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Subsection 1

The Quantum Mechanics of Photon Polarization
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An Experiment

Shine a beam of light on a projection screen.

Suppose polaroid A is placed between the light source and the screen.

Then the intensity of the light reaching the screen is reduced.

Suppose that the polarization of polaroid A is horizontal
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An Experiment (Cont’d)

Next, place polaroid C between polaroid A and the projection screen.

Suppose polaroid C is rotated so that its polarization is orthogonal
(vertical) to the polarization of A.

Then no light reaches the screen.
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An Experiment (Cont’d)

Place polaroid B between polaroids A and C .

One might expect that adding another polaroid will not make any
difference.

The presumption may be that if no light got through two polaroids,
then surely no light will pass through three!

Surprisingly, at most polarization angles of B , light shines on the
screen.

George Voutsadakis (LSSU) Quantum Computing July 2024 6 / 82



Single-Qubit Quantum Systems The Quantum Mechanics of Photon Polarization

An Experiment (Cont’d)

The intensity of the light will be maximal if the polarization of B is at
45 degrees to both A and C .

Clearly the polaroids cannot be acting as simple sieves.

George Voutsadakis (LSSU) Quantum Computing July 2024 7 / 82



Single-Qubit Quantum Systems The Quantum Mechanics of Photon Polarization

Light: Waves and Quanta

For a bright beam of light, there is a classical explanation of the
experiment in terms of waves.

Versions of the experiment described here, using light so dim that
only one photon at a time interacts with the polaroid, have been done
with more sophisticated equipment.

The results of these single photon experiments can be explained only
using quantum mechanics.

The classical wave explanation no longer works.
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Quantum Mechanical Explanation

The quantum mechanical explanation of the experiment consists of
two parts.

A model of a photon’s polarization state;
A model of the interaction between a polaroid and a photon.

The description of this experiment, and the definition of a qubit, use
basic notions of linear algebra such as vector, basis, orthonormal and
linear combination.
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Photon’s Polarization State (Vectors)

Quantum mechanics models a photon’s polarization state by a unit
vector, a vector of length 1, pointing in the appropriate direction.

We write ∣↑⟩ for the unit vector that represents vertical polarization.

We write ∣→⟩ for the unit vectors that represents horizontal
polarization.

Think of ∣v⟩ as a vector with some arbitrary label v .

In quantum mechanics, the standard notation for a vector
representing a quantum state is ∣v⟩, just as Ð→v or v are notations used
for vectors in other settings.

This notation is part of a more general notation, Dirac’s notation,
explained in more detail later.
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Photon’s Polarization State (Linear Combinations)

An arbitrary polarization can be expressed as a linear combination

∣v⟩ = a∣↑⟩ + b∣→⟩
of the two basis vectors ∣↑⟩ and ∣→⟩.
For example,

∣↗⟩ = 1√
2
∣↑⟩ + 1√

2
∣→⟩

is a unit vector representing polarization of 45 degrees.
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Amplitudes and Superposition

The coefficients a and b in

∣v⟩ = a∣↑⟩ + b∣→⟩
are called the amplitudes of ∣v⟩ in the di-
rections ∣↑⟩ and ∣→⟩, respectively.

When a and b are both non-zero,

∣v⟩ = a∣↑⟩ + b∣→⟩
is said to be a superposition of ∣↑⟩ and ∣→⟩.
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Interaction Between a Photon and a Polaroid

The polaroid has a preferred axis, its polarization.

Suppose a photon has polarization ∣v⟩ = a∣↑⟩ + b∣→⟩.
When it meets a polaroid with preferred axis ∣ ↑⟩, the photon:

Will get through with probability ∣a∣2;
Will be absorbed with probability ∣b∣2.

In words:

The probability that a photon passes through the polaroid is the square
of the magnitude of the amplitude of its polarization in the direction of
the polaroid’s preferred axis.
The probability that the photon is absorbed by the polaroid is the
square of the magnitude of the amplitude in the direction perpendicular
to the polaroid’s preferred axis.

Furthermore, any photon that passes through the polaroid will now be
polarized in the direction of the polaroid’s preferred axis.
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Remark

The preceding features of the interaction hold more generally.

In all interactions between qubits and measuring devices, no matter
what their physical realization:

The nature of the interaction is probabilistic;
There is a resulting change of state in the observed qubit.
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Explanation of the Photon Experiment (Polaroids A and C )

In the experiment, any photons that pass through polaroid A will
leave polarized in the direction of polaroid A’s preferred axis, in this
case horizontal, ∣→⟩.
A horizontally polarized photon has no amplitude in the vertical
direction, so it has no chance of passing through polaroid C , which
was given a vertical orientation.

