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Conjugate Points and Conjugate Lines
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Polarities Conjugate Points and Conjugate Lines

Polarities

A polarity is a projective correlation of period 2.

In general, a correlation transforms:

each point A into a line a′;
transforms this line into a new point A′′.

When the correlation is of period 2, A′′ always coincides with A and
we can simplify the notation by omitting the prime.

Thus a polarity relates A to a, and vice versa.

We call a the polar of A, and A the pole of a.

Since this is a projective correlation, the polars of all the points on a

form a projectively related pencil of lines through A.
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Polarities Conjugate Points and Conjugate Lines

Conjugate Points and Conjugate Lines

If A lies on b, the polar a passes through the pole B .

In this case we say that A and B are conjugate points, and that a
and b are conjugate lines.

It may happen that A and a are incident, so that each is
self-conjugate: A on its own polar, and a through its own pole.

The occurrence of self-conjugate lines (and points) is restricted by the
following

Theorem

The join of two self-conjugate points cannot be a self-conjugate line.

If the join a of two self-conjugate points were a self-conjugate line, it
would contain its own pole A and at least one other self-conjugate
point, say B . The polar of B , containing both A and B , would
coincide with a. Thus, two distinct points would both have the same
polar. This is impossible, since a polarity is a one-to-one
correspondence between points and lines.
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Polarities Conjugate Points and Conjugate Lines

Line and Self-Conjugate Points

Theorem

It is impossible for a line to contain more than two self-conjugate points.

Let p and q (through C ) be the polars of two
self-conjugate points P and Q on a line c . Let
R be a point on p, distinct from C and P . Let
its polar r meet q in S . Then S = q · r is the
pole of QR = s, which meets r in T , say. Also
T = r · s is the pole of RS = t, which meets c

in B , say.
Finally, B = c · t is the pole of CT = b, which meets c in A, the
harmonic conjugate of B with respect to P and Q. The point B
cannot coincide with Q or P . For, B =Q would imply R =C ; and
B =P would imply S =C , r = p, R =P ; but we are assuming that R is
neither C nor P . Hence, A 6=B , and B is not self-conjugate. On c , we
have two self-conjugate points P , Q and a non-selfconjugate point B .
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Polarities Conjugate Points and Conjugate Lines

Line and Self-Conjugate Points (Cont’d)

Since the polars of a range form a projectively
related pencil, each point X on c determines
a conjugate point Y on c , which is where
its polar x meets c . This correspondence be-
tween X and Y is a projectivity: X ⊼x ⊼Y .
When X is P , x is p, and Y is P again. Thus,
P is an invariant point of this projectivity.

Similarly, Q is another invariant point. But when X is B , Y is the
distinct point A. Therefore, the projectivity is not the identity. By
Axiom 8, P and Q are its only invariant points, that is, P and Q are
the only self-conjugate points on c . This completes the proof that c
cannot contain more than two self-conjugate points.
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Polarities Conjugate Points and Conjugate Lines

Polarities, Involutions and Self-Polar Triangles

Theorem

A polarity induces an involution of conjugate points on any line that is not
self-conjugate.

On a non-selfconjugate line c , the projectivity
X ⊼Y , where Y = c · x transforms any non-
selfconjugate point B into another point A =

b ·c , whose polar is BC . The same projectivity
transforms A into B . Since it interchanges A

and B , it must be an involution.

Dually, the lines x and CX are paired in the involution of conjugate
lines through C .

Such a triangle ABC , in which each vertex is the pole of the opposite
side (so that any two vertices are conjugate points, and any two sides
are conjugate lines), is called a self-polar triangle.
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Subsection 2

The Use of a Self-Polar Triangle
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Polarities The Use of a Self-Polar Triangle

Correlations, Triangles and Polarities

Theorem

Any projective correlation that relates the three vertices of one triangle to
the respectively opposite sides is a polarity.

