
Introduction to Probability

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 308

George Voutsadakis (LSSU) Probability October 2020 1 / 100



Outline

1 Jointly Distributed Random Variables
Joint Distribution Functions
Independent Random Variables
Sums of Independent Random Variables
Conditional Distributions: Discrete Case
Conditional Distributions: Continuous Case
Joint Probability Distributions of Functions of Random Variables

George Voutsadakis (LSSU) Probability October 2020 2 / 100



Jointly Distributed Random Variables Joint Distribution Functions

Subsection 1

Joint Distribution Functions

George Voutsadakis (LSSU) Probability October 2020 3 / 100



Jointly Distributed Random Variables Joint Distribution Functions

Joint Probability Distribution Functions

Let X , Y be two random variables.

We define the joint cumulative probability distribution function of
X and Y by F (a, b) = P{X ≤ a,Y ≤ b}, −∞ < a, b < ∞.

The distribution of X can be obtained from the joint distribution of X
and Y as follows:

FX (a) = P{X ≤ a} = P{X ≤ a,Y < ∞}
= P(limb→∞ {X ≤ a,Y ≤ b})
= limb→∞ P{X ≤ a,Y ≤ b}
= limb→∞ F (a, b) ≡ F (a,∞).

Similarly, the cumulative distribution function of Y is given by

FY (b) = P{Y ≤ b} = lim
a→∞

F (a, b) ≡ F (∞, b).

The distribution functions FX and FY are sometimes referred to as
the marginal distributions of X and Y .
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Jointly Distributed Random Variables Joint Distribution Functions

Using the Joint Distribution Function

All joint probability statements about X and Y can, in theory, be
answered in terms of their joint distribution function.

For instance, suppose we wanted to compute the joint probability that
X is greater than a and Y is greater than b.

This could be done as follows:

P{X > a,Y > b} = 1− P({X > a,Y > b}c)
= 1− P({X > a}c ∪ {Y > b}c)
= 1− P({X ≤ a} ∪ {Y ≤ b})
= 1− [P{X ≤ a}+ P{Y ≤ b}

− P{X ≤ a,Y ≤ b}]
= 1− FX (a)− FY (b) + F (a, b).
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Jointly Distributed Random Variables Joint Distribution Functions

A More General Formula

We found P{X > a,Y > b} = 1− FX (a)− FY (b) + F (a, b).

This is the same as

P{a < X < ∞, b < X < ∞}
= P({X < ∞,Y < ∞})− P({X < a,Y < ∞})

− P({X < ∞,Y < b}) + P({X < a,Y < b}).
This is a special case of, for a1 < a2, b1 < b2:

P{a1 < X ≤ a2, b1 < Y ≤ b2}
= F (a2, b2) + F (a1, b1)− F (a1, b2)− F (a2, b1).

Its verification is based on the
“Venn diagram”:
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Jointly Distributed Random Variables Joint Distribution Functions

Joint Probability Mass Function

In the case when X and Y are both discrete random variables, it is
convenient to define the joint probability mass function of X and
Y by

p(x , y) = P{X = x ,Y = y}.
The probability mass function of X can be obtained from p(x , y) by

pX (x) = P{X = x} =
∑

y :p(x ,y)>0

p(x , y).

Similarly,

pY (y) =
∑

x :p(x ,y)>0

p(x , y).
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Jointly Distributed Random Variables Joint Distribution Functions

Example

Suppose that 3 balls are randomly selected from an urn containing 3
red, 4 white and 5 blue balls.

Let X be the number of red balls chosen.
Let Y be the number of white balls chosen.

The joint probability mass p(i , j) = P{X = i ,Y = j} is given by:

p(0, 0) =
(53)
(123 )

= 10
220 p(0, 1) =

(41)(
5
2)

(123 )
= 40

220

p(0, 2) =
(42)(

5
1)

(123 )
= 30

220 p(0, 3) =
(43)
(123 )

= 4
220

p(1, 0) =
(31)(

5
2)

(123 )
= 30

220 p(1, 1) =
(31)(

4
1)(

5
1)

(123 )
= 60

220

p(1, 2) =
(31)(

4
2)

(123 )
= 18

220 p(2, 0) =
(32)(

5
1)

(123 )
= 15

220

p(2, 1) =
(32)(

4
1)

(123 )
= 12

220 p(3, 0) =
(33)
(123 )

= 1
220 .
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Cont’d)

These probabilities can most easily be expressed in tabular form.

i\j 0 1 2 3 P{X = i}
0 10

220
40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220
2 15

220
12
220 0 0 27

220
3 1

220 0 0 0 1
220

P = {Y = j} 56
220

112
220

48
220

4
220

The probability mass function of X is obtained by computing the row
sums.

The probability mass function of Y is obtained by computing the
column sums.
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Jointly Distributed Random Variables Joint Distribution Functions

Example

Suppose that 15 percent of the families in a certain community have
no children, 20 percent have 1 child, 35 percent have 2 children and
30 percent have 3.

Suppose further that in each family each child is equally likely
(independently) to be a boy or a girl.
Suppose a family is chosen at random from this community.

Let B be the number of boys in this family;
Let G be the number of girls.

The joint probability mass function is shown in the table:

i\j 0 1 2 3 P{B = i}
0 0.15 0.10 0.0875 0.0375 0.3750
1 0.10 0.175 0.1125 0 0.3875
2 0.0875 0.1125 0 0 0.2000
3 0.0375 0 0 0 0.0375

P{G = j} 0.3750 0.3875 0.2000 0.0375
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Cont’d)

Some of the probabilities shown in the table are obtained as follows:

P{B = 0,G = 0} = P{no children} = 0.15;
P{B = 0,G = 1} = P{1 girl and total of 1 child}

= P{1 child}P{1 girl|1 child} = (0.20)(12 );
P{B = 0,G = 2} = P{2 girls and total of 2 children}

= P{2 children}P{2 girls|2 children}
= (0.35)(12 )

2.

The remaining probabilities in the table follow in a similar way.
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Jointly Distributed Random Variables Joint Distribution Functions

Jointly Continuous Random Variables

We say that X and Y are jointly continuous if there exists a
function f (x , y), defined for all real x and y , having the property
that, for every set C of pairs of real numbers (that is, C is a set in
the two-dimensional plane),

P{(X ,Y ) ∈ C} =

∫∫

(x ,y)∈C
f (x , y)dxdy .

The function f (x , y) is called the joint probability density function

of X and Y .
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Jointly Distributed Random Variables Joint Distribution Functions

Interpretation of Joint Probability Density

If A and B are any sets of real numbers, then, by defining
C = {(x , y) : x ∈ A, y ∈ B}, we see from the equation that

P{X ∈ A,Y ∈ B} =

∫

B

∫

A

f (x , y)dxdy .

We have

F (a, b) = P{X ∈ (−∞, a],Y ∈ (−∞, b]}
=

∫ b

−∞
∫ a

−∞ f (x , y)dxdy .

It follows, upon differentiation, that

f (a, b) =
∂2

∂a∂b
F (a, b)

wherever the partial derivatives are defined.
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Jointly Distributed Random Variables Joint Distribution Functions

Another Interpretation of Joint Probability Density

Another interpretation of the joint density function, obtained from

P{X ∈ A,Y ∈ B} =

∫

B

∫

A

f (x , y)dxdy .

We have
P{a < X < a + da, b < Y < b + db}

=
∫ d+db

b

∫ a+da

a
f (x , y)dxdy

≈ f (a, b)dadb,

when da and db are small and f (x , y) is continuous at a, b.

Hence, f (a, b) is a measure of how likely it is that the random vector
(X ,Y ) will be near (a, b).
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Jointly Distributed Random Variables Joint Distribution Functions

Probability Densities from Joint Density Functions

Suppose X and Y are jointly continuous.

Then, they are individually continuous, and their probability density
functions are

fX (x) =

∫ ∞

−∞
f (x , y)dy , fY (y) =

∫ ∞

−∞
f (x , y)dx .

