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Multiple-Qubit Systems Quantum State Spaces

Subsection 1

Quantum State Spaces
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Multiple-Qubit Systems ~ Quantum State Spaces

Direct Sums of Vector Spaces

o Let V be a vector space, with basis A = {|aq),|a2),...,|an)}
o Let W be a vector space, with basis B = {|51),[52),-.-,|8m)}-
@ The direct sum V & W of V and W is the vector space with basis

AuB = {|a1>7 |042), ceey |Oén), |/81)7 |B2)a S |Bm)}
o Every element |x) € V@& W can be written as
x) = v) @ |w),

for some |v) € V and |w) e W.

o For V and W of dimension n and m respectively, V & W has
dimension n+ m,

dim(Ve W) =dim(V) +dim(W).
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Multiple-Qubit Systems ~ Quantum State Spaces

Direct Sums of Vector Spaces (Cont'd)

o Addition and scalar multiplication are defined by:

o Performing the operation on the two component vector spaces
separately;
o Adding the results.

@ Suppose V and W are inner product spaces.

@ Then the standard inner product on V & W is given by

({val ® (wo|)(Jv1) ® [w1)) = (va|va) + (wa|wr).

@ The vector spaces V and W embed in V @ W in the obvious
canonical way.

o The images are orthogonal under the standard inner product.
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Multiple-Qubit Systems ~ Quantum State Spaces

State Space in the Classical Case

@ Suppose that the state of each of three classical objects O;, O, and
O3 is fully described by two parameters,
o The position x;;
o The momentum p;.

@ Then the state of the system can be described by the direct sum of
the states of the individual objects:

X1
p1
X1 ® X2 o X3 _| x
p1 P2 P3 P2
X3
p3

@ The state space of n such classical objects has dimension 2n.

@ Thus the size of the state space grows linearly with the number of
objects.

George Voutsadakis (LSSU) Quantum Computing July 2024 6/59



Multiple-Qubit Systems ~ Quantum State Spaces

Tensor Product of Vector Spaces

o Let V be a vector space, with basis A = {|aq),|a2),...,|an)}.
o Let W be a vector space, with basis B = {|51),[52),-.-,|8m)}-

@ The tensor product V @ W of V and W is an nm-dimensional
vector space, with a basis consisting of the nm elements of the form

i) ® |5;)-

o Here ® is the tensor product, a binary operator that satisfies the
following relations:
o (v)+|v2)) @ |w) = |vi) ® |w) +|v2) ® [w);
o [v)® (jwi) +[w2)) =|v) ® [w1) +|v) ® |wa);
o (alv)) @ |w) = |v) ® (alw)) = a(|v) & |w)).
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Multiple-Qubit Systems ~ Quantum State Spaces

Tensor Product Representations

o Take k = min (n,m).
@ All elements of V ® W have the form

[vi) ® [wi) +[v2) ® [wa) + - + |vk) ® [wic),

for some v; € V and w; € W.

@ Due to the relations defining the tensor product, such a
representation is not unique.

@ All elements of V ® W can be written

a(len) ®[B1)) + a2(|az) ® (1)) + -+ + anm(|n) @ [Bim))-

o However, most elements of V ® W cannot be written as |v) ® |w),
where ve V and we W.
o It is common to write |v)|w) for |v) ® |w).
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Multiple-Qubit Systems ~ Quantum State Spaces

Example

o Consider two two-dimensional vector spaces,

o V/, with orthonormal basis A = {|az ), |a2)};
o W, with orthonormal basis B = {|1), |52)}-

Let |v) = a1]aq) + az|az) be an element of V.
Let |w) = b1|B1) + ba|B2) be an element of W.
Then

v)®|w) = (a1]aa) + azlaz)) ® (ba|B1) + ba|B2))
arla1) ® (b1|B1) + ba|B2)) + azlaz) ® (b1|B1) + ba|B2))

aibi|on) ® [B1) + arbolar) ® |62)
+ 82b1|a2) ® |51) + 32b2|a2) ® |,32)
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Multiple-Qubit Systems ~ Quantum State Spaces

Example (Cont'd)

@ Suppose V and W are vector spaces corresponding to a qubit, each
with standard basis

{l0),[1)}.
Then V ® W has basis

{10) ®0),]0) ®[1),1) ®10), 1) ® |1)}.
Consider two single-qubit states
a1]0) + b1|]1) and a2|0) + by|1).
Their tensor product is

3182|0) ® |O) 4 31b2|0) ® |1) F 32b1|1) ® |0) F 82b2|1) ® |1)
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Multiple-Qubit Systems ~ Quantum State Spaces

Using Matrices

@ To write examples in the more familiar matrix notation for vectors, we
must choose an ordering for the basis of the tensor product space.

o For example, we can choose the dictionary ordering

{len)|B1), o)1), la2)lBr), |e2)|B2) } -

Example: Consider the tensor product space.

