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Multiple-Qubit Systems Quantum State Spaces

Subsection 1

Quantum State Spaces
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Multiple-Qubit Systems Quantum State Spaces

Direct Sums of Vector Spaces

Let V be a vector space, with basis A = {∣α1⟩, ∣α2⟩, . . . , ∣αn⟩}.

Let W be a vector space, with basis B = {∣β1⟩, ∣β2⟩, . . . , ∣βm⟩}.

The direct sum V ⊕W of V and W is the vector space with basis

A ∪ B = {∣α1⟩, ∣α2⟩, . . . , ∣αn⟩, ∣β1⟩, ∣β2⟩, . . . , ∣βm⟩}.

Every element ∣x⟩ ∈ V ⊕W can be written as

∣x⟩ = ∣v⟩ ⊕ ∣w⟩,

for some ∣v⟩ ∈ V and ∣w⟩ ∈W .

For V and W of dimension n and m respectively, V ⊕W has
dimension n +m,

dim(V ⊕W ) = dim(V ) + dim(W ).
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Multiple-Qubit Systems Quantum State Spaces

Direct Sums of Vector Spaces (Cont’d)

Addition and scalar multiplication are defined by:

Performing the operation on the two component vector spaces
separately;
Adding the results.

Suppose V and W are inner product spaces.

Then the standard inner product on V ⊕W is given by

(⟨v2∣⊕ ⟨w2∣)(∣v1⟩⊕ ∣w1⟩) = ⟨v2∣v1⟩ + ⟨w2∣w1⟩.
The vector spaces V and W embed in V ⊕W in the obvious
canonical way.

The images are orthogonal under the standard inner product.

George Voutsadakis (LSSU) Quantum Computing July 2024 5 / 59



Multiple-Qubit Systems Quantum State Spaces

State Space in the Classical Case

Suppose that the state of each of three classical objects O1, O2 and
O3 is fully described by two parameters,

The position xi ;
The momentum pi .

Then the state of the system can be described by the direct sum of
the states of the individual objects:

( x1
p1
)⊕ ( x2

p2
)⊕ ( x3

p3
) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
p1
x2
p2
x3
p3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The state space of n such classical objects has dimension 2n.

Thus the size of the state space grows linearly with the number of
objects.
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Multiple-Qubit Systems Quantum State Spaces

Tensor Product of Vector Spaces

Let V be a vector space, with basis A = {∣α1⟩, ∣α2⟩, . . . , ∣αn⟩}.
Let W be a vector space, with basis B = {∣β1⟩, ∣β2⟩, . . . , ∣βm⟩}.
The tensor product V ⊗W of V and W is an nm-dimensional
vector space, with a basis consisting of the nm elements of the form

∣αi ⟩⊗ ∣βj ⟩.
Here ⊗ is the tensor product, a binary operator that satisfies the
following relations:

(∣v1⟩ + ∣v2⟩) ⊗ ∣w⟩ = ∣v1⟩ ⊗ ∣w⟩ + ∣v2⟩ ⊗ ∣w⟩;∣v⟩ ⊗ (∣w1⟩ + ∣w2⟩) = ∣v⟩ ⊗ ∣w1⟩ + ∣v⟩ ⊗ ∣w2⟩;(a∣v⟩) ⊗ ∣w⟩ = ∣v⟩ ⊗ (a∣w⟩) = a(∣v⟩ ⊗ ∣w⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 7 / 59



Multiple-Qubit Systems Quantum State Spaces

Tensor Product Representations

Take k = min (n,m).
All elements of V ⊗W have the form

∣v1⟩⊗ ∣w1⟩ + ∣v2⟩⊗ ∣w2⟩ +⋯+ ∣vk⟩⊗ ∣wk⟩,
for some vi ∈ V and wi ∈W .

Due to the relations defining the tensor product, such a
representation is not unique.

All elements of V ⊗W can be written

a1(∣α1⟩⊗ ∣β1⟩) + a2(∣α2⟩⊗ ∣β1⟩) +⋯+ anm(∣αn⟩⊗ ∣βm⟩).
However, most elements of V ⊗W cannot be written as ∣v⟩⊗ ∣w⟩,
where v ∈ V and w ∈W .

It is common to write ∣v⟩∣w⟩ for ∣v⟩⊗ ∣w⟩.
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Multiple-Qubit Systems Quantum State Spaces

Example

Consider two two-dimensional vector spaces,

V , with orthonormal basis A = {∣α1⟩, ∣α2⟩};
W , with orthonormal basis B = {∣β1⟩, ∣β2⟩}.