For this reason, no light reaches the screen.

Had polaroid C been in any other orientation, a horizontally polarized
photon would have some amplitude in the direction of polaroid C ’s
preferred axis, and some photons would reach the screen.
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Explanation of the Experiment (Insertion of Polaroid B)

Suppose polaroid B has preferred axis ∣↗⟩.
Write the horizontally polarized photon’s polarization state ∣→⟩ as

∣→⟩ = 1√
2
∣↗⟩ − 1√

2
∣↖⟩.

Any photon that passes through polaroid A becomes horizontally
polarized.

So the amplitude of any such photon’s state ∣→⟩ in the direction ∣↗⟩
is 1√

2
.

A horizontally polarized photon will pass through polaroid B with
probability 1

2 = ∣ 1√2
∣2.
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Explanation of the Experiment (Cont’d)

A horizontally polarized photon will pass through polaroid B with
probability 1

2 = ∣ 1√2
∣2.

Any photons that have passed through polaroid B now have
polarization ∣ ↗⟩.
When these photons hit polaroid C , they do have amplitude in the
vertical direction.

So some of them (half) will pass through polaroid C and hit the
screen.

In this way, quantum mechanics explains how more light can reach
the screen when the third polaroid is added.

Moreover, it provides a means to compute how much light will reach
the screen.
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Subsection 2

Single Quantum Bits

George Voutsadakis (LSSU) Quantum Computing July 2024 18 / 82



Single-Qubit Quantum Systems Single Quantum Bits

Qubits

The space of possible polarization states of a photon is an example of
a quantum bit, or qubit.

Any state represented by a unit vector

a∣↑⟩ + b∣→⟩
is a legitimate qubit value.

So a qubit has a continuum of possible values.

The amplitudes a and b can be complex numbers, even though
complex amplitudes were not needed for the explanation of the
experiment.
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State Space

In general, the set of all possible states of a physical system is called
the state space of the system.

Any quantum mechanical system that can be modeled by a
two-dimensional complex vector space can be viewed as a qubit.

There is redundancy in this representation.

Any vector multiplied by a modulus one [unit length] complex number
represents the same quantum state.

This redundancy is discussed carefully later.
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Two-State Quantum Systems

Qubits are also called two-state quantum systems.

They include:

Photon polarization;
Electron spin;
The ground state together with an excited state of an atom.

The two-state label for these systems does not mean that the state
space has only two states - it has infinitely many.

It rather means that all possible states can be represented as a linear
combination, or superposition, of just two states.
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Remarks

For a two-dimensional complex vector space to be viewed as a qubit,
two linearly independent states, labeled ∣0⟩ and ∣1⟩, must be
distinguished.

For the theory of quantum information processing, all two-state
systems, whether they be electron spin or energy levels of an atom,
are equally good.

From a practical point of view, it is as yet unclear which two-state
systems will be most suitable for physical realizations of quantum
information processing devices such as quantum computers.
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Dirac’s Bra/ket Notation

Dirac’s bra/ket notation is used throughout quantum physics to
represent quantum states and their transformations.

We introduce the part of Dirac’s notation used for quantum states.

We defer Dirac’s notation for quantum transformations for later.

Familiarity and fluency with this notation will help greatly in
understanding all subsequent material.

In Dirac’s notation, a ket such as ∣x⟩, where x is an arbitrary label,
refers to a vector representing a state of a quantum system.

A vector ∣v⟩ is a linear combination of vectors ∣s1⟩, ∣s2⟩, . . . , ∣sn⟩ if
there exist complex numbers ai , such that

∣v⟩ = a1∣s1⟩ + a2∣s2⟩ +⋯+ an∣sn⟩.
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Span

A set of vectors S generates a complex vector space V if every
element ∣v⟩ of V can be written as a complex linear combination of
vectors in the set.

That is, every ∣v⟩ ∈ V can be written as

∣v⟩ = a1∣s1⟩ + a2∣s2⟩ +⋯+ an∣sn⟩,
for some elements ∣si ⟩ ∈ S and complex numbers ai .

Given a set of vectors S , the subspace of all linear combinations of
vectors in S is called the span of S and denoted span(S).
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Basis

A set of vectors B for which every element of V can be written
uniquely as a linear combination of vectors in B is called a basis for
V .

In a two-dimensional vector space, any two vectors that are not
multiples of each other form a basis.

In quantum mechanics, bases are usually required to be orthonormal,
(to be explained shortly).

The two distinguished states, ∣0⟩ and ∣1⟩ are required to be
orthonormal.