This result can be obtained as follows:

P{X ∈ A} = P{X ∈ A,Y ∈ (−∞,∞)}
=

∫

A

∫∞
−∞ f (x , y)dydx

=
∫

A
fX (x)dx .

Thus, fX (x) =
∫∞
−∞ f (x , y)dy is, indeed, the probability density

function of X .

We work similarly to show that fY (y) =
∫∞
−∞ f (x , y)dx is the

probability density function of Y .
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Jointly Distributed Random Variables Joint Distribution Functions

Example

The joint density function of X and Y is given by

f (x , y) =

{

2e−xe−2y , 0 < x < ∞, 0 < y < ∞
0, otherwise

Compute (a) P{X > 1,Y < 1}, (b) P{X < Y } and (c) P{X < a}.

(a) P{X > 1,Y < 1} =

∫ 1

0

∫ ∞

1
2e−xe−2ydxdy

=

∫ 1

0
2e−2y

∫ ∞

1
e−xdxdy

=

∫ 1

0
2e−2y (−e−x |∞1 )dy = e−1

∫ 1

0
2e−2ydy

= e−1[−e−2y ]10 = e−1(1− e−2).
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Cont’d)

(b) P{X < Y } =
∫∫

(x ,y):x<y
2e−xe−2ydxdy

=
∫∞
0

∫ y

0 2e−xe−2ydxdy

=
∫∞
0 2e−2y

∫ y

0 e−xdxdy

=
∫∞
0 2e−2y (1− e−y )dy

=
∫∞
0 2e−2ydy −

∫∞
0 2e−3ydy

= (−e−2y )|∞0 − (−2
3e

−3y )|∞0
= 1− 2

3 = 1
3 .

(c) P{X < a} =
∫ a

0

∫∞
0 2e−2y e−xdydx

=
∫ a

0 e−x
∫∞
0 2e−2ydydx

=
∫ a

0 e−x(−e−2y )|∞0 dx

=
∫ a

0 e−xdx = (−e−x)|a0 = 1− e−a.
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Jointly Distributed Random Variables Joint Distribution Functions

Example

Consider a circle of radius R , and suppose that a point within the
circle is randomly chosen in such a manner that all regions within the
circle of equal area are equally likely to contain the point.

Let the center of the circle denote the origin.

Define X and Y to be the coordinates of the point chosen.

Since (X ,Y ) is equally likely to be near each point in the circle, the
joint density function of X and Y is given by

f (x , y) =

{

c , if x2 + y2 ≤ R2

0, if x2 + y2 > R2 , for some value of c .

(a) Determine c .
(b) Find the marginal density functions of X and Y .
(c) Compute the probability that D, the distance from the origin of the

point selected, is less than or equal to a.
(d) Find E [D].
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Part (a))

(a) Recall that
∫∞
−∞

∫∞
−∞ f (x , y)dydx = 1.

Thus,

c

∫∫

x2+y2≤R2

dydx = 1.

We can evaluate
∫∫

x2+y2≤R2 dydx in one of two ways:

By using polar coordinates

∫∫

x2+y2≤R2

dydx =

∫ 2π

0

∫ R

0

rdrdθ = 2π

∫ R

0

rdr = 2π
R2

2
= πR2;

By noting that it represents the area of the circle and is thus equal to
πR2.

Hence,

c =
1

πR2
.
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Part (b))

(b)
fX (x) =

∫∞
−∞ f (x , y)dy

= 1
πR2

∫

x2+y2≤R2 dy

= 1
πR2

∫ c

−c
dy , where c =

√
R2 − x2,

= 2
πR2

√
R2 − x2, x2 ≤ R2.

It equals 0 when x2 > R2.

By symmetry, the marginal density of Y is given by

fY (y) =

{

2
πR2

√

R2 − y2, y2 ≤ R2

0, y2 > R2
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Jointly Distributed Random Variables Joint Distribution Functions

Example (Parts (c) & (d))

(c) The distribution function of D =
√
X 2 + Y 2, the distance from the

origin, is obtained, for 0 ≤ a ≤ R , as follows:

FD(a) = P{
√
X 2 + Y 2 ≤ a} = P{X 2 + Y 2 ≤ a2}

=
∫∫

x2+y2≤a2
f (x , y)dydx = 1

πR2

∫∫

x2+y2≤a2
dydx

= πa2

πR2 = a2

R2 ,

where we used that
∫∫

x2+y2≤a2
dydx is the area of a circle of radius a

and thus is equal to πa2.

(d) From part (c), the density function of D is

fD(a) =
2a

R2
, 0 ≤ a ≤ R .

Hence,

E [D] =
2

R2

∫ R

0
a2da =

2R

3
.
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Jointly Distributed Random Variables Joint Distribution Functions

Example

The joint density of X and Y is given by

f (x , y) =

{

e−(x+y), 0 < x < ∞, 0 < y < ∞
0, otherwise

Find the density function of the random variable X/Y .

We start by computing the distribution function of X/Y .

For a > 0,

FX/Y (a) = P{X
Y

≤ a} =
∫∫

x/y≤a
e−(x+y)dxdy

=
∫∞
0

∫ ay

0 e−(x+y)dxdy

=
∫∞
0 (1− e−ay )e−ydy

= {−e−y + e−(a+1)y

a+1 }|∞0 = 1− 1
a+1 .

Differentiation shows that the density function of X/Y is given by
fX/Y (a) =

1
(a+1)2

, 0 < a < ∞.
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Jointly Distributed Random Variables Joint Distribution Functions

Joint Probability Distributions for n Variables

The joint cumulative probability distribution function

F (a1, a2, . . . , an) of the n random variables X1,X2, . . . ,Xn is defined
by

F (a1, a2, . . . , an) = P{X1 ≤ a1,X2 ≤ a2, . . . ,Xn ≤ an}.
The n random variables are said to be jointly continuous if there
exists a function f (x1, x2, . . . , xn), called the joint probability

density function, such that, for any set C in n-space,

P{(X1,X2, . . . ,Xn) ∈ C} =

∫∫

· · ·
∫

(x1,...,xn)∈C

f (x1, . . . , xn)dx1dx2 · · · dxn.

For any n sets of real numbers A1,A2, . . . ,An,

P{X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An}
=

∫

An

∫

An−1

· · ·
∫

A1

f (x1, . . . , xn)dx1dx2 · · · dxn.
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Jointly Distributed Random Variables Joint Distribution Functions

Example: The Multinomial Distribution

One of the most important joint distributions is the multinomial
distribution, which arises when a sequence of n independent and
identical experiments is performed.

Suppose that each experiment can result in any one of r possible
outcomes, with respective probabilities p1, p2, . . . , pr ,

∑r
i=1 pi = 1.

Let Xi denote the number of the n experiments that result in
outcome number i .

Then, whenever
∑r

i=1 ni = n,

P{X1 = n1,X2 = n2, . . . ,Xr = nr} =
n!

n1!n2! · · · nr !
pn11 pn22 · · · pnrr .

Any sequence of outcomes for the n experiments that leads to outcome
i occurring ni times for i = 1, 2, . . . , r will, by the independence of
experiments, have probability pn11 pn22 · · · pnrr of occurring.
The number of such sequences of outcomes is n!

n1!n2!···nr !
..
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Jointly Distributed Random Variables Joint Distribution Functions

Example: The Multinomial Distribution (Remarks)

The joint distribution whose joint probability mass function is
specified by the preceding equation is called the multinomial

distribution.

Remarks:

When r = 2, the multinomial reduces to the binomial distribution.
Any sum of a fixed set of the Xi s will have a binomial distribution.

∑
i∈N

Xi represents the number of the n experiments whose outcome is

in N;

Each experiment will independently have such an outcome with

probability
∑

i∈N
pi .