Let ∣v⟩ = a1∣α1⟩ + a2∣α2⟩ be an element of V .

Let ∣w⟩ = b1∣β1⟩ + b2∣β2⟩ be an element of W .

Then

∣v⟩⊗ ∣w⟩ = (a1∣α1⟩ + a2∣α2⟩)⊗ (b1∣β1⟩ + b2∣β2⟩)
= a1∣α1⟩⊗ (b1∣β1⟩ + b2∣β2⟩) + a2∣α2⟩⊗ (b1∣β1⟩ + b2∣β2⟩)
= a1b1∣α1⟩⊗ ∣β1⟩ + a1b2∣α1⟩⊗ ∣β2⟩

+ a2b1∣α2⟩⊗ ∣β1⟩ + a2b2∣α2⟩⊗ ∣β2⟩.
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Multiple-Qubit Systems Quantum State Spaces

Example (Cont’d)

Suppose V and W are vector spaces corresponding to a qubit, each
with standard basis {∣0⟩, ∣1⟩}.
Then V ⊗W has basis

{∣0⟩⊗ ∣0⟩, ∣0⟩ ⊗ ∣1⟩, ∣1⟩ ⊗ ∣0⟩, ∣1⟩ ⊗ ∣1⟩}.
Consider two single-qubit states

a1∣0⟩ + b1∣1⟩ and a2∣0⟩ + b2∣1⟩.
Their tensor product is

a1a2∣0⟩⊗ ∣0⟩ + a1b2∣0⟩⊗ ∣1⟩ + a2b1∣1⟩⊗ ∣0⟩ + a2b2∣1⟩⊗ ∣1⟩.
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Multiple-Qubit Systems Quantum State Spaces

Using Matrices

To write examples in the more familiar matrix notation for vectors, we
must choose an ordering for the basis of the tensor product space.

For example, we can choose the dictionary ordering

{∣α1⟩∣β1⟩, ∣α1⟩∣β2⟩, ∣α2⟩∣β1⟩, ∣α2⟩∣β2⟩}.
Example: Consider the tensor product space.

Order the basis using the dictionary ordering.

Consider the tensor product of the unit vectors with matrix
representation ∣v⟩ = 1√

5
(1,−2)† and ∣w⟩ = 1√

10
(−1,3)†.

It is the unit vector

∣v⟩⊗ ∣w⟩ = 1

5
√
2
(−1,3,2,−6)† .
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Multiple-Qubit Systems Quantum State Spaces

Inner Product and Dimensions

Suppose V and W are inner product spaces.

Then V ⊗W can be given an inner product by taking the product of
the inner products on V and W .

The inner product of ∣v1⟩⊗ ∣w1⟩ and ∣v2⟩⊗ ∣w2⟩ is given by

(⟨v2∣⊗ ⟨w2∣) ⋅ (∣v1⟩⊗ ∣w1⟩) = ⟨v2∣v1⟩⟨w2∣w1⟩.
The tensor product of two unit vectors is a unit vector.

Given orthonormal bases {∣αi ⟩} for V and {∣βi ⟩} for W , the basis{∣αi ⟩⊗ ∣βj ⟩} for V ⊗W is also orthonormal.

The tensor product V ⊗W has dimension dim(V ) × dim(W ).
So the tensor product of n two-dimensional vector spaces has 2n

dimensions.
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Multiple-Qubit Systems Quantum State Spaces

Entangled States

Most elements ∣w⟩ ∈ V ⊗W cannot be written as the tensor product
of a vector in V and a vector in W (even though they are all linear
combinations of such elements).

This observation is of crucial importance to quantum computation.

States of V ⊗W that cannot be written as the tensor product of a
vector in V and a vector in W are called entangled states.

We will see, for most quantum states of an n-qubit system, in
particular for all entangled states, it is not meaningful to talk about
the state of a single qubit of the system.
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Multiple-Qubit Systems Quantum State Spaces

Basis of the Tensor Product

Suppose we are given two quantum systems.
The states of the first are represented by unit vectors in V ;
The states of the first are represented by unit vectors in W .

Then the possible states of the joint quantum system are represented
by unit vectors in the vector space V ⊗W .

For 0 ≤ i < n, let Vi be the vector space, with basis {∣0⟩i , ∣1⟩i},
corresponding to a single qubit.