George Voutsadakis (LSSU) Quantum Computing July 2024 25 / 82



Single-Qubit Quantum Systems Single Quantum Bits

Inner Product

Suppose z denotes the complex conjugate

z = a − ib

of a complex number z = a + ib.

An inner product, or dot product,

⟨v2∣v1⟩
on a complex vector space V is a complex function defined on pairs
of vectors ∣v1⟩ and ∣v2⟩ in V , satisfying:

⟨v ∣v⟩ is non-negative real;

⟨v2∣v1⟩ = ⟨v1∣v2⟩;
(a⟨v2∣ + b⟨v3∣)∣v1⟩ = a⟨v2∣v1⟩ + b⟨v3∣v1⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 26 / 82



Single-Qubit Quantum Systems Single Quantum Bits

Orthogonality and Norm

Two vectors ∣v1⟩ and ∣v2⟩ are said to be orthogonal if

⟨v1∣v2⟩ = 0.
A set of vectors is orthogonal if all of its members are orthogonal to
each other.

The length, or norm, of a vector ∣v⟩ is
∣∣v⟩∣ =√⟨v ∣v⟩.

Since all vectors ∣x⟩ representing quantum states are of unit length,

⟨x ∣x⟩ = 1, for any state vector ∣x⟩.
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Orthonormality

A set of vectors is said to be orthonormal if all of its elements are of
length one and orthogonal to each other.

That is, a set of vectors

B = {∣β1⟩, ∣β2⟩, . . . , ∣βn⟩}
is orthonormal if, for all i , j ,

⟨βi ∣βj⟩ = δij = { 1, if i = j ,
0, otherwise.

In quantum mechanics we are mainly concerned with bases that are
orthonormal.

So, whenever we say basis, we mean orthonormal basis, unless stated
otherwise.
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Qubit Representation

For the state space of a two-state system to represent a quantum bit,
two orthonormal states, labeled ∣0⟩ and ∣1⟩, must be specified.

Apart from the requirement that ∣0⟩ and ∣1⟩ be orthonormal, the
states may be chosen arbitrarily.

In the case of photon polarization, we may choose ∣0⟩ and ∣1⟩ to
correspond to the states ∣↑⟩ and ∣→⟩, or to ∣↗⟩ and ∣↖⟩.
We follow the convention that

∣0⟩ = ∣↑⟩ and ∣1⟩ = ∣→⟩.
This choice implies that

∣↗⟩ = 1√
2
(∣0⟩ + ∣1⟩) and ∣↖⟩ = 1√

2
(∣0⟩ − ∣1⟩).
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Standard Basis

When talking about qubits, a standard basis

{∣0⟩, ∣1⟩}
with respect to which all statements are made must be chosen in
advance and remain fixed throughout the discussion.

In quantum information processing, classical bit values of 0 and 1 will
be encoded in the distinguished states ∣0⟩ and ∣1⟩.
This encoding enables a direct comparison between bits and qubits.

Bits can take only two values, 0 and 1;
Qubits can take not only the values ∣0⟩ and ∣1⟩ but also any
superposition of these values,

a∣0⟩ + b∣1⟩,
where a and b are complex numbers, such that ∣a∣2 + ∣b∣2 = 1.
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Vector Representation in Bra/ket Notation

Vectors and linear transformations can be written using matrix
notation once a basis has been specified.

If basis {∣β1⟩, ∣β2⟩} is specified, a ket

∣v⟩ = a∣β1⟩ + b∣β2⟩
can be written

⎛
⎜
⎝
a

b

⎞
⎟
⎠
.

A ket ∣v⟩ corresponds to a column vector v , where v is simply a label,
a name for this vector.
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Vector Representation in Bra/ket Notation (Cont’d)

The conjugate transpose v † of a vector v =
⎛
⎜⎜⎜⎜
⎝

a1
⋮
an

⎞
⎟⎟⎟⎟
⎠
is

v † = (a1, . . . ,an).
In Dirac’s notation, the conjugate transpose of a ket ∣v⟩ is called a
bra and is written ⟨v ∣.
So

∣v⟩ = ⎛⎜⎜⎜⎜
⎝

a1
⋮
an

⎞
⎟⎟⎟⎟
⎠

and ⟨v ∣ = (a1, . . . ,an).
A bra ⟨v ∣ corresponds to a row vector v †.
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Inner Product Representation

Let ∣a⟩ = ⎛⎜⎜⎜⎜
⎝

a1
⋮
an

⎞
⎟⎟⎟⎟
⎠
and ∣b⟩ = ⎛⎜⎜⎜⎜

⎝

b1
⋮
bn

⎞
⎟⎟⎟⎟
⎠
be two complex vectors.