That is, if N ⊆ {1, 2, . . . , r}, then ∑

i∈N Xi will be a binomial random
variable with parameters n and p =

∑

i∈N pi .
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Jointly Distributed Random Variables Independent Random Variables

Subsection 2

Independent Random Variables
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Jointly Distributed Random Variables Independent Random Variables

Independent Random Variables

The random variables X and Y are said to be independent if, for
any two sets of real numbers A and B ,

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

In other words, X and Y are independent if, for all A and B , the
events EA = {X ∈ A} and FB = {Y ∈ B} are independent.

It can be shown by using the three axioms of probability that
independence will follow if and only if, for all a, b,

P{X ≤ a,Y ≤ b} = P{X ≤ a}P{Y ≤ b}.

Hence, in terms of the joint distribution function F of X and Y , X
and Y are independent if

F (a, b) = FX (a)FY (b), for all a, b.
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Jointly Distributed Random Variables Independent Random Variables

Independent Discrete Random Variables

When X and Y are discrete random variables, the condition of
independence is equivalent to

p(x , y) = pX (x)pY (y), for all x , y .

Suppose, first, that the defining equation is satisfied.
Let A = {x};
Let B = {y};

The the defining equation yields the preceding equation.

If the latter equation is valid, then, for any sets A,B ,

P{X ∈ A,Y ∈ B} =
∑

y∈B
∑

x∈A p(x , y)

=
∑

y∈B
∑

x∈A pX (x)pY (y)

=
∑

y∈B pY (y)
∑

x∈A pX (x)

= P{Y ∈ B}P{X ∈ A}.
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Jointly Distributed Random Variables Independent Random Variables

Independent Jointly Continuous Random Variables

In the jointly continuous case, the condition of independence is
equivalent to

f (x , y) = fX (x)fY (y), for all x , y .

Loosely speaking, X and Y are independent if knowing the value of
one does not change the distribution of the other.

Random variables that are not independent are said to be dependent.
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Jointly Distributed Random Variables Independent Random Variables

Example

Suppose that n +m independent trials having a common probability
of success p are performed.

Let X be the number of successes in the first n trials;
Let Y be the number of successes in the final m trials.

Then X and Y are independent, since knowing the number of
successes in the first n trials does not affect the distribution of the
number of successes in the final m trials (by the assumption of
independent trials).

In fact, for integral x and y , with 0 ≤ x ≤ n, 0 ≤ y ≤ m,

P{X = x ,Y = y} =
(

n
x

)

px(1− p)n−x
(

m
y

)

py(1− p)m−y

= P{X = x}P{Y = y}.

In contrast, X and Z will be dependent, where Z is the total number
of successes in the n +m trials.
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Jointly Distributed Random Variables Independent Random Variables

Example

Suppose that the number of people who enter a post office on a given
day is a Poisson random variable with parameter λ.
Assume each person who enters the post office is:

A male with probability p;
A female with probability 1− p.

Show then that the number of males and females entering the post
office are independent Poisson random variables with respective
parameters λp and λ(1− p).

Let X be the number of males;
Let Y be the number of females that enter the post office.

To obtain an expression for P{X = i ,Y = j}, we condition on X + Y

as follows:

P{X = i ,Y = j}
= P{X = i ,Y = j |X + Y = i + j}P{X + Y = i + j}
+ P{X = i ,Y = j |X + Y 6= i + j}P{X + Y 6= i + j}.

P{X = i ,Y = j |X + Y 6= i + j} is clearly 0.
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Jointly Distributed Random Variables Independent Random Variables

Example (Cont’d)

So we obtain

P{X = i ,Y = j} = P{X = i ,Y = j |X +Y = i+ j}P{X +Y = i+ j}.
Now, because X + Y is the total number of people who enter the
post office, we get, by hypothesis,

P{X + Y = i + j} = e−λ λi+j

(i + j)!
.

Recall that each person entering will be male with probability p.

Thus, given that i + j people do enter the post office, the probability
that exactly i of them will be male (and thus j of them female) is just
(

i+j
i

)

pi(1− p)j .

That is,

P{X = i ,Y = j |X + Y = i + j} =

(

i + j

i

)

pi(1− p)j .
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Jointly Distributed Random Variables Independent Random Variables

Example (Cont’d)

Now we get

P{X = i ,Y = j} =
(

i+j
i

)

pi (1− p)je−λ λi+j

(i+j)!

= e−λ (λp)i

i !j! [λ(1− p)]j

= e−λp(λp)i

i ! e−λ(1−p) [λ(1−p)]j

j! .

Hence,

P{X = i} = e−λp (λp)
i

i !

∑

j

e−λ(1−p) [λ(1− p)]j

j!
= e−λp (λp)

i

i !
.

Similarly,
P{Y = j} = e−λ(1−p) [λ(1 − p)]j

j!
.

These equations establish the desired result.
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Jointly Distributed Random Variables Independent Random Variables

Example

A man and a woman decide to meet at a certain location.
If each of them independently arrives at a time uniformly distributed
between 12 noon and 1 P.M., find the probability that the first to
arrive has to wait longer than 10 minutes.

Let X be the time past 12 that the man arrives;
Let Y be the time past 12 that the woman arrives.

X and Y are independent random variables, each of which is
uniformly distributed over (0, 60).

The desired probability is P{X + 10 < Y }+ P{Y + 10 < X}.
By symmetry, it equals 2P{X + 10 < Y }. We get:

2P{X + 10 < Y } = 2
∫∫

x+10<y
f (x , y)dxdy

= 2
∫∫

x+10<y
fX (x)fY (y)dxdy

= 2
∫ 60
10

∫ y−10
0 ( 1

60 )
2dxdy

= 2
(60)2

∫ 60
10 (y − 10)dy = 25

36 .
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Jointly Distributed Random Variables Independent Random Variables

Example (Buffon’s Needle Problem)

A table is ruled with equidistant parallel lines a distance D apart.

A needle of length L, where L ≤ D, is randomly thrown on the table.

What is the probability that the needle will intersect one of the lines
(the other possibility being that the needle will be completely
contained in the strip between two lines)?

We determine the position of the needle by
specifying:

(1) The distance X from the middle point of
the needle to the nearest parallel line;

(2) The angle θ between the needle and the
projected line of length X .

The needle will intersect a line if the hypotenuse of the right triangle
in the figure is less than L

2 , i.e., if
X

cos θ < L
2 or X < L

2 cos θ.
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Jointly Distributed Random Variables Independent Random Variables

Example (Cont’d)

X varies between 0 and D
2 ;

θ varies between 0 and π
2 .

It is reasonable to assume that they are independent, uniformly
distributed random variables over these respective ranges.

Hence,

P{X < L
2 cos θ} =

∫∫

x< L
2
cos y

fX (x)fθ(y)dxdy

=
4

πD

∫ π/2

0

∫ L/2 cos y

0
dxdy

=
4

πD

∫ π/2

0

L
2 cos ydy

=
2L

πD
.
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Characterization of the Normal Distribution

Let X and Y denote the horizontal and vertical miss distances when a
bullet is fired at a target.

Assume that:

1. X and Y are independent continuous random variables having
differentiable density functions.

2. The joint density f (x , y) = fX (x)fY (y) of X and Y depends on (x , y)
only through x2 + y2.

Loosely put, assumption 2 states that the probability of the bullet
landing on any point of the x-y plane depends only on the distance of
the point from the target and not on its angle of orientation.

An equivalent way of phrasing this assumption is to say that the joint
density function is rotation invariant.

We show that Assumptions 1 and 2 imply that X and Y are normally
distributed random variables.
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Characterization of the Normal Distribution (Cont’d)

Note first that the assumptions yield the relation

f (x , y) = fX (x)fY (y) = g(x2 + y2).

for some function g .

Differentiating with respect to x yields

f ′X (x)fY (y) = 2xg ′(x2 + y2).