Consider the correlation ABCP → abcp, where a,b,c are the sides of
the given triangle ABC and P is a point not on any of them. Then p

is a line not through any of A,B ,C . The point P and line p determine
6 points on the sides of the triangle:

Pa = a ·AP , Pb = b ·BP , PC = c ·CP ,
Ap = a ·p, Bp = b ·p, Cp = c ·p. The
correlation, transforming A,B ,C into
a,b,c , also transforms a=BC into b ·

c =A, AP into a ·p = Ap, Pa = a ·AP

into AAp, and so on.
Thus, it transforms the triangle ABC in the manner of a polarity. We
next show, besides transforming P into p, it also transforms p into P .
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Polarities The Use of a Self-Polar Triangle

Correlations, Triangles and Polarities (Cont’d)

The correlation transforms each
point X on c into a certain line
which intersects c in Y , say. Since
it is a projective correlation, we
have X ⊼Y .

When X is A, Y is B;

When X is B, Y is A.

Thus the projectivity X ⊼Y interchanges A and B , and is an
involution. Since the correlation transforms Pc into CCp, the
involution includes PcCp, as one of its pairs. Hence, the correlation
transforms Cp into CPc , which is CP . Similarly, it transforms Ap into
AP , and Bp into BP . Therefore, it transforms p =ApBp into
AP ·BP =P , as required.
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Polarities The Use of a Self-Polar Triangle

The Construction of the Polar

We proved that the correlation ABCP → abcp is a polarity.

An appropriate symbol, analogous to the symbol (AB)(PQ) for an
involution, is (ABC )(Pp).

Thus any triangle ABC , any point P not on a side, and any line p not
through a vertex, determine a definite polarity (ABC )(Pp), in which
the polar x of an arbitrary point X can be constructed by incidences.

This construction could be carried out
by adapting the notation of the figure:
Xa = a ·AX , Xb = b ·BX , Ax = a · x ,
Bx = b ·x . Then Ax is the mate of Xa

in the involution (BC )(PaAp), Bx is
the mate of Xb in (CA)(PbBp), and x

is AxBx .
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Polarities The Use of a Self-Polar Triangle

Involution Determined by Quadrangles

Theorem

In a polarity (ABC )(Pp), where P is not on p, the involution of conjugate
points on p is the involution determined on p by the quadrangle ABCP .

Consider a polarity (ABC )(Pp), in
which P does not lie on p. The
polars of the points Ap = a · p,
Bp = b ·p, Cp = c ·p, are AP , BP ,
CP . So the pairs of opposite sides
of the quadrangle ABCP meet the
line p in pairs of conjugate points.
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Subsection 3

Polar Triangles
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Polarities Polar Triangles

Chasles’s Theorem

From any given triangle we can derive a polar triangle by taking the
polars of the three vertices, or the poles of the three sides.

Chasles’s Theorem

If the polars of the vertices of a triangle do not coincide with the
respectively opposite sides, they meet these sides in three collinear points.

Let PQR be a triangle whose sides QR ,
RP , PQ meet the polars p, q, r of its
vertices in points P1, Q1, R1. The polar
of R1 =PQ · r is r1 = (p ·q)R . Define the
extra points P ′ =PQ ·q, R ′ =QR ·q, and
the polar p′ = (p ·q)Q of the former.

By a previous theorem, R1PP
′Q ⊼PR1QP

′⊼pr1qp
′⊼P1RR

′Q . Since Q

is invariant, R1PP
′[P1RR

′. The center of the perspectivity, namely
PR ·P ′R ′ =Q1, must lie on the line R1P1. So P1,Q1,R1 are collinear.
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Polarities Polar Triangles

The Exceptional Cases

This proof breaks down if P1 or Q lies on q.

In the former case, P1(=R ′) and R1(=P ′) are collinear with Q1.
In the latter (when Q lies on q) we can permute the names of P , Q, R
(and correspondingly p, q, r), or call the first triangle pqr and the
second PQR , in such a way that the new Q and q are not incident. It
is evidently impossible for each triangle to be inscribed in the other.
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Subsection 4

A Construction for the Polar of a Point
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Polarities A Construction for the Polar of a Point

Construction for the Polar of a Point

Theorem

The polar of a point X (not on AP , BP , or p) in the polarity (ABC )(Pp)
is the line X1X2 determined by

A1 = a ·PX , P1 = p ·AX , X1 =AP ·A1P1,

B2 = b ·PX , P2 = p ·BX , X2 =BP ·B2P2.