The standard inner product ⟨a∣b⟩ is defined to be the scalar obtained
by multiplying the conjugate transpose ⟨a∣ = (a1, . . . ,an) with ∣b⟩,

⟨a∣b⟩ = ⟨a∣∣b⟩ = (a1, . . . ,an)⎛⎜⎝
b1
⋮
bn

⎞⎟⎠ =
n

∑
i=1

aibi .

When a⃗ = ∣a⟩ and b⃗ = ∣b⟩ are real vectors, this inner product is the
same as the standard dot product on the n dimensional real vector
space R

n, ⟨a∣b⟩ = a1b1 +⋯+ anbn = a⃗ ⋅ b⃗.
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Inner Product Representation and Bra/ket

Dirac’s choice of bra and ket arose as a play on words.

An inner product ⟨a∣b⟩ of a bra ⟨a∣ and a ket ∣b⟩ is sometimes called a
bracket.

The following relations hold, where v = a∣0⟩ + b∣1⟩.
⟨0∣0⟩ = 1;
⟨1∣1⟩ = 1;
⟨1∣0⟩ = ⟨0∣1⟩ = 0;
⟨0∣v⟩ = a, and ⟨1∣v⟩ = b.
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The Standard Basis

In the standard basis, with ordering {∣0⟩, ∣1⟩}, the basis elements ∣0⟩
and ∣1⟩ can be expressed as ( 1

0
) and ( 0

1
).

A complex linear combination ∣v⟩ = a∣0⟩ + b∣1⟩ can be written ( a

b
).

This choice of basis and order of the basis vectors are by convention.

Representing ∣0⟩ as ( 1
0
) and ∣1⟩ as ( 0

1
) or representing ∣0⟩ as

1√
2
( 1
−1
) and ∣1⟩ as 1√

2
( 1

1
) would be equally good as long as it is

done consistently.

Unless otherwise specified, all vectors and matrices in these notes will
be written with respect to the standard basis {∣0⟩, ∣1⟩} in this order.
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Superposition

A quantum state ∣v⟩ is a superposition of basis elements {∣β1⟩, ∣β2⟩}
if it is a nontrivial linear combination of ∣β1⟩ and ∣β2⟩.
That is, if ∣v⟩ = a1∣β1⟩ + a2∣β2⟩,
where a1 and a2 are non-zero.

For the term superposition to be meaningful, a basis must be
specified.

If we say “superposition” without explicitly specifying the basis, we
implicitly mean with respect to the standard basis.
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Vector versus Bra/ket Notation

Initially the vector/matrix notation may appear easier to use because
it is familiar.

Sometimes matrix notation is convenient for performing calculations.

It always requires the choice of a basis and an ordering of that basis.

The bra/ket notation has the advantage of being independent of basis
and the order of the basis elements.

It is also more compact and suggests correct relationships, as we saw
for the inner product.

So once it becomes familiar, bra/ket notation is easier to read and
faster to use.
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Qudits

Instead of qubits, physical systems with states modeled by three- or
n-dimensional vector spaces could be used as fundamental units of
computation.

Three-valued units are called qutrits.

n-valued units are called qudits.

Qudits can be modeled using multiple qubits.

So a model of quantum information based on qudits has the same
computational power as one based on qubits.

For this reason we do not consider qudits further, just as in the
classical case most people use a bit-based model of information.
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Subsection 3

Single-Qubit Measurement
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Measurement

Quantum theory postulates that any device that measures a two-state
quantum system must have two preferred states whose representative
vectors, {∣u⟩, ∣u⊥⟩},
form an orthonormal basis for the associated vector space.

Measurement of a state transforms the state into one of the
measuring device’s associated basis vectors ∣u⟩ or ∣u⊥⟩.
The probability that the state is measured as basis vector ∣u⟩ is the
square of the magnitude of the amplitude of the component of the
state in the direction of the basis vector ∣u⟩.
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Example

Consider a device for measuring the polarization of photons with
associated basis {∣u⟩, ∣u⊥⟩}.
Consider the state ∣v⟩ = a∣u⟩ + b∣u⊥⟩.
∣v⟩ is measured as:

∣u⟩ with probability ∣a∣2;
∣u⊥⟩ with probability ∣b∣2.
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Device Bases

If quantum mechanics is correct:

All devices that measure single qubits must have associated bases;
The measurement outcome is always one of the two basis vectors.

For this reason, whenever anyone says “measure a qubit”, they must
specify with respect to which basis the measurement takes place.

When we say “measure a qubit” without further elaboration, we mean
that the measurement is with respect to the standard basis

{∣0⟩, ∣1⟩}.
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Quantum Measurements Change the State

Measurement of a quantum state changes the state.