Dividing the latter by the former gives

f ′X (x)

fX (x)
=

2xg ′(x2 + y2)

g(x2 + y2)
or

f ′X (x)

2xfX (x)
=

g ′(x2 + y2)

g(x2 + y2)
.

The value of the left depends only on x .

On the other hand, the value of the right depends on x2 + y2.

Hence, the left-hand side must be the same for all x .
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Characterization of the Normal Distribution (Cont’d)

To see this, consider any x1, x2.

Let y1, y2 be such that x21 + y21 = x22 + y22 .

Then, from the last equation, we obtain

f ′X (x1)

2x1fX (x1)
=

g ′(x21 + y21 )

g(x21 + y21 )
=

g ′(x22 + y22 )

g(x22 + y22 )
=

f ′X (x2)

2x2fX (x2)
.

Hence,
f ′
X
(x)

xfX (x)
= c or d

dx
(log fX (x)) = cx .

Upon integration of both sides, we get log fX (x) = a + cx2

2 or

fX (x) = kecx
2/2.

But
∫∞
−∞ fX (x)dx = 1.

Hence, c is necessarily negative, and we may write c = − 1
σ2 .

Thus, fX (x) = ke−x2/2σ2
.

That is, X is a normal random variable with parameters µ = 0 and σ2.
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Characterization of the Normal Distribution (Cont’d)

A similar argument can be applied to fY (y) to show that

fY (y) =
1√
2πσ

e−y2/2σ2
.

Furthermore, it follows from Assumption 2 that σ2 = σ2.

Hence, X and Y are independent, identically distributed normal
random variables with parameters µ = 0 and σ2.
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Characterization of Independence

Proposition

The continuous (discrete) random variables X and Y are independent if
and only if their joint probability density (mass) function can be expressed
as

fX ,Y (x , y) = h(x)g(y), −∞ < x < ∞,−∞ < y < ∞.

We give the proof in the continuous case.

First, note that independence implies that the joint density is the
product of the marginal densities of X and Y .

So the preceding factorization will hold when the random variables are
independent.
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Characterization of Independence (Converse)

Now, suppose that fX ,Y (x , y) = h(x)g(y).

Then
1 =

∫∞
−∞

∫∞
∞ fX ,Y (x , y)dxdy

=
∫∞
−∞ h(x)dx

∫∞
−∞ g(y)dy

= C1C2,

where:

C1 =
∫∞

−∞
h(x)dx ;

C2 =
∫∞

−∞
g(y)dy .

Also,
fX (x) =

∫∞
−∞ fX ,Y (x , y)dy = C2h(x);

fY (y) =
∫∞
−∞ fX ,Y (x , y)dx = C1g(y).

But C1C2 = 1. Hence, fX ,Y (x , y) = fX (x)fY (y).
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Example

Let X and Y be random variables.

Tell whether they are independent if their joint density function is:

(a) f (x , y) = 6e−2xe−3y , for 0 < x < ∞, 0 < y < ∞, and is equal to 0
outside this region;

(b) f (x , y) = 24xy , if 0 < x < 1, 0 < y < 1, 0 < x + y < 1, and is equal
to 0 otherwise.

(a) The joint density function factors.

Thus the random variables are independent (one is exponential with
rate 2 and the other exponential with rate 3).

(b) The region in which the joint density is nonzero cannot be expressed
in the form x ∈ A, y ∈ B .

Thus, the joint density does not factor.

Therefore, the random variables are not independent.

George Voutsadakis (LSSU) Probability October 2020 43 / 100



Jointly Distributed Random Variables Independent Random Variables

Example (Cont’d)

To explain (b) more explicitly, let

I (x , y) =

{

1, if 0 < x < 1, 0 < y < 1, 0 < x + y < 1
0, otherwise

Then
f (x , y) = 24xyI (x , y).

This clearly does not factor into a part depending only on x and
another depending only on y .
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Independence of n Random Variables

The concept of independence may be defined for more than two
random variables.

In general, the n random variables X1,X2, . . . ,Xn are said to be
independent if, for all sets of real numbers A1,A2, . . . ,An,

P{X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An} =
n
∏

i=1

P{Xi ∈ Ai}.

As before, it can be shown that this condition is equivalent to
asserting that, for all a1, a2, . . . , an,

P{X1 ≤ a1,X2 ≤ a2, . . . ,Xn ≤ an} =
n
∏

i=1

P{Xi ≤ ai}.

Finally, we say that an infinite collection of random variables is
independent if every finite subcollection of them is independent.
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Example

Let X ,Y ,Z be independent and uniformly distributed over (0, 1).

Compute P{X ≥ YZ}.
By independence, for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1,

fX ,Y ,Z (x , y , z) = fX (x)fY (y)fZ (z) = 1.

Thus, we get

P{X ≥ YZ} =
∫∫∫

x≥yz
fX ,Y ,Z (x , y , z)dxdydz

=
∫ 1
0

∫ 1
0

∫ 1
yz
dxdydz

=
∫ 1
0

∫ 1
0 (1− yz)dydz

=
∫ 1
0 (1− z

2)dz = 3
4 .
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Symmetry of Independence

The random variables X and Y are independent if their joint density
function (or mass function in the discrete case) is the product of their
individual density (or mass) functions.

Therefore, to say that X is independent of Y is equivalent to saying
that Y is independent of X - or just that X and Y are independent.

Sometimes, in considering whether X is independent of Y , it is not at
all intuitive that knowing the value of Y will not change the
probabilities concerning X .

Because of this symmetry, it may, then, be beneficial to interchange
the roles of X and Y and ask instead whether Y is independent of X .
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Example

Consider the game of craps.

If the initial throw of the dice results in the sum of the dice equaling
4, then the player will continue to throw the dice until the sum is
either 4 or 7.

If this sum is 4, then the player wins;
If it is 7, then the player loses.

Let N denote the number of throws needed until either 4 or 7 appears.

Let X denote the value (either 4 or 7) of the final throw.

Is N independent of X?

The question asks whether knowing which of 4 or 7 occurs first
affects the distribution of the number of throws needed until that
number appears.

The answer to this question does not seem intuitively obvious.
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Example (Cont’d)

Suppose that we turn the question around and ask whether X is
independent of N.

That is, does knowing how many throws it takes to obtain a sum of
either 4 or 7 affect the probability that that sum is equal to 4?

For instance, suppose we know that it takes n throws of the dice to
obtain a sum of either 4 or 7.

Does this affect the probability distribution of the final sum?

Clearly not, since all that is important is that its value is either 4 or 7,
and the fact that none of the first n− 1 throws were either 4 or 7
does not change the probabilities for the nth throw.

Thus, we can conclude that X is independent of N.

Equivalently (by symmetry), N is independent of X .
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Example

Let X1,X2, . . . be a sequence of independent and identically
distributed continuous random variables.

Suppose that we observe these random variables in sequence.

If Xn > Xi for each i = 1, . . . , n − 1, then we say that Xn is a record

value.

That is, each random variable that is larger than all those preceding it
is called a record value.

Let An denote the event that Xn is a record value.

Is An+1 independent of An?

That is, does knowing that the nth random variable is the largest of
the first n change the probability that the (n+1)st random variable is
the largest of the first n + 1?

While it is true that An+1 is independent of An, this may not be
intuitively obvious.
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Example (Cont’d)

If we turn the question around and ask whether An is independent of
An+1, then the result is more easily understood.

For knowing that the (n + 1)st value is larger than X1, . . . ,Xn clearly
gives us no information about the relative size of Xn among the first n
random variables.

By symmetry, it is clear that each of the first n random variables is
equally likely to be the largest of this set.

Therefore,

P(An|An+1) = P(An) =
1

n
.

Hence, we can conclude that An and An+1 are independent events.
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Sequential Verification

Recall the identity

P{X1 ≤ a1, . . . ,Xn ≤ an}
= P{X1 ≤ a1}P{X2 ≤ a2|X1 ≤ a1} · · ·

P{Xn ≤ an|X1 ≤ a1, . . . ,Xn−1 ≤ an−1}

From this, it follows that the independence of X1, . . . ,Xn can be
established sequentially.

