

P(En) = P
(

lim
n→∞

En

)

.
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Properties of Cumulative Distribution Function

Recall that, for the distribution function F of X , F (b) denotes the
probability that the random variable X takes on a value that is less
than or equal to b.

Following are some properties of the cumulative distribution function
(c.d.f.) F :

1. F is a nondecreasing function; that is, if a < b, then F (a) ≤ F (b).
2. limb→∞ F (b) = 1.
3. limb→−∞ F (b) = 0.
4. F is right continuous. That is, for any b and any decreasing sequence

bn, n ≥ 1, that converges to b, limn→∞ F (bn) = F (b).

1. Property 1: Suppose a < b. Then the event {X ≤ a} is contained in
the event {X ≤ b}. Thus, it cannot have a larger probability.

2. Property 2: Note that if bn increases to ∞, then the events
{X ≤ bn}, n ≥ 1, are increasing events whose union is {X < ∞}.

Hence, by continuity, limn→∞ P{X ≤ bn} = P{X < ∞} = 1.
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Random Variables Properties of the Cumulative Distribution Function

Properties of Cumulative Distribution Function (Cont’d)

3. Property 3: Note that if bn decreases to −∞, then the events
{X ≤ bn}, n ≥ 1, are decreasing events whose intersection is
{X < −∞} = ∅.

By continuity, limn→∞ P{X ≤ bn} = P{X < −∞} = P(∅) = 0.

4. Property 4: Note that if bn decreases to b, then {X ≤ bn}, n ≥ 1, are
decreasing events whose intersection is {X ≤ b}.

The continuity property then, yields limn P{X ≤ bn} = P{X ≤ b}.
This verifies Property 4.
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Using the Cumulative Distribution Function

All probability questions about X can be answered in terms of the
c.d.f., F .

For example,

P{a < X ≤ b} = F (b)− F (a), for all a < b.

This equation can best be seen to hold if we write the event {X ≤ b}
as the union of the mutually exclusive events {X ≤ a} and
{a < X ≤ b}:

{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b}.

So
P{X ≤ b} = P{X ≤ a}+ P{a < X ≤ b}.
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Another Useful Technique

Suppose we want to compute the probability that X is strictly less
than b.

We can again apply the continuity property to obtain

P{X < b} = P
(

lim
n→∞

{X ≤ b − 1
n
}
)

= lim
n→∞

P(X ≤ b − 1
n
)

= lim
n→∞

F (b − 1
n
).

Note that P{X < b} does not necessarily equal F (b), since F (b) also
includes the probability that X equals b.
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Example

The distribution function of the random variable X is given by

F (x) =







0, x < 0
x
2 , 0 ≤ x < 1
2
3 , 1 ≤ x < 2
11
12 , 2 ≤ x < 3
1, 3 ≤ x

.

Compute (a) P{X < 3}, (b) P{X = 1}, (c) P{X > 1
2} and (d)

P{2 < X ≤ 4}.

(a) P{X < 3} = lim
n
P{X ≤ 3− 1

n
} = lim

n
F (3− 1

n
) = 11

12 .

(b) P{X = 1} = P{X ≤ 1} − P{X < 1} = F (1)− lim
n
F (1− 1

n
) =

2
3 −

1
2 = 1

6 .

(c) P{X > 1
2} = 1− P{X ≤ 1

2} = 1− F (12) =
3
4 .

(d) P{2 < X ≤ 4} = F (4)− F (2) = 1
12 .
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