Order the basis using the dictionary ordering.

Consider the tensor product of the unit vectors with matrix
representation |v) = %(17_2),[ and |w) = \/%(—1,3)T.

It is the unit vector

1
——(-1,3,2,-6)".
5ﬁ( )

v)®[w) =
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Multiple-Qubit Systems ~ Quantum State Spaces

Inner Product and Dimensions

@ Suppose V and W are inner product spaces.

@ Then V ® W can be given an inner product by taking the product of
the inner products on V and W.

@ The inner product of |v;) ® |wy) and |v») ® |ws) is given by

({val ® (wa|) - (v} ® |wa)) = (va|v1){wa|wa).

@ The tensor product of two unit vectors is a unit vector.

o Given orthonormal bases {|a;)} for V and {|3;)} for W, the basis
{lai) ®|Bj)} for V @ W is also orthonormal.

@ The tensor product V ® W has dimension dim(V') x dim(W).

@ So the tensor product of n two-dimensional vector spaces has 2"
dimensions.
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Multiple-Qubit Systems ~ Quantum State Spaces

Entangled States

o Most elements |w) € V ® W cannot be written as the tensor product
of a vector in V and a vector in W (even though they are all linear
combinations of such elements).

@ This observation is of crucial importance to quantum computation.

o States of V ® W that cannot be written as the tensor product of a
vector in V and a vector in W are called entangled states.

o We will see, for most quantum states of an n-qubit system, in
particular for all entangled states, it is not meaningful to talk about
the state of a single qubit of the system.
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Multiple-Qubit Systems ~ Quantum State Spaces

Basis of the Tensor Product

@ Suppose we are given two quantum systems.
o The states of the first are represented by unit vectors in V;
o The states of the first are represented by unit vectors in W.

@ Then the possible states of the joint quantum system are represented
by unit vectors in the vector space V ® W.

@ For 0<i<n, let V; be the vector space, with basis {|0);,[1);},
corresponding to a single qubit.

@ The standard basis for the vector space V,.1 ® --- ® V1 ® V for an
n-qubit system consists of the 27 vectors

{ [0)p-1®--®[0)1 ®|[0)o,
[0)n-1 ® - ®[0)1 ®[1)o,
|0)n—1 R Q |1)1 ® |0)0,
1@ ®[1)1® 1)}
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Multiple-Qubit Systems ~ Quantum State Spaces

Simplifying the Notation

@ The subscripts are often dropped, since the corresponding qubit is
clear from position.

@ Recall that adjacency of kets means the tensor product.
o This enables us to write this basis more compactly.

{10)--10}[0),[0)---[0)I1), [0)---[1)I0), ..., ]1)---|1)[1)}.

@ The tensor product space corresponding to an n-qubit system occurs
so frequently throughout quantum information processing.

@ So an even more compact and readable notation uses |b,_1 ... by) to
represent |bp_1) ® --- ® |bp).

@ In this notation the standard basis for an n-qubit system can be
written

{|0---00), |0---01),]0-+-10), . ... ,|1---11)}.
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Multiple-Qubit Systems ~ Quantum State Spaces

Decimal Representation of Bases

@ Decimal notation is more compact than binary notation.

o Consider a state
|bp-1---b1bo).

o Let x be the decimal number whose binary representation is
bp_1---b1bg.
@ Then the state |b,_1---by1bg) will be represented more compactly as

x).

@ In this notation, the standard basis for an n-qubit system is written

{0}, [1),[2),....,[2"7)}.
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Multiple-Qubit Systems ~ Quantum State Spaces

Decimal Representation and Number of Qubits

@ The standard basis for a two-qubit system can be written as

{100),101),[10),[11)} = {[0),[1),[2),[3)}-

@ The standard basis for a three-qubit system can be written as

{|000),|001),|010), [011),|100), |101), [110),|111)}
= {[0),[1),[2),3),14),15),16),17)}-

o Note that the notation |3) corresponds to two different quantum
states in these two bases.