That is, we can show that these random variables are independent by
showing that:

X2 is independent of X1;
X3 is independent of X1,X2;
X4 is independent of X1,X2,X3;
...
Xn is independent of X1, . . . ,Xn−1.
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Subsection 3

Sums of Independent Random Variables
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Probability Distribution of Sum of Independent Variables

Suppose that X and Y are independent, continuous random variables
having probability density functions fX and fY .

The cumulative distribution function of X + Y is obtained as follows:

FX+Y (a) = P{X + Y ≤ a}
=

∫∫

x+y≤a
fX (x)fY (y)dxdy

=
∫∞
−∞

∫ a−y

−∞ fX (x)fY (y)dxdy

=
∫∞
−∞

∫ a−y

−∞ fX (x)dxfY (y)dy

=
∫∞
−∞ FX (a − y)fY (y)dy .

The cumulative distribution function FX+Y is called the convolution

of the distributions FX and FY (the cumulative distribution functions
of X and Y , respectively).
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Probability Density of Sum of Independent Variables

By differentiating, we find that the probability density function fX+Y

of X + Y is given by

fX+Y (a) =
d

da

∫∞
−∞ FX (a − y)fY (y)dy

=
∫∞
−∞

d

da
FX (a − y)fY (y)dy

=
∫∞
−∞ fX (a − y)fY (y)dy .
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Sum of Two Independent Uniform Random Variables

If X and Y are independent random variables, both uniformly
distributed on (0, 1), calculate the probability density of X + Y .

We have

fX (a) = fY (a) =

{

1, 0 < a < 1
0, otherwise

Hence, we obtain fX+Y (a) =
∫ 1
0 fX (a − y)dy .

For 0 ≤ a ≤ 1, this yields fX+Y (a) =
∫ a

0 dy = a.

For 1 < a < 2, we get fX+Y (a) =
∫ 1
a−1 dy = 2− a.

Hence,

fX+Y (a) =







a, 0 ≤ a ≤ 1
2− a, 1 < a < 2
0, otherwise

Because of the shape of its density function, the random variable
X + Y is said to have a triangular distribution.
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Sum of n Independent Uniform Random Variables

Now, suppose that X1,X2, . . . ,Xn are independent uniform (0, 1)
random variables, and let Fn(x) = P{X1 + · · · + Xn ≤ x}.
Whereas a general formula for Fn(x) is messy, it has a particularly
nice form when x ≤ 1.

We use mathematical induction to prove that

Fn(x) =
xn

n!
, 0 ≤ x ≤ 1.

The proceeding equation is true for n = 1.

Assume that Fn−1(x) =
xn−1

(n−1)! , 0 ≤ x ≤ 1.

Write
∑n

i=1 Xi =
∑n−1

i=1 Xi + Xn and use the fact that the Xi are all
nonnegative, to get, for 0 ≤ x ≤ 1,

Fn(x) =
∫ 1
0 Fn−1(x − y)fXn

(y)dy

= 1
(n−1)!

∫ x

0 (x − y)n−1dy = xn

n! .
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Number of Variables Needed to Exceed One

Let X1,X2, . . . be independent uniform (0, 1) random variables.

Determine E [N], where N = min {n : X1 + · · ·+ Xn > 1}.
Note that N is greater than n > 0 if and only if X1 + · · ·+ Xn ≤ 1.

Thus, P{N > n} = Fn(1) =
1
n! , n > 0.

Note, also, that P{N > 0} = 1 = 1
0! .

Hence, for n > 0,

P{N = n} = P{N > n − 1} − P{N > n} =
1

(n − 1)!
− 1

n!
=

n − 1

n!
.

Therefore,

E [N] =
∞
∑

n=1

n(n − 1)

n!
=

∞
∑

n=2

1

(n − 2)!
= e.

That is, the mean number of independent uniform (0, 1) random
variables that must be summed for the sum to exceed 1 is equal to e.
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Sum of Independent Normal Random Variables

Proposition

If Xi , i = 1, . . . , n, are independent random variables that are normally
distributed with respective parameters µi , σ

2
i , i = 1, . . . , n, then

∑n
i=1 Xi

is normally distributed with parameters
∑n

i=1 µi and
∑n

i=1 σ
2
i .

Let X and Y be independent normal random variables with:
X having mean 0 and variance σ2;
Y having mean 0 and variance 1.

We determine the density function of X + Y .

Let c = 1
2σ2 +

1
2 = 1+σ2

2σ2 .

fX (a − y)fY (y) = 1√
2πσ

exp {− (a−y)2

2σ2 } 1√
2π

exp {− y2

2 }

= 1
2πσ exp {− a2

2σ2 +
2ay
2σ2 − y2

2σ2 − σ2y2

2σ2 }
= 1

2πσ exp {− a2

2σ2 − 1+σ2

2σ2 (y2 − 2ay
1+σ2 )}.
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Sum of Independent Normal Random Variables (Cont’d)

We calculated
fX (a − y)fY (y) =

1
2πσ exp {− a2

2σ2 } exp {−c(y2 − 2y a
1+σ2 )}.

Hence, we get

fX+Y (a) = 1
2πσ exp {− a2

2σ2 } exp { a2

2σ2(1+σ2)
}

×
∫∞
−∞ exp {−c(y − a

1+σ2 )
2}dy

= 1
2πσ exp {− a2

2(1+σ2)
}
∫∞
−∞ exp {−cx2}dx

= C exp {− a2

2(1+σ2)
}.

Note that C := 1
2πσ

∫∞
−∞ exp {−cx2}dx does not depend on a.

This implies that X + Y is normal with mean 0 and variance 1 + σ2.
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Sum of Independent Normal Random Variables (Cont’d)

Suppose that X1 and X2 are independent normal random variables
with Xi having mean µi and variance σ2

i , i = 1, 2.

Then

X1 + X2 = σ2(
X1 − µ1

σ2
+

X2 − µ2

σ2
) + µ1 + µ2.

Note that:
X1−µ1

σ2
is normal with mean 0 and variance

σ2
1

σ2
2
;

X2−µ2

σ2
is normal with mean 0 and variance 1.

From our previous result, we get that X1−µ1

σ2
+ X2−µ2

σ2
is normal with

mean 0 and variance 1 +
σ2
1

σ2
2
.

This implies that X1 + X2 is normal with mean µ1 + µ2 and variance

σ2
2(1 +

σ2
1

σ2
2
) = σ2

1 + σ2
2 .

Thus, the proposition is established when n = 2.
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Sum of Independent Normal Random Variables (Cont’d)

The general case now follows by induction.

That is, assume that the proposition is true when there are n − 1
random variables.

Now consider the case of n, and write

n
∑

i=1

Xi =

n−1
∑

i=1

Xi + Xn.

By the induction hypothesis,
∑n−1

i=1 Xi is normal with mean
∑n−1

i=1 µi

and variance
∑n−1

i=1 σ2
i .

Therefore, by the result for n = 2,
∑n

i=1 Xi is normal with mean
∑n

i=1 Xi and variance
∑n

i=1 σ
2
i .
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Sum of Independent Poisson Random Variables

Let X and Y be independent Poisson random variables with
respective parameters λ1 and λ2.

We compute the distribution of X + Y .

The event {X + Y = n} may be written as the union of the disjoint
events {X = k ,Y = n − k}, 0 ≤ k ≤ n:

P{X + Y = n} =
∑n

k=0 P{X = k ,Y = n − k}
=

∑n
k=0 P{X = k}P{Y = n − k}

=
∑n

k=0 e
−λ1

λk
1

k! e
−λ2

λn−k
2

(n−k)!

= e−(λ1+λ2)
∑n

k=0
λk
1λ

n−k
2

k!(n−k)!

= e−(λ1+λ2)

n!