The standard basis for the vector space Vn−1 ⊗⋯⊗V1 ⊗ V0 for an
n-qubit system consists of the 2n vectors

{ ∣0⟩n−1 ⊗⋯⊗ ∣0⟩1 ⊗ ∣0⟩0,∣0⟩n−1 ⊗⋯⊗ ∣0⟩1 ⊗ ∣1⟩0,∣0⟩n−1 ⊗⋯⊗ ∣1⟩1 ⊗ ∣0⟩0,
⋮∣1⟩n−1 ⊗⋯⊗ ∣1⟩1 ⊗ ∣1⟩0}.
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Multiple-Qubit Systems Quantum State Spaces

Simplifying the Notation

The subscripts are often dropped, since the corresponding qubit is
clear from position.

Recall that adjacency of kets means the tensor product.

This enables us to write this basis more compactly.

{∣0⟩⋯∣0⟩∣0⟩, ∣0⟩⋯∣0⟩∣1⟩, ∣0⟩⋯∣1⟩∣0⟩, . . . , ∣1⟩⋯∣1⟩∣1⟩}.
The tensor product space corresponding to an n-qubit system occurs
so frequently throughout quantum information processing.

So an even more compact and readable notation uses ∣bn−1 . . . b0⟩ to
represent ∣bn−1⟩⊗⋯⊗ ∣b0⟩.
In this notation the standard basis for an n-qubit system can be
written {∣0⋯00⟩, ∣0⋯01⟩, ∣0⋯10⟩, . . . , ∣1⋯11⟩}.
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Multiple-Qubit Systems Quantum State Spaces

Decimal Representation of Bases

Decimal notation is more compact than binary notation.

Consider a state ∣bn−1⋯b1b0⟩.
Let x be the decimal number whose binary representation is

bn−1⋯b1b0.

Then the state ∣bn−1⋯b1b0⟩ will be represented more compactly as

∣x⟩.
In this notation, the standard basis for an n-qubit system is written

{∣0⟩, ∣1⟩, ∣2⟩, . . . , ∣2n−1⟩}.
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Multiple-Qubit Systems Quantum State Spaces

Decimal Representation and Number of Qubits

The standard basis for a two-qubit system can be written as

{∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩} = {∣0⟩, ∣1⟩, ∣2⟩, ∣3⟩}.
The standard basis for a three-qubit system can be written as

{∣000⟩, ∣001⟩, ∣010⟩, ∣011⟩, ∣100⟩, ∣101⟩, ∣110⟩, ∣111⟩}
= {∣0⟩, ∣1⟩, ∣2⟩, ∣3⟩, ∣4⟩, ∣5⟩, ∣6⟩, ∣7⟩}.

Note that the notation ∣3⟩ corresponds to two different quantum
states in these two bases.

So in order for such notation to be unambiguous, the number of
qubits must be clear from context.
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Multiple-Qubit Systems Quantum State Spaces

Specialized Notation

The following reasons may entice a less compact notation.
Setting apart certain sets of qubits;
Indicating separate registers of a quantum computer;
Indicating qubits controlled by different people.

Example: Consider a scenario in which:
Alice controls the first two qubits;
Bob the last three qubits.

We may write a state as

1√
2
(∣00⟩∣101⟩ + ∣10⟩∣011⟩).

Sometimes, for added clarity, we may even write

1√
2
(∣00⟩A∣101⟩B + ∣10⟩A∣011⟩B),

where the subscripts indicate the qubits controlled by each party.
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Multiple-Qubit Systems Quantum State Spaces

Example

Consider a three-qubit system.

The following superpositions represent possible states of the system.

1√
2
∣0⟩ + 1√

2
∣7⟩ = 1√

2
∣000⟩ + 1√

2
∣111⟩,

1

2
(∣1⟩ + ∣2⟩ + ∣4⟩ + ∣7⟩) = 1

2
(∣001⟩ + ∣010⟩ + ∣100⟩ + ∣111⟩).
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Multiple-Qubit Systems Quantum State Spaces

Matrix Representation

To use matrix notation for state vectors of an n-qubit system, the
order of basis vectors must be established.

Unless specified otherwise, basis vectors labeled with numbers are
assumed to be sorted numerically.

Example: Consider the two qubit state

1

2
∣00⟩ + i

2
∣01⟩ + 1√

2
∣11⟩ = 1

2
∣0⟩ + i

2
∣1⟩ + 1√

2
∣3⟩.

Suppose basis vectors are sorted numerically.

Then the given state has matrix representation

⎛⎜⎜⎜⎜⎝

1
2
i
2
0
1√
2

⎞⎟⎟⎟⎟⎠
.
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Multiple-Qubit Systems Quantum State Spaces

Choice of Basis

We use the standard basis predominantly.

But, occasionally, we also use other bases.