@ So in order for such notation to be unambiguous, the number of
qubits must be clear from context.
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Multiple-Qubit Systems ~ Quantum State Spaces

Specialized Notation

@ The following reasons may entice a less compact notation.
o Setting apart certain sets of qubits;
o Indicating separate registers of a quantum computer;
o Indicating qubits controlled by different people.

Example: Consider a scenario in which:

o Alice controls the first two qubits;
o Bob the last three qubits.

We may write a state as
1
V2
Sometimes, for added clarity, we may even write
1
V2

where the subscripts indicate the qubits controlled by each party.

(|00)[101) + [10)[011)).

(/00)4]101) g +[10)4|011)B),
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Multiple-Qubit Systems ~ Quantum State Spaces

Example

o Consider a three-qubit system.
The following superpositions represent possible states of the system.
1
V2

1
V2

1
7)= 51000} +

1

[0) + 7

[111),

21+ 12) + [4) + 7)) = 5(001) + [010) +]100) + [111)).
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Multiple-Qubit Systems ~ Quantum State Spaces

Matrix Representation

o To use matrix notation for state vectors of an n-qubit system, the
order of basis vectors must be established.

@ Unless specified otherwise, basis vectors labeled with numbers are
assumed to be sorted numerically.

Example: Consider the two qubit state
4
V2

1
V2

Suppose basis vectors are sorted numerically.

%|00)+é|01)+ |11)=%|0)+é|1)+ 3).

Then the given state has matrix representation

[ay - [ay
§| O PI=wl
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Multiple-Qubit Systems ~ Quantum State Spaces

Choice of Basis

@ We use the standard basis predominantly.
o But, occasionally, we also use other bases.

Example: The Bell basis for a two-qubit system is
{lo7), |07), ), W7},
where

%) = L(00) + [12)), [W*) = L([o1) + [10)),
[07) = L (00) - [12)), |w") = L(|01) - [10)).

The Bell basis is important for various applications of quantum
information.
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Multiple-Qubit Systems ~ Quantum State Spaces

Superpositions for Multiple Qubits

@ As in the single-qubit case, a state |v) is a superposition with
respect to a set of orthonormal states

{181),---,18i)}
if:
o It is a linear combination of these states,
lv) = alBa) + - + ail i)
o At least two of the a; are non-zero.

@ When no set of orthonormal states is specified, we will mean that the
superposition is with respect to the standard basis.
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Multiple-Qubit Systems ~ Quantum State Spaces

Redundancies

@ Any unit vector of the 2"-dimensional state space represents a
possible state of an n-qubit system.

@ Just as in the single-qubit case there is redundancy.

o Of course, vectors that are multiples of each other refer to the same
quantum state.

o Additionally, in the multiple-qubit case, properties of the tensor
product mean that phase factors distribute over tensor products.

@ So the same phase factor in different qubits of a tensor product
represent the same state:

V) ® (e|w)) = e (|v) & |w)) = (|v)) ® |w).
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Multiple-Qubit Systems ~ Quantum State Spaces

Examples

@ Phase factors in individual qubits of a single term of a superposition
can always be factored out into a single coefficient for that term.

Example:
L (10) +]1)) ® —=(10) + 1)) = =(00) + [01) + [10) + [11))
V2 2 2 |
Example:

(310) + 211)) ® (J510) + 7511) P
=1 1 V3 V3
= 525100) + 515J01) + 2210) + 2311).
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Multiple-Qubit Systems ~ Quantum State Spaces

Complex Projective Space

o Just as in the single-qubit case, vectors that differ only in a global
phase represent the same quantum state.

o Write every quantum state as
ap[0...00) + a1]0...01) + -+ + apn_q|1... 11).

o If we require the first non-zero a; to be real and non-negative, then
every quantum state has a unique representation.

o Consequently, the quantum state space of an n-qubit system has
2" — 1 complex dimensions.

@ For any complex vector space of dimension N, the space in which
vectors that are multiples of each other are considered equivalent is
called complex projective space of dimension N — 1.