∑n
k=0

n!
k!(n−k)!λ

k
1λ

n−k
2

= e−(λ1+λ2)

n! (λ1 + λ2)
n.

Thus, X1 + X2 has a Poisson distribution with parameter λ1 + λ2.
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Sum of Independent Binomial Random Variables

Let X and Y be independent binomial random variables with
respective parameters (n, p) and (m, p).

By recalling the interpretation of a binomial random variable, we can
conclude that X + Y is binomial with parameters (n +m, p).

This follows because:

X represents the number of successes in n independent trials, each of
which results in a success with probability p.
Y represents the number of successes in m independent trials, each of
which results in a success with probability p.

By hypothesis, X and Y are independent.

Hence, X + Y represents the number of successes in n+m

independent trials when each trial has probability p of success.

Therefore, X + Y is a binomial random variable with parameters
(n +m, p).
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Sum of Independent Binomial Random Variables (Cont’d)

We check this conclusion analytically:

P{X + Y = k} =
∑n

i=0 P{X = i ,Y = k − i}
=

∑n
i=0 P{X = i}P{Y = k − i}

=
∑n

i=0

(

n
i

)

piqn−i
(

m
k−i

)

pk−iqm−k+i ,

where q = 1− p and where
(

r
j

)

= 0 when j < 0.

Thus,

P{X + Y = k} = pkqn+m−k
∑n

i=0

(

n
i

)(

m
k−i

)

=
(

n+m
k

)

pkqn+m−k .

The last equality uses the combinatorial identity
(

n+m

k

)

=

n
∑

i=0

(

n

i

)(

m

k − i

)

.
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Subsection 4

Conditional Distributions: Discrete Case
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Conditional Distributions

If X and Y are discrete random variables, we define the conditional

probability mass function of X given that Y = y , by

pX |Y (x |y) = P{X = x |Y = y} =
P{X = x ,Y = y}

P{Y = y} =
p(x , y)

pY (y)
,

for all values of y such that pY (y) > 0.

Similarly, the conditional probability distribution function of X given
that Y = y is defined, for all y such that pY (y) > 0, by

FX |Y (x |y) = P{X ≤ x |Y = y} =
∑

a≤x

pX |Y (a|y).

In other words, the definitions are exactly the same as in the
unconditional case, except that everything is now conditional on the
event that Y = y .
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The Case of Independent Variables

If X is independent of Y , then the conditional mass function and the
distribution function are the same as the respective unconditional
ones.

This follows because if X is independent of Y , then

pX |Y (x |y) = P{X = x |Y = y}

=
P{X = x ,Y = y}

P{Y = y}

=
P{X = x}P{Y = y}

P{Y = y}
= P{X = x}.
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Example

Suppose that p(x , y), the joint probability mass function of X and Y ,
is given by

p(0, 0) = 0.4, p(0, 1) = 0.2, p(1, 0) = 0.1, p(1, 1) = 0.3.

Calculate the conditional probability mass function of X given that
Y = 1.

We first note that

pY (1) =
∑

x

p(x , 1) = p(0, 1) + p(1, 1) = 0.5.

Hence,

pX |Y (0|1) =
p(0, 1)

pY (1)
=

2

5
, pX |Y (1|1) =

p(1, 1)

pY (1)
=

3

5
.
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Example

If X and Y are independent Poisson random variables with respective
parameters λ1 and λ2, calculate the conditional distribution of X
given that X + Y = n.

We calculate the conditional probability mass function of X given
that X + Y = n as follows:

P{X = k |X + Y = n} =
P{X = k ,X + Y = n}

P{X + Y = n}

=
P{X = k ,Y = n − k}

P{X + Y = n}

=
P{X = k}P{Y = n− k}

P{X + Y = n} .

The last equality follows from the assumed independence of X and Y .
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Jointly Distributed Random Variables Conditional Distributions: Discrete Case

Example (Cont’d)

Recal that X + Y has a Poisson distribution with parameter λ1 + λ2:

P{X = k |X + Y = n} =
e−λ1λk

1

k!

e−λ2λn−k
2

(n − k)!

×
[

e−(λ1+λ2)(λ1 + λ2)
n

n!

]−1

=
n!

(n − k)!k!

λk
1λ

n−k
2

(λ1 + λ2)n

=

(

n

k

)(

λ1

λ1 + λ2

)k ( λ2

λ1 + λ2

)n−k

.

We conclude that the conditional distribution of X given that
X + Y = n is the binomial distribution with parameters n and λ1

λ1+λ2
.
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Jointly Distributed Random Variables Conditional Distributions: Discrete Case

Example

Suppose n independent trials are performed, with each trial resulting
in outcome i with probability pi ,

∑k
i=1 pi = 1.

Let the random variables Xi , i = 1, . . . , k , represent, respectively, the
number of trials that result in outcome i , i = 1, . . . , k .

The Xi satisfy the multinomial distribution with joint probability mass
function

P{Xi = ni , i = 1, . . . , k} =
n!

n1! · · · nk !
pn11 · · · pnkk ,

ni ≥ 0,
∑k

i=1 ni = n.

Suppose we are given that nj of the trials resulted in outcome j , for

j = r + 1, . . . , k , where
∑k

j=r+1 nj = m ≤ n.
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Jointly Distributed Random Variables Conditional Distributions: Discrete Case

Example (Cont’d)

Then each of the other n −m trials must have resulted in one of the
outcomes 1, . . . , r .

Thus, it seems that the conditional distribution of X1, . . . ,Xr is the
multinomial distribution on n −m trials with respective trial outcome
probabilities, for i = 1, . . . , r ,

P{outcome i |outcome is not any of r + 1, . . . , k} =
pi

Fr
,

where Fr =
∑r

i=1 pi is the probability that a trial results in one of the
outcomes 1, . . . , r .
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Jointly Distributed Random Variables Conditional Distributions: Discrete Case

Example (Cont’d)

To verify this, let n1, . . . , nr , be such that
∑r

i=1 ni = n −m.
Then

P{X1 = n1, . . . ,Xr = nr |Xr+1 = nr+1, . . . ,Xk = nk}

=
P{X1 = n1, . . . ,Xk = nk}

P{Xr+1 = nr+1, . . . ,Xk = nk}

=
n!

n1!···nk !
p
n1
1 ···pnrr p

nr+1
r+1 ···pnk

k

n!
(n−m)!nr+1!···nk !

F n−m
r p

nr+1
r+1 ···pnk

k

.

For the probability in the denominator:
Regard outcomes 1, . . . , r as a single outcome having probability Fr ;
Obtain the probability as a multinomial probability on n trials with
outcome probabilities Fr , pr+1, . . . , pk .

Because
∑r

i=1 ni = n −m, we get

P{X1 = n1, . . . ,Xr = nr |Xr+1 = nr+1, . . . ,Xk = nk}
= (n−m)!

n1!···nr !(
p1
Fr
)n1 · · · ( pr

Fr
)nr .
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Jointly Distributed Random Variables Conditional Distributions: Discrete Case

Example

Consider n independent trials, with each trial being a success with
probability p.

Given a total of k successes, show that all possible orderings of the k

successes and n − k failures are equally likely.

We want to show that, given a total of k successes, each of the
(

n
k

)

possible orderings of k successes and n − k failures is equally likely.

Let X denote the number of successes, and consider any ordering of k
successes and n − k failures, say, o = (s, s, . . . , s, f , f , . . . , f ).

Then

P(o|X = k) =
P(o,X = k)

P(X = k)
=

P(o)

P(X = k)

=
pk(1− p)n−k

(

n
k

)

pk(1− p)n−k
=

1
(

n
k

) .
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Subsection 5

Conditional Distributions: Continuous Case
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Conditional Probability Density Function

If X and Y have a joint probability density function f (x , y), then the
conditional probability density function of X given that Y = y is
defined, for all values of y such that fY (y) > 0, by

fX |Y (x |y) =
f (x , y)

fY (y)
.