Example: The Bell basis for a two-qubit system is

{∣Φ+⟩, ∣Φ−⟩, ∣Ψ+⟩, ∣Ψ−⟩},
where

∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩), ∣Ψ+⟩ = 1√

2
(∣01⟩ + ∣10⟩),

∣Φ−⟩ = 1√
2
(∣00⟩ − ∣11⟩), ∣Ψ−⟩ = 1√

2
(∣01⟩ − ∣10⟩).

The Bell basis is important for various applications of quantum
information.
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Multiple-Qubit Systems Quantum State Spaces

Superpositions for Multiple Qubits

As in the single-qubit case, a state ∣v⟩ is a superposition with
respect to a set of orthonormal states

{∣β1⟩, . . . , ∣βi ⟩}
if:

It is a linear combination of these states,

∣v⟩ = a1∣β1⟩ + ⋯ + ai ∣βi ⟩;
At least two of the ai are non-zero.

When no set of orthonormal states is specified, we will mean that the
superposition is with respect to the standard basis.
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Multiple-Qubit Systems Quantum State Spaces

Redundancies

Any unit vector of the 2n-dimensional state space represents a
possible state of an n-qubit system.

Just as in the single-qubit case there is redundancy.

Of course, vectors that are multiples of each other refer to the same
quantum state.

Additionally, in the multiple-qubit case, properties of the tensor
product mean that phase factors distribute over tensor products.

So the same phase factor in different qubits of a tensor product
represent the same state:

∣v⟩⊗ (eiφ∣w⟩) = eiφ(∣v⟩⊗ ∣w⟩) = (eiφ∣v⟩)⊗ ∣w⟩.
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Multiple-Qubit Systems Quantum State Spaces

Examples

Phase factors in individual qubits of a single term of a superposition
can always be factored out into a single coefficient for that term.

Example:

1√
2
(∣0⟩ + ∣1⟩)⊗ 1√

2
(∣0⟩ + ∣1⟩) = 1

2
(∣00⟩ + ∣01⟩ + ∣10⟩ + ∣11⟩).

Example:

(12 ∣0⟩ +
√
3
2 ∣1⟩) ⊗ ( 1√

2
∣0⟩ + i√

2
∣1⟩)

= 1
2
√
2
∣00⟩ + i

2
√
2
∣01⟩ + √3

2
√
2
∣10⟩ + i

√
3

2
√
2
∣11⟩.
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Multiple-Qubit Systems Quantum State Spaces

Complex Projective Space

Just as in the single-qubit case, vectors that differ only in a global
phase represent the same quantum state.

Write every quantum state as

a0∣0 . . . 00⟩ + a1∣0 . . . 01⟩ +⋯+ a2n−1∣1 . . . 11⟩.
If we require the first non-zero ai to be real and non-negative, then
every quantum state has a unique representation.

Consequently, the quantum state space of an n-qubit system has
2n − 1 complex dimensions.

For any complex vector space of dimension N, the space in which
vectors that are multiples of each other are considered equivalent is
called complex projective space of dimension N − 1.

So the space of distinct quantum states of an n-qubit system is a
complex projective space of dimension 2n − 1.
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Multiple-Qubit Systems Quantum State Spaces

Sources of Potential Confusion

As in the single-qubit case, we should not confuse the vector space in
which we write our computations with the quantum state space itself.

We should also avoid confusion between the relative phases between
terms in the superposition, of critical importance in quantum
mechanics, and the global phase which has no physical meaning.

We write ∣v⟩ ∼ ∣w⟩
when two vectors ∣v⟩ and ∣w⟩ differ only by a global phase.

Such vectors represent the same quantum state.
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Multiple-Qubit Systems Quantum State Spaces

Example

By construction, we have

∣00⟩ ∼ eiφ∣00⟩.
On the other hand, the vectors

∣v⟩ = 1√
2
(ei φ∣00⟩ + ∣11⟩) and ∣w⟩ = 1√

2
(∣00⟩ + ∣11⟩)

represent different quantum states.

We have
1√
2
(ei φ∣00⟩ + ∣11⟩) /∼ 1√

2
(∣00⟩ + ∣11⟩).

However,

1√
2
(ei φ∣00⟩ + eiφ∣11⟩) ∼ eiφ√

2
(∣00⟩ + ∣11⟩) ∼ 1√

2
(∣∣00⟩ + ∣11⟩).
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Multiple-Qubit Systems Quantum State Spaces

Vector Space versus State Space

Quantum mechanical calculations are usually performed in the vector
space rather than in the projective space because linearity makes
vector spaces easier to work with.