If a state ∣v⟩ = a∣u⟩ + b∣u⊥⟩
is measured as ∣u⟩, then the state ∣v⟩ changes to ∣u⟩.
A second measurement with respect to the same basis will return ∣u⟩
with probability 1.

Thus, unless the original state happens to be one of the basis states,
a single measurement will change that state, making it impossible to
determine the original state from any sequence of measurements.
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Superposition and Basis Dependence

The notion of superposition is basis-dependent.

All states are superpositions with respect to some bases and not with
respect to others.

Example: Consider the state

a∣0⟩ + b∣1⟩.
It is a superposition with respect to the basis {∣0⟩, ∣1⟩}.
It is not a superposition with respect to {a∣0⟩ + b∣1⟩,b∣0⟩ − a∣1⟩}.
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Meaning of Superposition

The result of measuring a superposition is probabilistic.

However, the state ∣v⟩ = a∣0⟩+ b∣1⟩ is not a probabilistic mixture of ∣0⟩
and ∣1⟩.
In particular, it is not true that the state is really either ∣0⟩ or ∣1⟩ and
that we simply do not happen to know which.

Rather, ∣v⟩ is a definite state, which, when measured in certain bases,
gives deterministic results, while in others it gives random results.
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Example

Consider a photon with polarization

∣ ↗⟩ = 1√
2
(∣ ↑⟩ + ∣ →⟩).

It behaves deterministically when measured with respect to the
Hadamard basis {∣ ↗⟩, ∣ ↖⟩}.
It gives random results when measured with respect to the standard
basis {∣ ↑⟩, ∣ →⟩}.
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Meaning of Superposition (Cont’d)

It is okay to think of a superposition ∣v⟩ = a∣0⟩ + b∣1⟩ as in some sense
being in both state ∣0⟩ and state ∣1⟩ at the same time.

However, that statement should not be taken too literally.

Consider states that are combinations of ∣0⟩ and ∣1⟩ in similar
proportions but with different amplitudes.

E.g., consider

1√
2
(∣0⟩ + ∣1⟩), 1√

2
(∣0⟩ − ∣1⟩), 1√

2
(∣0⟩ + i ∣1⟩).

These represent distinct states that behave differently in many
situations.
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Extracting Information from a Qubit

Qubits can take on any one of infinitely many states.

Consequently, one might hope that a single qubit could store lots of
classical information.

However, the properties of quantum measurement severely restrict the
amount of information that can be extracted from a qubit.

1. Information about a quantum bit can be obtained only by
measurement.
Any measurement results in one of only two states, namely, the two
basis states associated with the measuring device.
Thus, a single measurement yields at most a single classical bit of
information.
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Extracting Information from a Qubit

2. Measurement changes the state.
So one cannot make two measurements on the original state of a qubit.

3. An unknown quantum state cannot be cloned.
So it is not possible to measure a qubit’s state in two ways, even
indirectly by copying the qubit’s state and measuring the copy.

In summary:

A quantum bit can be in infinitely many different superposition states.
However, it is possible to extract only a single classical bit’s worth of
information from a single quantum bit.
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Subsection 4

A Quantum Key Distribution Protocol
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Keys

Keys provide the security for most cryptographic protocols.

Keys are binary strings or numbers chosen randomly from a
sufficiently large set.

Two general classes of keys exist.

Symmetric keys;
Public-private key pairs.

Public-private key pairs consist of:

A public key, knowable by all;
A corresponding private key whose secrecy must be carefully guarded
by the owner.

Symmetric keys consist of a single key (or a pair of keys easily
computable from one another) that are known to all of the legitimate
parties and no one else.

In the symmetric key case, multiple parties are responsible for
guarding the security of the key.
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Quantum Key Distribution Protocols

Quantum key distribution protocols establish a symmetric key
between two parties.

The parties are generally known in cryptography as Alice and Bob.

Quantum key distribution protocols can be used securely anywhere
classical key agreement protocols can be used.

The security of quantum key distribution rests on fundamental
properties of quantum mechanics.

On the other hand, classical key agreement protocols rely on the
computational intractability of a certain problem.
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Example

An example showcasing the difference is the Diffie-Hellman classical
key agreement protocol.

It remains secure against all known classical attacks.

However, the problem on which it is based, the discrete logarithm
problem, is tractable on a quantum computer.
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Introducing the BB84 Protocol

The earliest quantum key distribution protocol is known as BB84 after
its inventors (Charles Bennett and Gilles Brassard), and the year.

The aim of the BB84 protocol is to establish a secret key, a random
sequence of bit values 0 and 1, known only to the two parties.

The parties may use this key to support a cryptographic task such as
exchanging secret messages or detecting tampering.