@ So the space of distinct quantum states of an n-qubit system is a
complex projective space of dimension 2" — 1.
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Multiple-Qubit Systems ~ Quantum State Spaces

Sources of Potential Confusion

@ As in the single-qubit case, we should not confuse the vector space in
which we write our computations with the quantum state space itself.

@ We should also avoid confusion between the relative phases between
terms in the superposition, of critical importance in quantum
mechanics, and the global phase which has no physical meaning.

o We write
v} ~ [w)

when two vectors |v) and |w) differ only by a global phase.

@ Such vectors represent the same quantum state.
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Multiple-Qubit Systems ~ Quantum State Spaces

Example

@ By construction, we have
100) ~ e/%]00).
On the other hand, the vectors

1
|V)=7§

represent different quantum states.
We have

(e1)00) + [11))  and |w)=%(|00)+|11))

L ooy 4 R
\/5( |00) |11))f\/§(|00) |11)).

However,

D (&4100) +Ff11)) = £200) 1)) - 2(100) + 1)

V2 V2 V2
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Multiple-Qubit Systems ~ Quantum State Spaces

Vector Space versus State Space

@ Quantum mechanical calculations are usually performed in the vector
space rather than in the projective space because linearity makes
vector spaces easier to work with.

o But we must always be aware of the ~ equivalence when we interpret
the results of our calculations as quantum states.
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Multiple-Qubit Systems ~ Quantum State Spaces

Writing in Terms of Different Bases

o Further confusion may arise when states are written in different bases.
Example: Recall that

1 1
|+)=7§(|0)+|1)) and |—)=$(IO)—I1))'

The expression %(H) +]-)) is a different way of writing |0).

Moreover, we have

ZUHH+ =) = Slo50) + |1>)®7(|0)+|1>)
+75(10) = 1) ® 75(10) - [1))]
= 5[3(0)/0) +[1)[0) + [0)[1) +1)]1))
+3(/0)]0) - [1)[0) - [0)[1) + [1)[1))]
= Z5(10)[0) +[1)[1)).
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Multiple-Qubit Systems Entangled States

Subsection 2

Entangled States
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Multiple-Qubit Systems Entangled States

Entangled States

o We saw that a single-qubit state can be specified by a single complex
number.

@ So any tensor product of n individual single-qubit states can be
specified by n complex numbers.

o We also saw that it takes 2" — 1 complex numbers to describe states
of an n-qubit system.

@ Since 2" > n, the vast majority of n-qubit states cannot be described
in terms of the state of n separate single-qubit systems.

o States that cannot be written as the tensor product of n single-qubit
states are called entangled states.

@ Thus, the vast majority of quantum states are entangled.
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Multiple-Qubit Systems Entangled States

Example

@ The elements of the Bell basis are entangled.
Consider the Bell state
1
o) = —
%) V2
|®*) cannot be described in terms of the state of each of its
component qubits separately.

(|00) + [11)).

It cannot be decomposed, because it is impossible to find a;, ap, by,
by, such that

1

(a1/0) + ba[1)) ® (a2[0) + ba[1)) = 7

(j00) + [11)).
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Multiple-Qubit Systems Entangled States

Example (Cont'd)

@ To see this, note that

(a1/0) + b1[1)) @ (a2[0) + b2[1))
= 3132|00) TF alb2|01) aF b132|10) S b1b2|11).

Suppose (a1/0) + b1|1)) ® (a2|0) + b2[1)) = 5(/00) +[11)).
Then a1b, = 0.

Hence, a; =0 or b, = 0.

Therefore, ajap =0 or by1by =0.

This contradicts the equation above.

@ Two particles in the Bell state |®*) are called an EPR pair (for
reasons to be explained later).
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Multiple-Qubit Systems Entangled States

Example

@ Other examples of two-qubit entangled states include

W) = %(IOl) +[10)),
L (j00) - if11)),
4100) + X211

and

£100) + |01) + 5]10) + &[11).
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Multiple-Qubit Systems Entangled States

Bell States

o Consider the four entangled states
%) = —5(100) +[11)), [W*) = 55(|01) +[10)),
[©7) = —5(100) - [11)), [W™) = 5([o1) - [10)).

o They are called Bell states.

o Bell states are of fundamental importance to quantum information
processing.
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Multiple-Qubit Systems Entangled States

Entanglement and Decompositions

o Strictly speaking, entanglement is always with respect to a specified
tensor product decomposition of the state space.

o Consider a quantum system, with associated vector space V.