But we must always be aware of the ∼ equivalence when we interpret
the results of our calculations as quantum states.
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Multiple-Qubit Systems Quantum State Spaces

Writing in Terms of Different Bases

Further confusion may arise when states are written in different bases.

Example: Recall that

∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩) and ∣−⟩ = 1√

2
(∣0⟩ − ∣1⟩).

The expression 1√
2
(∣+⟩ + ∣−⟩) is a different way of writing ∣0⟩.

Moreover, we have

1√
2
(∣+⟩∣+⟩ + ∣−⟩∣−⟩) = 1√

2
[ 1√

2
(∣0⟩ + ∣1⟩)⊗ 1√

2
(∣0⟩ + ∣1⟩)

+
1√
2
(∣0⟩ − ∣1⟩)⊗ 1√

2
(∣0⟩ − ∣1⟩)]

= 1√
2
[12(∣0⟩∣0⟩ + ∣1⟩∣0⟩ + ∣0⟩∣1⟩ + ∣1⟩∣1⟩)

+
1
2(∣0⟩∣0⟩ − ∣1⟩∣0⟩ − ∣0⟩∣1⟩ + ∣1⟩∣1⟩)]

= 1√
2
(∣0⟩∣0⟩ + ∣1⟩∣1⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 29 / 59



Multiple-Qubit Systems Entangled States

Subsection 2

Entangled States
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Multiple-Qubit Systems Entangled States

Entangled States

We saw that a single-qubit state can be specified by a single complex
number.

So any tensor product of n individual single-qubit states can be
specified by n complex numbers.

We also saw that it takes 2n − 1 complex numbers to describe states
of an n-qubit system.

Since 2n ≫ n, the vast majority of n-qubit states cannot be described
in terms of the state of n separate single-qubit systems.

States that cannot be written as the tensor product of n single-qubit
states are called entangled states.

Thus, the vast majority of quantum states are entangled.
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Multiple-Qubit Systems Entangled States

Example

The elements of the Bell basis are entangled.

Consider the Bell state

∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩).

∣Φ+⟩ cannot be described in terms of the state of each of its
component qubits separately.

It cannot be decomposed, because it is impossible to find a1, a2, b1,
b2, such that

(a1∣0⟩ + b1∣1⟩)⊗ (a2∣0⟩ + b2∣1⟩) = 1√
2
(∣00⟩ + ∣11⟩).
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Multiple-Qubit Systems Entangled States

Example (Cont’d)

To see this, note that

(a1∣0⟩ + b1∣1⟩) ⊕ (a2∣0⟩ + b2∣1⟩)
= a1a2∣00⟩ + a1b2∣01⟩ + b1a2∣10⟩ + b1b2∣11⟩.

Suppose (a1∣0⟩ + b1∣1⟩)⊗ (a2∣0⟩ + b2∣1⟩) = 1√
2
(∣00⟩ + ∣11⟩).

Then a1b2 = 0.

Hence, a1 = 0 or b2 = 0.

Therefore, a1a2 = 0 or b1b2 = 0.

This contradicts the equation above.

Two particles in the Bell state ∣Φ+⟩ are called an EPR pair (for
reasons to be explained later).
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Multiple-Qubit Systems Entangled States

Example

Other examples of two-qubit entangled states include

∣Ψ+⟩ = 1√
2
(∣01⟩ + ∣10⟩),

1√
2
(∣00⟩ − i ∣11⟩),

i
10 ∣00⟩ +

√
99
10 ∣11⟩

and

7
10 ∣00⟩ + 1

10 ∣01⟩ + 1
10 ∣10⟩ + 7

10 ∣11⟩.
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Multiple-Qubit Systems Entangled States

Bell States

Consider the four entangled states

∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩), ∣Ψ+⟩ = 1√

2
(∣01⟩ + ∣10⟩),

∣Φ−⟩ = 1√
2
(∣00⟩ − ∣11⟩), ∣Ψ−⟩ = 1√

2
(∣01⟩ − ∣10⟩).

They are called Bell states.

Bell states are of fundamental importance to quantum information
processing.
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Multiple-Qubit Systems Entangled States

Entanglement and Decompositions

Strictly speaking, entanglement is always with respect to a specified
tensor product decomposition of the state space.

Consider a quantum system, with associated vector space V .

Suppose V has a tensor decomposition

V = V1 ⊗⋯⊗Vn.

Let ∣ψ⟩ be a state of the quantum system.