To motivate this definition, multiply the left-hand side by dx and the
right-hand side by dxdy

dy
to obtain

fX |Y (x |y)dx = f (x ,y)dxdy
fY (y)dy

≈ P{x≤X≤x+dx ,y≤Y≤y+dy}
P{y≤Y≤y+dy}

= P{x ≤ X ≤ x + dx |y ≤ Y ≤ y + dy}.
In other words, for small values of dx and dy , fX |Y (x |y)dx represents
the conditional probability that X is between x and x + dx given that
Y is between y and y + dy .
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Conditional Cumulative Distribution Function

The use of conditional densities allows us to define conditional
probabilities of events associated with one random variable when we
are given the value of a second random variable.

That is, if X and Y are jointly continuous, then, for any set A,

P{X ∈ A|Y = y} =

∫

A

fX |Y (x |y)dx .

In particular, by letting A = (−∞, a], we can define the conditional

cumulative distribution function of X given that Y = y by

FX |Y (a|y) ≡ P{X ≤ a|Y = y} =

∫ a

−∞
fX |Y (x |y)dx .

We have been able to give workable expressions for conditional
probabilities, even though the event on which we are conditioning
(namely, the event {Y = y}) has probability 0.
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Example

The joint density of X and Y is given by

f (x , y) =

{

12
5 x(2− x − y), 0 < x < 1, 0 < y < 1
0, otherwise

Compute the conditional density of X given that Y = y , where
0 < y < 1.

For 0 < x < 1, 0 < y < 1, we have

fX |Y (x |y) =
f (x , y)

fY (y)
=

f (x , y)
∫∞
−∞ f (x , y)dx

=
x(2− x − y)

∫ 1
0 x(2− x − y)dx

=
x(2− x − y)

(x2 − 1
3x

3 − 1
2yx

2)|x=1
x=0

=
x(2− x − y)

2
3 − y

2

=
6x(2 − x − y)

4− 3y
.
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Example

Suppose that the joint density of X and Y is given by

f (x , y) =

{

e−x/y e−y

y
, 0 < x < ∞, 0 < y < ∞

0, otherwise

Find P{X > 1|Y = y}.
We first obtain the conditional density of X given that Y = y .

fX |Y (x |y) =
f (x , y)

fY (y)
=

e−x/y e−y/y

e−y
∫∞
0 (1/y)e−x/ydx

=
e−x/ye−y/y

e−y (−e−x/y )|x=∞
x=0

= 1
y
e−x/y .

Hence,

P{X > 1|Y = y} =

∫ ∞

1

1

y
e−x/ydx = − e−x/y |∞1 = e−1/y .
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Independent Random Variables

If X and Y are independent continuous random variables, the
conditional density of X given that Y = y is just the unconditional
density of X .

Indeed, in the independent case,

fX |Y (x |y) =
f (x , y)

fY (y)
=

fX (x)fY (y)

fY (y)
= fX (x).
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Mixed Conditional Distributions

Suppose that:
X is a continuous random variable having probability density function f ;
N is a discrete random variable.

Consider the conditional distribution of X given that N = n.

Then
P{x<X<x+dx |N=n}

dx

= P{N=n|x<X<x+dx}
P{N=n}

P{x<X<x+dx}
dx

Letting dx approach 0 gives

lim
dx→0

P{x < X < x + dx |N = n}
dx

=
P{N = n|X = x}

P{N = n} f (x).

Thus, the conditional density of X given that N = n is given by

fX |N(x |n) =
P{N = n|X = x}

P{N = n} f (x).
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Example

Consider n+m trials having a common probability of success.

Suppose, however, that this success probability is not fixed in advance
but is chosen from a uniform (0, 1) population.
What is the conditional distribution of the success probability given
that the n +m trials result in n successes?

Let X be the probability that a given trial is a success.
By hypothesis, X is a uniform (0, 1) random variable:

fX (x) = 1, 0 < x < 1;

Given that X = x , the n +m trials are independent with common
probability of success x ;
So N , the number of successes, is a binomial random variable with
parameters (n +m, x):

P{N = n|X = x} =

(

n +m

n

)

xn(1− x)m.
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Jointly Distributed Random Variables Conditional Distributions: Continuous Case

Example

Hence, the conditional density of X given that N = n is

fX |N(x |n) =
P{N = n|X = x}fX (x)

P{N = n}

=

(

n+m
n

)

xn(1− x)m

P{N = n} , 0 < x < 1

= cxn(1− x)m,

where c does not depend on x .

Hence, if the original or prior (to the collection of data) distribution
of a trial success probability is uniformly distributed over (0, 1), then
the posterior (or conditional) distribution given a total of n successes
in n +m trials is fX |N(x |n) = cxn(1− x)m.
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Subsection 6

Joint Probability Distributions of Functions of Random Variables
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Functions of Random Variables

Let X1 and X2 be jointly continuous random variables with joint
probability density function fX1,X2

.

Suppose that Y1 = g1(X1,X2) and Y2 = g2(X1,X2) for some
functions g1 and g2.

We obtain the joint distribution of the random variables Y1 and Y2.

Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely
solved for x1 and x2 in terms of y1 and y2, with solutions given by, say,
x1 = h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all
points (x1, x2) and are such that, for all (x1, x2),

J(x1, x2) =

∣

∣

∣

∣

∣

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣

∣

∣

∣

∣

≡ ∂g1
∂x1

∂g2
∂x2

− ∂g1
∂x2

∂g2
∂x1

6= 0.
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Joint Density of Functions of Random Variables

Under these two conditions, it can be shown that the random variables
Y1 and Y2 are jointly continuous with joint density function given by

fY1,Y2
(y1, y2) = fX1,X2

(x1, x2)|J(x1, x2)|−1,

where x1 = h1(y1, y2), x2 = h2(y1, y2).

A proof of this would proceed along the following lines:

P{Y1 ≤ y1,Y2 ≤ y2} =

∫∫

(x1,x2):
g1(x1,x2)≤y1
g2(x1,x2)≤y2

fX1,X2
(x1, x2)dx1dx2.

The joint density function can now be obtained by differentiating with
respect to y1 and y2.

The result of this differentiation will be equal to the right-hand side
of the original equation (this is done in advanced calculus).
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Example

Let X1 and X2 be jointly continuous random variables with probability
density function fX1,X2

.

Let Y1 = X1 + X2, Y2 = X1 − X2.

Find the joint density function of Y1 and Y2 in terms of fX1,X2
.

Let g1(x1, x2) = x1 + x2 and g2(x1, x2) = x1 − x2.

Then J(x1, x2) =

∣

∣

∣

∣

∣

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣

= − 2.

Moreover, the equations y1 = x1 + x2 and y2 = x1 − x2 have solution
x1 =

y1+y2
2 , x2 =

y1−y2
2 .

Thus, the desired density is

fY1,Y2
(y1, y2) =

1

2
fX1,X2

(

y1 + y2

2
,
y1 − y2

2

)

.
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Example (Cont’d)

If X1 and X2 are independent uniform (0, 1) random variables, then

fY1,Y2
(y1, y2) =

{

1
2 , 0 ≤ y1 + y2 ≤ 2, 0 ≤ y1 − y2 ≤ 2
0, otherwise

If X1 and X2 are independent exponential random variables with
respective parameters λ1 and λ2, then

fY1,Y2
(y1, y2) =







λ1λ2
2 exp {−λ1(

y1+y2
2 )− λ2(

y1−y2
2 )},

y1 + y2 ≥ 0, y1 − y2 ≥ 0
0, otherwise
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Example (Cont’d)

If X1 and X2 are independent standard normal random variables, then

fY1,Y2
(y1, y2) = 1

4π e
−[(y1+y2)

2/8+(y1−y2)
2/8]

= 1
4π e

−(y2
1+y2

2 )/4

= 1√
4π
e−y2

1/4 1√
4π
e−y2

2 /4.