@ Suppose V has a tensor decomposition
V=Vi® -V,

o Let [¢)) be a state of the quantum system.

@ [¢)) is separable, or unentangled, with respect to the given
decomposition if it can be written as

[) =|v1) ® - ® |vn),

where |v;) is contained in V;.
o Otherwise, |¢) is entangled with respect to this decomposition.
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Multiple-Qubit Systems Entangled States

Convention

@ Unless we specify a different decomposition, when we say an n-qubit
state is entangled, we mean it is entangled with respect to the tensor
product decomposition of the vector space V/, associated to the
n-qubit system, into the n two-dimensional vector spaces V,_1,..., Vo
associated with each of the individual qubits.

@ For such statements to have meaning, it must be specified or clear
from context which of the many possible tensor decompositions of V
into two-dimensional spaces corresponds with the set of qubits under
consideration.
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Multiple-Qubit Systems Entangled States

Entanglement: Dependence on Decomposition

o It is vital to remember that entanglement:
o Is not an absolute property of a quantum state;
o Depends on the particular decomposition of the system into subsystems
under consideration.
o States entangled with respect to the single-qubit decomposition may
be unentangled with respect to other decompositions into subsystems.
@ In particular, when discussing entanglement in quantum computation,
we will be interested in entanglement with respect to:

o A decomposition into registers;
o A decomposition into subsystems consisting of multiple qubits;
o The decomposition into individual qubits.
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Multiple-Qubit Systems Entangled States

Example: Multiple Meanings of Entanglement

o Consider the four-qubit state

¥) %(IOO) +[11) +]22) +[33))
= 5(|0000) +[0101) +[1010) + [1111)).

o It is entangled, since it cannot be expressed as the tensor product of
four single-qubit states.

o It is implicit in this statement that the entanglement is with respect
to the decomposition into single qubits.

@ There are other decompositions with respect to which this state is
unentangled.
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Multiple-Qubit Systems Entangled States

Example: Multiple Meanings of Entanglement (Cont'd)

o E.g., [¢)) can be expressed as the product of two two-qubit states.

[¥) = 1(/0)1]0)2/0)3]0)4 + [0)1]1)2]0)3|1)4
+1)1(0)2[1)3/0)4 + [1)1]1)2[1)3|1)a)

= 75(10)1]0)s +[1)11)3) ® 75(10)2[0)4 + [1)2]1)a).

@ The subscripts indicate which qubit we are talking about.
@ So |¢) is not entangled with respect to the system decomposition
consisting of:
o A subsystem of the first and third qubit;
o A subsystem consisting of the second and fourth qubit.
o But, we can check that |¢)) is entangled with respect to the
decomposition into the two two-qubit systems consisting of:

o The first and second qubits;
o The third and fourth qubits.
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Multiple-Qubit Systems Entangled States

Entanglement: Independence from Basis

o Entanglement depends on the tensor decomposition.
@ However, entanglement is not basis dependent.

o There is no reference, explicit or implicit, to a basis in the definition
of entanglement.

o Certain bases may be more or less convenient to work with,
depending, for instance, on how much they reflect the tensor
decomposition under consideration.

@ However, the choice does not affect what states are considered
entangled.
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Multiple-Qubit Systems Entangled States

On Quantum Superpositions

@ As in the single-qubit case, most n-qubit states are superpositions,
i.e., nontrivial linear combinations of basis vectors.

@ As always, the notion of superposition is basis-dependent.

o All states are superpositions with respect to some bases, and not
superpositions with respect to other bases.

o For multiple qubits, the answer to the question of what superpositions
mean is more involved than in the single-qubit case.
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Multiple-Qubit Systems  Entangled States

Untenability of “Two States at the Same Time"

@ The common way of talking about superpositions in terms of the
system being in two states “at the same time” is even more suspect
in the multiple-qubit case.

@ This way of thinking fails to distinguish between states like
%QOO) +]11)) and %QOO) +i]11)) that differ only by a relative
phase and behave differently under a variety of circumstances.

o Furthermore, which states a system is viewed as “being in at the
same time” is basis-dependent.