∣ψ⟩ is separable, or unentangled, with respect to the given

decomposition if it can be written as

∣ψ⟩ = ∣v1⟩⊗⋯⊗ ∣vn⟩,
where ∣vi ⟩ is contained in Vi .

Otherwise, ∣ψ⟩ is entangled with respect to this decomposition.
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Convention

Unless we specify a different decomposition, when we say an n-qubit
state is entangled, we mean it is entangled with respect to the tensor
product decomposition of the vector space V , associated to the
n-qubit system, into the n two-dimensional vector spaces Vn−1, . . . ,V0

associated with each of the individual qubits.

For such statements to have meaning, it must be specified or clear
from context which of the many possible tensor decompositions of V
into two-dimensional spaces corresponds with the set of qubits under
consideration.
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Entanglement: Dependence on Decomposition

It is vital to remember that entanglement:

Is not an absolute property of a quantum state;
Depends on the particular decomposition of the system into subsystems
under consideration.

States entangled with respect to the single-qubit decomposition may
be unentangled with respect to other decompositions into subsystems.

In particular, when discussing entanglement in quantum computation,
we will be interested in entanglement with respect to:

A decomposition into registers;
A decomposition into subsystems consisting of multiple qubits;
The decomposition into individual qubits.
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Example: Multiple Meanings of Entanglement

Consider the four-qubit state

∣ψ⟩ = 1
2(∣00⟩ + ∣11⟩ + ∣22⟩ + ∣33⟩)

= 1
2(∣0000⟩ + ∣0101⟩ + ∣1010⟩ + ∣1111⟩).

It is entangled, since it cannot be expressed as the tensor product of
four single-qubit states.

It is implicit in this statement that the entanglement is with respect
to the decomposition into single qubits.

There are other decompositions with respect to which this state is
unentangled.
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Example: Multiple Meanings of Entanglement (Cont’d)

E.g., ∣ψ⟩ can be expressed as the product of two two-qubit states.

∣ψ⟩ = 1
2(∣0⟩1∣0⟩2∣0⟩3∣0⟩4 + ∣0⟩1∣1⟩2∣0⟩3∣1⟩4

+ ∣1⟩1∣0⟩2∣1⟩3∣0⟩4 + ∣1⟩1∣1⟩2∣1⟩3∣1⟩4)
= 1√

2
(∣0⟩1∣0⟩3 + ∣1⟩1∣1⟩3)⊗ 1√

2
(∣0⟩2∣0⟩4 + ∣1⟩2∣1⟩4).

The subscripts indicate which qubit we are talking about.

So ∣ψ⟩ is not entangled with respect to the system decomposition
consisting of:

A subsystem of the first and third qubit;
A subsystem consisting of the second and fourth qubit.

But, we can check that ∣ψ⟩ is entangled with respect to the
decomposition into the two two-qubit systems consisting of:

The first and second qubits;
The third and fourth qubits.
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Entanglement: Independence from Basis

Entanglement depends on the tensor decomposition.

However, entanglement is not basis dependent.

There is no reference, explicit or implicit, to a basis in the definition
of entanglement.

Certain bases may be more or less convenient to work with,
depending, for instance, on how much they reflect the tensor
decomposition under consideration.

However, the choice does not affect what states are considered
entangled.
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On Quantum Superpositions

As in the single-qubit case, most n-qubit states are superpositions,
i.e., nontrivial linear combinations of basis vectors.

As always, the notion of superposition is basis-dependent.

All states are superpositions with respect to some bases, and not
superpositions with respect to other bases.

For multiple qubits, the answer to the question of what superpositions
mean is more involved than in the single-qubit case.
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Untenability of “Two States at the Same Time”

The common way of talking about superpositions in terms of the
system being in two states “at the same time” is even more suspect
in the multiple-qubit case.

This way of thinking fails to distinguish between states like
1√
2
(∣00⟩ + ∣11⟩) and 1√

2
(∣00⟩ + i ∣11⟩) that differ only by a relative

phase and behave differently under a variety of circumstances.

Furthermore, which states a system is viewed as “being in at the
same time” is basis-dependent.

The expressions 1√
2
(∣00⟩ + ∣11⟩) and 1√

2
(∣+⟩∣+⟩ + ∣−⟩∣−⟩) represent the

same state but have different interpretations.
One as being in the states ∣00⟩ and ∣11⟩ at the same time;
The other as being in the states ∣ + +⟩ and ∣ − −⟩ at the same time.

This is absurd since they denote the same state and, thus, behave in
precisely the same way under all circumstances.