Both X1 + X2 and X1 − X2 are normal with mean 0 and variance 2;
We also conclude that these two random variables are independent.

It turns out that if X1 and X2 are independent random variables
having a common distribution function F , then X1 + X2 will be
independent of X1 − X2 if and only if F is a normal distribution
function.
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Example

Let (X ,Y ) denote a random point in the plane, and assume that the
rectangular coordinates X and Y are independent standard normal
random variables.

We find the joint distribution of R ,Θ, the polar coordinate
representation of (x , y).

Suppose first that X and Y are both positive.

Let r = g1(x , y) =
√

x2 + y2 and θ = g2(x , y) = tan−1 y
x
.

∂g1
∂x = x√

x2+y2
, ∂g1

∂y = y√
x2+y2

,

∂g2
∂x = 1

1+(y/x)2
(−y
x2

) = −y
x2+y2 ,

∂g2
∂y = 1

x [1+(y/x)2]
= x

x2+y2 .

Hence,

J(x , y) =
x2

(x2 + y2)3/2
+

y2

(x2 + y2)3/2
=

1
√

x2 + y2
=

1

r
.
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Example (Cont’d)

By hypothesis, the conditional joint density function of X ,Y given
that they are both positive is given, for x > 0, y > 0, by

f (x , y |X > 0,Y > 0) =
f (x , y)

P(X > 0,Y > 0)
=

2

π
e−(x2+y2)/2.

Thus, the conditional joint density function of R =
√
X 2 + Y 2 and

Θ = tan−1 (Y
X
), given that X and Y are both positive, is

f (r , θ|X > 0,Y > 0) =
2

π
re−r2/2, 0 < θ <

π

2
, 0 < r < ∞.

Similarly, we can show that

f (r , θ|X < 0,Y > 0) = 2
π re

−r2/2, π
2 < θ < π, 0 < r < ∞,

f (r , θ|X < 0,Y < 0) = 2
π re

−r2/2, π < θ < 3π
2 , 0 < r < ∞,

f (r , θ|X > 0,Y < 0) = 2
π re

−r2/2, 3π
2 < θ < 2π, 0 < r < ∞.
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Example (Cont’d)

The joint density is an equally weighted average of these 4 conditional
joint densities.

Hence, the joint density of R ,Θ is given by

f (r , θ) =
1

2π
re−r2/2, 0 < θ < 2π, 0 < r < ∞.

This joint density factors into the marginal densities for R and Θ.

So R and Θ are independent random variables, with:

Θ uniformly distributed over (0, 2π);
R having the Rayleigh distribution with density

f (r) = re−r2/2, 0 < r < ∞.
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The Case of n Variables

Suppose the joint density function of the n random variables
X1,X2, . . . ,Xn is given.

We want to compute the joint density function of Y1,Y2, . . . ,Yn,
where

Y1 = g1(X1, . . . ,Xn),Y2 = g2(X1, . . . ,Xn), . . . ,Yn = gn(X1, . . . ,Xn).

We assume that:

The functions gi have continuous partial derivatives;
The Jacobian determinant

J(x1, . . . , xn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn

...
...

...
∂gn
∂x1

∂gn
∂x2

· · · ∂gn
∂xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, for all (x1, . . . , xn).
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The Case of n Variables (Cont’d)

We also assume that the equations

y1 = g1(x1, . . . , xn), y2 = g2(x1, . . . , xn), . . . , yn = gn(x1, . . . , xn)

have a unique solution, say,

x1 = h1(y1, . . . , yn), . . . , xn = hn(y1, . . . , yn).

Under these assumptions, the joint density function of the random
variables Yi is given by

fY1,...,Yn
(y1, . . . , yn) = fX1,...,Xn

(x1, . . . , xn)|J(x1, . . . , xn)|−1,

where xi = hi(y1, . . . , yn), i = 1, 2, . . . , n.
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Example

Let X1,X2 and X3 be independent standard normal random variables.

If Y1 = X1 + X2 + X3, Y2 = X1 − X2 and Y3 = X1 − X3, compute the
joint density function of Y1,Y2,Y3.

Let Y1 = X1 + X2 + X3, Y2 = X1 − X2, Y3 = X1 − X3.

The Jacobian of these transformations is given by

J =

∣

∣

∣

∣

∣

∣

∣

∂g1
x1

∂g1
x2

∂g1
x3

∂g2
x1

∂g2
x2

∂g2
x3

∂g3
x1

∂g3
x2

∂g3
x3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 1 1
1 −1 0
1 0 −1

∣

∣

∣

∣

∣

∣

= 3.

The preceding transformations yield that

X1 =
Y1 + Y2 + Y3

3
, X2 =

Y1 − 2Y2 + Y3

3
, X3 =

Y1 + Y2 − 2Y3

3
.

We conclude that

fY1,Y2,Y3(y1, y2, y3) =
1

3
fX1,X2,X3

(

y1 + y2 + y3

3
,
y1 − 2y2 + y3

3
,
y1 + y2 − 2y3

3

)

.
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Example (Cont’d)

Now recall that

fX1,X2,X3
(x1, x2, x3) =

1

(2π)3/2
e−

∑3
i=1 x

2
i
/2.

Set

Q(y1, y2, y3) = (y1+y2+y3
3 )2 + (y1−2y2+y3

3 )2 + (y1+y2−2y3
3 )2

=
y2
1
3 + 2

3y
2
2 + 2

3y
2
3 − 2

3y2y3.

Then, we get

fY1,Y2,Y3
(y1, y2, y3) =

1

3(2π)3/2
e−Q(y1,y2,y3)/2.
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Jointly Distributed Random Variables Joint Probability Distributions of Functions of Random Variables

Example

Let X1,X2, . . . ,Xn be independent and identically distributed
exponential random variables with rate λ.

Let Yi = X1 + · · ·+ Xi , i = 1, . . . , n.

(a) Find the joint density function of Y1, . . . ,Yn.
(b) Use the result of Part (a) to find the density of Yn.

(a) Consider Yi = gi (X1, . . . ,Xn) = X1 + · · · + Xi , i = 1, . . . , n.

The Jacobian of these transformations is

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
...

...
...

1 1 1 1 · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, J = 1.
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Example (Cont’d)

The joint density function of X1, . . . ,Xn is given by

fX1,...,Xn
(x1, . . . , xn) =

n
∏

i=1

λe−λxi , 0 < xi < ∞, i = 1, . . . , n.

Moreover, the preceding transformations yield

X1 = Y1, X2 = Y2−Y1, . . . , Xi = Yi −Yi−1, . . . , Xn = Yn−Yn−1.

Thus, the joint density function of Y1, . . . ,Yn is

fY1,...,Yn
(y1, y2, . . . , yn)

= fX1,...,Xn
(y1, y2 − y1, . . . , yi − yi−1, . . . , yn − yn−1)

= λn exp {−λ[y1 +
∑n

i=2(yi − yi−1)]}
= λne−λyn 0 < y1, 0 < yi − yi−1, i = 2, . . . , n

= λne−λyn 0 < y1 < y2 < · · · < yn.
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Example (Cont’d)

(b) To obtain the marginal density of Yn, let us integrate out the other
variables one at a time.

Doing this gives

fY2,...,Yn
(y2, . . . , yn) =

∫ y2
0 λne−λyndy1

= λny2e
−λyn , 0 < y2 < y3 < · · · < yn;

fY3,...,Yn
(y3, . . . , yn) =

∫ y3
0 λny2e

−λyndy2

= λn y2
3
2 e

−λyn , 0 < y3 < y4 < · · · < yn.

The next integration yields

fY4,...,Yn
(y4, . . . , yn) = λn y

3
4

3!
e−λyn , 0 < y4 < · · · < yn.

Continuing in this fashion gives

fYn
(yn) = λn yn−1

n

(n − 1)!
e−λyn , 0 < yn.
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