@ The expressions —(|00) [11)) and %(|+)|+) +|=)|-)) represent the
same state but have different interpretations.

o One as being in the states |[00) and |11) at the same time;
o The other as being in the states | + +) and | - —) at the same time.

@ This is absurd since they denote the same state and, thus, behave in
precisely the same way under all circumstances.

@ So quantum superpositions are not probabilistic mixtures.
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Multiple-Qubit Systems Basics of Multi-Qubit Measurement

Subsection 3

Basics of Multi-Qubit Measurement
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Multiple-Qubit Systems Basics of Multi-Qubit Measurement

Measuring Devices and Direct Sum Decomposition

o Let V be the N =2" dimensional vector space associated with an
n-qubit system.

@ Any device that measures this system has an associated direct sum
decomposition into orthogonal subspaces

V=5&-&5,

for some k< .

@ The number k corresponds to the maximum number of possible
measurement outcomes for a state measured with that particular
device.

@ This number varies from device to device, even between devices
measuring the same system.
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Multiple-Qubit Systems Basics of Multi-Qubit Measurement

Measuring Devices Generalized

o That any device has an associated direct sum decomposition is a
direct generalization of the single-qubit case.

o Every device measuring a single-qubit system has an associated
orthonormal basis
{lv1),[v2)}

for the vector space V associated with the single-qubit system.

@ The vectors |v;) each generate a one-dimensional subspace S;
(consisting of all multiples a|v;) where a is a complex number).

@ Moreover, V=510 S;.

o The only nontrivial decompositions of the vector space V are into two
one-dimensional subspaces.

@ Any choice of unit length vectors, one from each of the subspaces,
yields an orthonormal basis.

George Voutsadakis (LSSU) Quantum Computing July 2024 46 /59



Multiple-Qubit Systems Basics of Multi-Qubit Measurement

Measurement

o Let a measuring device have associated direct sum decomposition
V=5@& &S5

o Consider an n-qubit system in state [¢)).
@ Suppose the measuring device interacts with the n-qubit system.
@ Then the interaction:
o Changes the state to one entirely contained within one of the
subspaces;
o Chooses the subspace with probability equal to the square of the
absolute value of the amplitude of the component of [¢)) in that
subspace.

o More formally, the state [¢)) has a unique direct sum decomposition

[) = a1li1) ® -+ ® ak[v)k),

where [¢);) is a unit vector in S; and a; is real and non-negative.
o When [¢)) is measured, the state [t;) is obtained with probability |a;|?.
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Measurement and Quantum Mechanics

o The following are axioms of quantum mechanics.

o Any measuring device has an associated direct sum decomposition;
o The interaction between the device and a qubit ystem can be modeled
in this way.

o It is not possible to prove that every device behaves in this way.

@ However, so far it has provided an excellent model that predicts the
outcome of experiments with high accuracy.
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Single-Qubit Measurement in Standard Basis

o Let V be the vector space associated with a single-qubit system.

@ A device that measures a qubit in the standard basis has, by
definition, the associated direct sum decomposition

V=55,
where:
o S is generated by |0);
o S, is generated by |1).
o An arbitrary state
[¥) = a[0) + bl1)

measured by such a device will be:

o |0) with probability |a|?, the amplitude of |¢)) in the subspace Si;
o |1) with probability |b|?, the amplitude of |1} in the subspace S,.
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Single-Qubit Measurement in Hadamard Basis

@ Suppose a device measures a single qubit in the Hadamard basis
1 1
+)=—(0) +]1)), |-)=—=(|0)-|1
{y= 5o, 1= Zs00- )
@ It has associated subspace decomposition
V S S+ (&) 5_,

where:
o S, is generated by |+);
o S_ is generated by |-).

o A state [¢)) = a|0) + b|1) can be rewritten as
a+b a-b
[¥) = 7 [+) + 7 -)-

o The probability that |¢)) is measured as |+) is

N

N

&L; §|U

o The probability that |¢)) is measured as |-) is
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Measuring of First Qubit in Standard Basis

o Let V be the vector space associated with a two-qubit system.