So quantum superpositions are not probabilistic mixtures.
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Subsection 3

Basics of Multi-Qubit Measurement
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Measuring Devices and Direct Sum Decomposition

Let V be the N = 2n dimensional vector space associated with an
n-qubit system.

Any device that measures this system has an associated direct sum
decomposition into orthogonal subspaces

V = S1 ⊕⋯⊕ Sk ,

for some k ≤ N.

The number k corresponds to the maximum number of possible
measurement outcomes for a state measured with that particular
device.

This number varies from device to device, even between devices
measuring the same system.
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Measuring Devices Generalized

That any device has an associated direct sum decomposition is a
direct generalization of the single-qubit case.

Every device measuring a single-qubit system has an associated
orthonormal basis {∣v1⟩, ∣v2⟩}
for the vector space V associated with the single-qubit system.

The vectors ∣vi ⟩ each generate a one-dimensional subspace Si
(consisting of all multiples a∣vi⟩ where a is a complex number).

Moreover, V = S1 ⊕ S2.

The only nontrivial decompositions of the vector space V are into two
one-dimensional subspaces.

Any choice of unit length vectors, one from each of the subspaces,
yields an orthonormal basis.
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Measurement

Let a measuring device have associated direct sum decomposition

V = S1 ⊕⋯⊕ Sk .

Consider an n-qubit system in state ∣ψ⟩.
Suppose the measuring device interacts with the n-qubit system.
Then the interaction:

Changes the state to one entirely contained within one of the
subspaces;
Chooses the subspace with probability equal to the square of the
absolute value of the amplitude of the component of ∣ψ⟩ in that
subspace.

More formally, the state ∣ψ⟩ has a unique direct sum decomposition

∣ψ⟩ = a1∣ψ1⟩⊕⋯⊕ ak ∣ψk⟩,
where ∣ψi ⟩ is a unit vector in Si and ai is real and non-negative.

When ∣ψ⟩ is measured, the state ∣ψi ⟩ is obtained with probability ∣ai ∣2.
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Measurement and Quantum Mechanics

The following are axioms of quantum mechanics.

Any measuring device has an associated direct sum decomposition;
The interaction between the device and a qubit ystem can be modeled
in this way.

It is not possible to prove that every device behaves in this way.

However, so far it has provided an excellent model that predicts the
outcome of experiments with high accuracy.

George Voutsadakis (LSSU) Quantum Computing July 2024 48 / 59



Multiple-Qubit Systems Basics of Multi-Qubit Measurement

Single-Qubit Measurement in Standard Basis

Let V be the vector space associated with a single-qubit system.

A device that measures a qubit in the standard basis has, by
definition, the associated direct sum decomposition

V = S1 ⊕ S2,

where:

S1 is generated by ∣0⟩;
S2 is generated by ∣1⟩.

An arbitrary state ∣ψ⟩ = a∣0⟩ + b∣1⟩
measured by such a device will be:

∣0⟩ with probability ∣a∣2, the amplitude of ∣ψ⟩ in the subspace S1;∣1⟩ with probability ∣b∣2, the amplitude of ∣ψ⟩ in the subspace S2.
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Single-Qubit Measurement in Hadamard Basis

Suppose a device measures a single qubit in the Hadamard basis

{∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩), ∣−⟩ = 1√

2
(∣0⟩ − ∣1⟩)}

It has associated subspace decomposition

V = S+ ⊕ S−,

where:
S+ is generated by ∣+⟩;
S− is generated by ∣−⟩.

A state ∣ψ⟩ = a∣0⟩ + b∣1⟩ can be rewritten as

∣ψ⟩ = a + b√
2
∣+⟩ + a − b√

2
∣−⟩.

The probability that ∣ψ⟩ is measured as ∣+⟩ is ∣ a+b√
2
∣2.

The probability that ∣ψ⟩ is measured as ∣−⟩ is ∣ a−b√
2
∣2.
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Measuring of First Qubit in Standard Basis

Let V be the vector space associated with a two-qubit system.

A device that measures the first qubit in the standard basis has
associated subspace decomposition

V = S1 ⊕ S2,

where:

S1 = ∣0⟩ ⊗V2, the two-dimensional subspace spanned by {∣00⟩, ∣01⟩};
S2 = ∣1⟩ ⊗V2, the two-dimensional subspace spanned by {∣10⟩, ∣11⟩}.