Applying Chasles’ Theorem to
the triangle PAX , we deduce
that its sides AX , XP , PA meet
the polars p, a, x of its vertices
in three collinear points, the first
two of which are P1, and A1.

Hence x must meet PA in a point lying on P1A1, namely, in the point
PA ·P1A1 =X1. That is, x passes through X1. Similarly, (by using
triangle PBX instead of PAX ), x passes through X2.
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Polarities A Construction for the Polar of a Point

Construction of the Polar: Special Case 1

The construction fails when X lies on AP .

Then A1P1 coincides with AP , and X1, is no longer properly defined.

However, since X2 can still be constructed as above, the polar of X is
now ApX2 (where Ap = a ·p).

Similarly, when X is on BP , its polar is X1Bp.
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Polarities A Construction for the Polar of a Point

Construction for the Polar: Special Case 2

Finally, to locate the polar of a point X on p, we can apply the dual of
the above construction to locate the pole Y of a line y through X .

This y may be any line through X except p or PX .

It is convenient to choose y =AX or, if this happens to coincide with
PX , to choose y =BX .

Then the desired polar is x =PY .
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Subsection 5

The Use of a Self-Polar Pentagon
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Polarities The Use of a Self-Polar Pentagon

Self-Polar Pentagons

Instead of describing a polarity as
(ABC )(Pp), we can equally well
describe it in terms of a self-

polar pentagon, i.e., a pentagon
in which each of the five vertices
is the pole of the “opposite” side.
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Polarities The Use of a Self-Polar Pentagon

The Use of a Self-Polar Pentagon

Theorem (von Staudt)

The projective correlation that transforms four vertices of a pentagon into
the respectively opposite sides is a polarity and transforms the remaining
vertex into the remaining side.

The correlation that transforms vertices
Q ,R ,S ,T of PQRST into the four sides
q = ST , r = TP , s = PQ, t = QR also
transforms the three sides t =QR , p =RS ,
q = ST into the three vertices T = q · r ,
P = r · s, Q = s · t, and the “diagonal point”
A= q · t into the “diagonal line” a=QT .
Thus, it transforms each vertex of the triangle AQT into the opposite
side. By the triangle Theorem, this is a polarity, namely (since it
transforms p into P), the polarity (AQT )(Pp).
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Subsection 6

A Self-Conjugate Quadrilateral
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Polarities A Self-Conjugate Quadrilateral

Hesse’s Theorem

Hesse’s Theorem

If two pairs of opposite vertices of a complete quadrilateral are pairs of
conjugate points (in a given polarity), then the third pair of opposite
vertices is likewise a pair of conjugate points.

Let PQRP1Q1R1 be a quadrilateral,
with P conjugate to P1, and Q to
Q1. The polars p and q (of P and
Q) pass through P1 and Q1, respec-
tively. By Chasles’s Theorem, the po-
lar of R meets PQ in a point that
lies on P1Q1, namely in the point
PQ ·P1Q1 =R1.

Therefore, the polar of R passes through R1. That is, R is conjugate
to R1.
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Subsection 7

The Product of Two Polarities
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Polarities The Product of Two Polarities

A Homology as a Product of Two Polarities

The figure shows the homology with
center O and axis o = DF that trans-
forms P into P ′ (and consequently Q

into Q ′). Let p be any line not passing
through a vertex of the triangle ODF .
Then the given homology may be ex-
pressed as the product of two polarities
(ODF )(Pp) and (ODF )(P ′p).

It suffices to observe that the homology and the product of polarities
both transform the quadrangle ODFP into ODFP ′.
Unfortunately, this expression for a homology as the product of two
polarities cannot in any simple way be adapted to an elation. We
mention a subtler expression that applies equally well to either kind of
perspective collineation.
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Polarities The Product of Two Polarities

A Collineation as a Product of Two Polarities

The figure shows the homology or ela-
tion with center O and axis o = CP

that transforms A into another point
A′ on the line c = OA. Here C and
P are arbitrary points on the axis o

(passing through O if the collineation
is an elation). Let p be any line
through O, meeting b =CA in Q and
b′ = CA′ in Q ′. Let B be any point
on c .
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Polarities The Product of Two Polarities

A Collineation as a Product of Two Polarities (Cont’d)

Claim: The given perspective collineation is the product of the
polarities (ABC )(Pp), (A′BC )(Pp).