@ A device that measures the first qubit in the standard basis has
associated subspace decomposition

V=55,

where:
o 53 =10) ® Vs, the two-dimensional subspace spanned by {|00),|01)};
o S5 =|1) ® V,, the two-dimensional subspace spanned by {|10),|11)}.

o We explore what happens when such a device measures an arbitrary
two-qubit state

1) = a00|00) + a01|01) + a10/10) + a11/11).
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Measuring of First Qubit in Standard Basis (Cont'd)

o We write
[) = clyhr) + c2lia),
where:
o [¢1) = 2 (a00/00) + a01[01)) € Sy;
o [¢2) = & (a10[10) + a1[11)) € S,.
@ ¢; and ¢ are normalization factors,

C = |800|2 ar |301|2 and Cy = |810|2 ar |311|2.

@ Measurement of [¢)) with this device results in:
o The state |¢);) with probability |c1|* = |ago|? + |a01[%;
o The state [¢») with probability |c|* = |a10f? + |a11]*.
o In particular, when the Bell state [®*) = 2-(|00) +|11)) is measured,

2
we obtain |00) and |11) with equal probability.
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Measuring of First Qubit in Hadamard Basis

@ A device that measures the first qubit of a two-qubit system with
respect to the Hadamard basis {|+),|-)} has an associated direct sum
decomposition

V=SS5,
where:
o S =|+)® Va, the two-dimensional subspace spanned by {|+)|0),|+)[1)};
o S)=|-)® Vs, the two-dimensional subspace spanned by {|-)|0}),|-)|1)}

o We explore what happens when such a device measures an arbitrary

two-qubit state

1) = a00|00) + a01|01) + a10/10) + a11[11).
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Measuring of First Qubit in Hadamard Basis (Cont'd)

o We write [¢) as
[¥) = a1lybr) + aaledsa),

where:
WE) = o (gRl)0) + B 4)L)),
) = o (0|0 + |-y )).

o We may calculate the normalization factors ¢; and cj.

@ These yield the probabilities for the two outcomes.

@ This measurement on the Bell state [®*) = \/_(|OO) [11)) yields
[+)|[+) and |-)|-) with equal probability.
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Subsection 4

Quantum Key Distribution Using Entangled States
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The Ekert 91 Protocol

o Alice and Bob wish to create a secret key.

@ The protocol begins with the creation of a sequence of pairs of

qubits, all in the entangled state |[®*) = ==(]00) +[11)).

o Alice receives the first qubit of each pair.
@ Bob receives the second qubit of each pair.
@ For each qubit, they both independently and randomly choose one of
the following in which to measure.
o The standard basis {|0),|1)};
o The Hadamard basis {|+),|-)}.
@ After they have made their measurements, they compare bases and
discard those bits for which their bases differ.
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The Ekert 91 Protocol (Cont'd)

o If Alice measures the first qubit in the standard basis and obtains |0),
then the entire state becomes |00).

o If Bob now measures in the standard basis, he obtains the result |0)
with certainty.

o If, instead, he measures in the Hadamard basis {|+),|-)}, he obtains
|[+) and |-) with equal probability, since |00) = |0) (%(H) + |—)))

o He interprets the states |+) and |-) as corresponding to the classical
bit values 0 and 1, respectively.

@ Thus when he measures in the basis {|+),|-)} and Alice measures in
the standard basis, he obtains the same bit value as Alice only half
the time.

@ The behavior is similar when Alice's measurement indicates her qubit
is in state [1).
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The Ekert 91 Protocol (Cont'd)

o If instead Alice measures in the Hadamard basis and obtains the result
that her qubit is in the state |+), the whole state becomes |+)|+).

o If Bob now measures in the Hadamard basis, he obtains |+) with
certainty.

o If he measures in the standard basis he obtains |0) and |1) with equal
probability.

@ Since Alice and Bob always get the same bit value if they measure in
the same basis, the protocol results in a shared random key, as long
as the initial pairs were EPR pairs.
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The Ekert 91 Protocol (Cont'd)

@ The security of the scheme relies on adding steps to the protocol we
have just described that enable Alice and Bob to test the fidelity of
their EPR pairs.

@ The tests Ekert suggested are based on Bell's inequalities.

o This protocol has the intriguing property that in theory Alice and Bob
can prepare shared keys as they need them, never needing to store
keys for any length of time.

@ In practice, to prepare keys on an as-needed basis in this way, Alice
and Bob would need to be able to store their EPR pairs so that they
are not corrupted during that time.

@ The capability of long-term reliable storage of entangled states does
not exist at present.
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