The BB84 protocol enables Alice and Bob to be sure that, if they
detect no problems while attempting to establish a key, then with
high probability it is secret.

The protocol does not guarantee, however, that they will succeed in
establishing a private key.
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The Communication Setup

Suppose Alice and Bob are connected by two public channels.
An ordinary bidirectional classical channel;
A unidirectional quantum channel.

The quantum channel allows Alice to send a sequence of single qubits
to Bob.

Suppose the qubits are encoded in the polarization states of individual
photons.

Both channels can be observed by an eavesdropper Eve.
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Alice’s Quantum Message to Bob

Alice and Bob aim at establishing a private key.

Alice uses quantum or classical means to generate a random sequence
of classical bit values.

A random subset of this sequence will be the final private key.

Alice then randomly encodes each bit of this sequence in the
polarization state of a photon by randomly choosing for each bit one
of the following two agreed-upon bases in which to encode it.

The standard basis,
0↦ ∣↑⟩, 1↦ ∣→⟩;

The Hadamard basis,

0↦ ∣↗⟩ = 1√
2
(∣↑⟩ + ∣→⟩), 1↦ ∣↖⟩ = 1√

2
(∣↑⟩ − ∣→⟩).

She sends this sequence of photons to Bob through the quantum
channel.
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Bob and Alice Communication

Bob measures the state of each photon he receives by randomly
picking either basis.

Over the classical channel, Alice and Bob check that Bob has received
a photon for every one Alice has sent.

Only then do Alice and Bob tell each other the bases they used for
encoding and decoding (measuring) each bit.

When the choice of bases agree, Bob’s measured bit value agrees with
the bit value that Alice sent.
When they chose different bases, the chance that Bob’s bit matches
Alice’s is only 50 percent.
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Bob and Alice Communication (Cont’d)

Without revealing the bit values themselves, which would also reveal
the values to Eve, there is no way for Alice and Bob to figure out
which of these bit values agree and which do not.

So they discard all the bits on which their choice of bases differed.

An average of 50 percent of all bits transmitted remain.

Then, depending on the level of assurance they require, Alice and Bob
compare a certain number of bit values to check that no
eavesdropping has occurred.

These bits will also be discarded, and only the remaining bits will be
used as their private key.
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Eve’s Possible Attack

We describe one sort of attack that Eve can make.

We see how quantum aspects of the protocol guard against it.

On the classical channel, Alice and Bob discuss only the choice of
bases and not the bit values themselves.

So Eve cannot gain any information about the key from listening to
the classical channel alone.

To gain information, Eve must intercept the photons transmitted by
Alice through the quantum channel.

Eve must send photons to Bob before knowing the choice of bases
made by Alice and Bob, because they compare bases only after Bob
has confirmed receipt of the photons.

If she sends different photons to Bob, Alice and Bob will detect that
something is wrong when they compare bit values.

If she sends the original photons to Bob without doing anything, she
gains no information.
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Means of Eve’s Intervention

To gain information, Eve makes a measurement before sending the
photons to Bob.

Instead of using a polaroid to measure, she can use a calcite crystal
and a photon detector.

A beam of light passing through a calcite crystal is split into two
spatially separated beams.

One polarized in the direction of the crystal’s optic axis;

The other polarized in the direction perpendicular to the optic axis.

A photon detector placed in one of the beams performs a quantum
measurement.
The probability with which a photon ends up in one of the beams can
be calculated as described previously.
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Problems with Eve’s Intervention

Alice has not yet told Bob her sequence of bases.

So Eve does not know in which basis to measure each bit.

If she randomly measures the bits, she will measure using the wrong
basis approximately half of the time.

When she uses the wrong basis to measure, the measurement changes
the polarization of the photon before it is resent to Bob.

As a consequence, even if Bob measures the photon in the same basis
as Alice used to encode the bit, he will get the correct bit value only
half the time.
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Alice and Bob’s Security Assurance

Overall, for each of the qubits Alice and Bob retain, if the qubit was
measured by Eve before she sent it to Bob, there will be a 25 percent
chance that Bob measures a different bit value than the one Alice
sent.

Thus, this attack on the quantum channel is bound to introduce a
high error rate that Alice and Bob detect by comparing a sufficient
number of bits over the classical channel.

If these bits agree, they can confidently use the remaining bits as
their private key.
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Alice and Bob’s Security Assurance (Cont’d)

Summarizing the outcomes of the attack:

It is likely that 25 percent of Eve’s version of the key is incorrect;
The fact that someone is eavesdropping can be detected by Alice and
Bob.

So Alice and Bob run little risk of establishing a compromised key.