In fact, the first polarity transforms
the four points A, P , O = c ·p, Q =

b ·p into the four lines BC , p, CP ,
BP ; and the second transforms these
lines into the four points A′, P , c ·p =

O, b′ · p = Q ′. Thus, their prod-
uct transforms the quadrangle APOQ

into A′POQ ′. By a preceding result,
this product is the same as the given
perspective collineation.

George Voutsadakis (LSSU) Projective Geometry August 2020 29 / 34



Polarities The Product of Two Polarities

Projective Collineations as Products of Polarities

Theorem

Any projective collineation is expressible as the product of two polarities.

By the preceding remarks, this is certainly true if the given collineation
is perspective. We look at nonperspective collineations.

Let A be a noninvariant point,
and ℓ a noninvariant line through
A. Suppose the given collineation
transforms A into A′, A′ into A′′, ℓ
into ℓ

′, ℓ′ into ℓ
′′, and ℓ

′′ into ℓ
′′′.

Since the collineation is not perspective, we may choose A and ℓ, so
that AA′ is not an invariant line and ℓ ·ℓ′ is not an invariant point. So
A′′ does not lie on ℓ, nor A′ on any of the three lines ℓ,ℓ

′′, ℓ′′′.
Consequently, A does not lie on ℓ

′ nor on ℓ
′′.
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Polarities The Product of Two Polarities

Projective Collineations as Products of Polarities (Cont’d)

Let ℓ
′′ meet ℓ in B , ℓ′ in C . The polarity (AA′′B)(A′

ℓ
′) transforms

the four points A,A′
,B ,C = ℓ

′ ·ℓ′′ into the four lines A′′B = ℓ
′′ =A′′C ,

ℓ
′ =CA′, A′′A, A′A. The polarity (A′A′′C )(Aℓ′′′) transforms these

lines into the four points A′, A′′, ℓ′ ·ℓ′′′ =B ′, ℓ′′ ·ℓ′′′ =C ′. Hence, their
product is the same as the given collineation.

Corollary

In any projective collineation, the invariant points and invariant lines form a
self-dual figure.
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Subsection 8

The Self-Polarity of the Desargues Configuration
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Polarities The Self-Polarity of the Desargues Configuration

The Self-Polarity of the Desargues Configuration

The Desargues configuration 103

can be regarded as a pair of mu-
tually inscribed pentagons, such
as FDROP ′ and EPQQ ′R ′. Any
pentagon determines a polarity for
which each vertex is the pole of the
opposite side.

Consider the polarity for which FDROP ′ is such a self-polar pentagon,
having sides f =RO, d =OP ′, r =P ′F , o = FD, p′ =DR . Since d

passes through A, and f through C , the involution of pairs of
conjugate points on o is (AD)(CF ). The quadrangle OPQR yields the
quadrangular relation (AD)(BE )(CF ). This indicates that e (the polar
of E ) is OB .
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Polarities The Self-Polarity of the Desargues Configuration

The Self-Polarity of the Desargues Configuration (Cont’d)

Since Q ′ is r ·e, q′ is RE ; since P is d ·q′, p is DQ ′; since R ′ is f ·p, r ′

is FP ; and since Q is p′ · r ′, q is P ′R ′. Thus EPQQ ′R ′ is another
self-polar pentagon. Also the perspective triangles PQR and P ′Q ′R ′

are polar triangles. We obtain:

Theorem

There is a unique polarity for which Gij is the pole of gij .

George Voutsadakis (LSSU) Projective Geometry August 2020 34 / 34


	Polarities
	Conjugate Points and Conjugate Lines
	The Use of a Self-Polar Triangle
	Polar Triangles
	A Construction for the Polar of a Point
	The Use of a Self-Polar Pentagon
	A Self-Conjugate Quadrilateral
	The Product of Two Polarities
	The Self-Polarity of the Desargues Configuration