Either they succeed in creating a private key or they detect that
eavesdropping has taken place.

George Voutsadakis (LSSU) Quantum Computing July 2024 63 / 82



Single-Qubit Quantum Systems A Quantum Key Distribution Protocol

Impossibility of Copying with Unknown Basis

Eve does not know in which basis to measure the qubits.

This property is crucial to the security of this protocol.

It is ensured as Alice and Bob share information about which bases
they used only after Bob has received the photons.

If Eve knew in which basis to measure the photons, her measurements
would not change the state.

So she could obtain the bit values without Bob and Alice noticing
anything suspicious.
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No-Cloning Principle

What if Eve could overcome this obstacle by copying the qubit,
keeping a copy for herself while sending the original on to Bob?

Then she can measure her copy later after learning the correct basis
from listening in on the classical channel.

Such a protocol is defeated by an important property of quantum
information.

The No-Cloning Principle of quantum mechanics means that it is
impossible to reliably copy quantum information unless a basis in
which it is encoded is known.

Copying with the wrong machine not only does not produce an
accurate copy, but it also changes the original in much the same way
measuring in the wrong basis does.

So Bob and Alice would detect attempts to copy with high probability.
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Additional Precautions Needed

The security of this protocol, like other pure key distribution protocols
such as Diffie-Hellman, is vulnerable to a man-in-the-middle attack

in which Eve impersonates Bob to Alice and Alice to Bob.

To guard against such an attack, Alice and Bob need to combine it
with an authentication protocol, be it recognizing each other’s voices
or a more mathematical authentication protocol.

More sophisticated versions of this protocol exist that support
quantum key distribution through noisy channels and stronger
guarantees about the amount of information Eve can gain.
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Subsection 5

The State Space of a Single-Qubit System
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State Space for Qubits

The state space of a classical or quantum physical system is the set
of all possible states of the system.

When we are considering only polarization states of a single photon,
the state space is all possible polarizations.

The state space for a single qubit, no matter how it is realized, is the
set of possible qubit values,

{a∣0⟩ + b∣1⟩},
where ∣a∣2 + ∣b∣2 = 1.
Moreover, a∣0⟩ + b∣1⟩ and a′∣0⟩ + b′∣1⟩ are considered the same qubit
value if

a∣0⟩ + b∣1⟩ = c(a′∣0⟩ + b′∣1⟩),
for some complex number c , with ∣c ∣ = 1.
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The Global Phase

That the same quantum state is represented by more than one vector
means that there is a critical distinction between:

The complex vector space in which we write our qubit values;
The quantum state space itself.

We have reduced the ambiguity by requiring that vectors representing
quantum states be unit vectors, but some ambiguity remains.

Unit vectors equivalent up to multiplication by a complex number of
modulus one represent the same state.
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The Global Phase (Cont’d)

The multiple by which two vectors representing the same quantum
state differ is called the global phase and has no physical meaning.

We write ∣v⟩ ∼ ∣v ′⟩ to indicate that ∣v⟩ = c ∣v ′⟩, for some complex

global phase c = eiφ.
∼ is an equivalence relation.

The space in which two two-dimensional complex vectors are
considered equivalent if they are multiples of each other is called
complex projective space of dimension one.
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The Quotient Space

This quotient space, a space obtained by identifying sets of
equivalent vectors with a single point in the space, is expressed with
the compact notation used for quotient spaces:

CP1 = {a∣0⟩ + b∣1⟩}/∼.
So the quantum state space for a single-qubit system is in one-to-one
correspondence with the points of the complex projective space CP1.

We will make no further use of CP1.

However, it is used in the quantum information literature.
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Working in the Vector Space

The linearity of vector spaces makes them easier to work with than
projective spaces.

E.g., in vector spaces, we know how to add vectors, but there is no
corresponding way of adding points in projective spaces.

So we generally perform all calculations in the vector space
corresponding to the quantum state space.

The multiplicity of representations of a single quantum state in this
vector space representation, however, may cause some confusion.
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Relative Phase

A physically important quantity is the relative phase of a single-qubit
state a∣0⟩ + b∣1⟩.
The relative phase (in the standard basis) of a superposition
a∣0⟩+ b∣1⟩ is a measure of the angle in the complex plane between the
two complex numbers a and b.

More precisely, the relative phase of a∣0⟩ + b∣1⟩ is the modulus one

complex number eiφ satisfying

a

b
= ei φ ∣a∣∣b∣ .

Two superpositions a∣0⟩ + b∣1⟩ and a′∣0⟩ + b′∣1⟩ whose amplitudes
have the same magnitudes but that differ in a relative phase represent
different states.
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Relative versus Global Phase

The physically meaningful relative phase and the physically
meaningless global phase should not be confused.

While multiplication with a unit constant does not change a quantum
state vector, relative phases in a superposition do represent distinct
quantum states.

Example: Even though ∣v1⟩ ∼ eiφ∣v1⟩, the vectors

1√
2
(eiφ∣v1⟩ + ∣v2⟩) and 1√

2
(∣v1⟩ + ∣v2⟩)

do not represent the same state.

We must always be careful of the ∼ equivalence when we interpret the
results of our computations as quantum states.
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Specially Named Single-Qubit States

A few single-qubit states will be referred to often enough that we give
them special labels.

∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩),

∣−⟩ = 1√
2
(∣0⟩ − ∣1⟩),

∣i ⟩ = 1√
2
(∣0⟩ + i ∣1⟩),

∣ − i ⟩ = 1√
2
(∣0⟩ − i ∣1⟩).

The basis {∣+⟩, ∣−⟩} is referred to as the Hadamard basis.

We sometimes use the notation {∣ ↖⟩, ∣ ↗⟩} for the Hadamard basis
when discussing photon polarization.
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Geometric Model: Extended Complex Plane C ∪ {∞}

A correspondence between the set of all complex numbers and
single-qubit states is given by

a∣0⟩ + b∣1⟩ ↦ b

a
= α

Its inverse is

α ↦ 1√
1 + ∣α∣2 ∣0⟩ +

α√
1 + ∣α∣2 ∣1⟩.

The preceding mapping is not defined for the state with a = 0 and
b = 1.
To make this correspondence one-to-one we need to add a single
point, which we label ∞, to the complex plane and define ∞↔ ∣1⟩.
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Example

Consider the correspondence

a∣0⟩ + b∣1⟩ ↦ b

a
= α,

with ∞↔ ∣1⟩.
We then have ∣0⟩ ↦ 0, ∣1⟩ ↦∞,

∣+⟩ ↦ +1, ∣−⟩ ↦ −1,
∣i ⟩ ↦ i , ∣ − i ⟩ ↦ −i .
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Geometric Model: Bloch Sphere

Start with the previous representation.

Consider a state represented by the complex number α = s + i t.

The unit sphere in three real dimensions consists of the points(x , y , z) ∈ C satisfying ∣x ∣2 + ∣y ∣2 + ∣z ∣2 = 1.
We map α onto the sphere via the standard stereographic

projection,

(s, t) ↦ ( 2s

∣α∣2 + 1 ,
2t

∣α∣2 + 1 ,
1 − ∣α∣2
∣α∣2 + 1) .

Additionally, we require that ∞↦ (0,0,−1).

George Voutsadakis (LSSU) Quantum Computing July 2024 78 / 82



Single-Qubit Quantum Systems The State Space of a Single-Qubit System

Example

We picture

(s, t) ↦ ( 2s

∣α∣2 + 1 ,
2t

∣α∣2 + 1 ,
1 − ∣α∣2
∣α∣2 + 1) .

Then we have

∣0⟩ ↦ (0,0,1), ∣1⟩ ↦ (0,0,−1),
∣+⟩ ↦ (1,0,0), ∣−⟩ ↦ (−1,0,0),
∣i ⟩ ↦ (0,1,0), ∣ − i ⟩ ↦ (0,−1,0).
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Representations of the State Space

We have given three representations of the quantum state space for a
single-qubit system.

1. Vectors written in ket notation: a∣0⟩ + b∣1⟩ with complex coefficients a
and b, subject to ∣a∣2 + ∣b∣2 = 1, where a and b are unique up to a unit
complex factor.
Because of this global phase, this representation is not one-to-one.

2. Extended complex plane: A single complex number α ∈ C or ∞.
This representation is one-to-one.

3. Bloch sphere: Points (x , y , z) on the unit sphere.
This representation is also one-to-one.

For historical reasons, the entire ball, including the interior, is called
the Bloch sphere, instead of just the states on the surface, which
truly form a sphere.

For this reason, we refer to the state space of a single-qubit system as
the surface of the Bloch sphere.
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Bases in Bloch Sphere

One of the advantages of the Bloch sphere representation is that it is
easy to read off all possible bases from the model.

Orthogonal states correspond to antipodal points of the Bloch sphere.
In particular, every diameter of the Bloch sphere corresponds to a basis
for the single-qubit state space.
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Angles in Plane versus Bloch Sphere

The representations

differ in that the angles are half in the first than those in the Bloch
sphere.

The angle between two states on the plane has the usual relation to
the inner product.

In the Bloch sphere representation the angle is twice that of the angle
in the inner product formula.
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