We explore what happens when such a device measures an arbitrary
two-qubit state

∣ψ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩.
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Measuring of First Qubit in Standard Basis (Cont’d)

We write ∣ψ⟩ = c1∣ψ1⟩ + c2∣ψ2⟩,
where:

∣ψ1⟩ = 1
c1
(a00∣00⟩ + a01∣01⟩) ∈ S1;

∣ψ2⟩ = 1
c2
(a10∣10⟩ + a11∣11⟩) ∈ S2.

c1 and c2 are normalization factors,

c1 =
√∣a00∣2 + ∣a01∣2 and c2 =

√∣a10∣2 + ∣a11∣2.
Measurement of ∣ψ⟩ with this device results in:

The state ∣ψ1⟩ with probability ∣c1∣2 = ∣a00∣2 + ∣a01∣2;
The state ∣ψ2⟩ with probability ∣c2∣2 = ∣a10∣2 + ∣a11∣2.

In particular, when the Bell state ∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩) is measured,

we obtain ∣00⟩ and ∣11⟩ with equal probability.
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Measuring of First Qubit in Hadamard Basis

A device that measures the first qubit of a two-qubit system with
respect to the Hadamard basis {∣+⟩, ∣−⟩} has an associated direct sum
decomposition

V = S ′1 ⊕ S ′2,

where:

S ′1 = ∣+⟩⊗V2, the two-dimensional subspace spanned by {∣+⟩∣0⟩, ∣+⟩∣1⟩};
S ′2 = ∣−⟩ ⊗V2, the two-dimensional subspace spanned by {∣−⟩∣0⟩, ∣−⟩∣1⟩}

We explore what happens when such a device measures an arbitrary
two-qubit state

∣ψ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩.
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Measuring of First Qubit in Hadamard Basis (Cont’d)

We write ∣ψ⟩ as ∣ψ⟩ = a′1∣ψ′1⟩ + a′2∣ψ′2⟩,
where: ∣ψ′1⟩ = c ′1 (a00+a10√

2
∣+⟩∣0⟩ + a01+a11√

2
∣+⟩∣1⟩) ,

∣ψ′2⟩ = c ′2 (a00−a10√
2
∣−⟩∣0⟩ + a01−a11√

2
∣−⟩∣1⟩) .

We may calculate the normalization factors c ′1 and c ′2.

These yield the probabilities for the two outcomes.

This measurement on the Bell state ∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩) yields

∣+⟩∣+⟩ and ∣−⟩∣−⟩ with equal probability.
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Subsection 4

Quantum Key Distribution Using Entangled States
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The Ekert 91 Protocol

Alice and Bob wish to create a secret key.

The protocol begins with the creation of a sequence of pairs of
qubits, all in the entangled state ∣Φ+⟩ = 1√

2
(∣00⟩ + ∣11⟩).

Alice receives the first qubit of each pair.

Bob receives the second qubit of each pair.

For each qubit, they both independently and randomly choose one of
the following in which to measure.

The standard basis {∣0⟩, ∣1⟩};
The Hadamard basis {∣+⟩, ∣−⟩}.

After they have made their measurements, they compare bases and
discard those bits for which their bases differ.
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The Ekert 91 Protocol (Cont’d)

If Alice measures the first qubit in the standard basis and obtains ∣0⟩,
then the entire state becomes ∣00⟩.
If Bob now measures in the standard basis, he obtains the result ∣0⟩
with certainty.

If, instead, he measures in the Hadamard basis {∣+⟩, ∣−⟩}, he obtains

∣+⟩ and ∣−⟩ with equal probability, since ∣00⟩ = ∣0⟩ ( 1√
2
(∣+⟩ + ∣−⟩)).

He interprets the states ∣+⟩ and ∣−⟩ as corresponding to the classical
bit values 0 and 1, respectively.

Thus when he measures in the basis {∣+⟩, ∣−⟩} and Alice measures in
the standard basis, he obtains the same bit value as Alice only half
the time.

The behavior is similar when Alice’s measurement indicates her qubit
is in state ∣1⟩.
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The Ekert 91 Protocol (Cont’d)

If instead Alice measures in the Hadamard basis and obtains the result
that her qubit is in the state ∣+⟩, the whole state becomes ∣+⟩∣+⟩.
If Bob now measures in the Hadamard basis, he obtains ∣+⟩ with
certainty.

If he measures in the standard basis he obtains ∣0⟩ and ∣1⟩ with equal
probability.

Since Alice and Bob always get the same bit value if they measure in
the same basis, the protocol results in a shared random key, as long
as the initial pairs were EPR pairs.
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The Ekert 91 Protocol (Cont’d)

The security of the scheme relies on adding steps to the protocol we
have just described that enable Alice and Bob to test the fidelity of
their EPR pairs.

The tests Ekert suggested are based on Bell’s inequalities.

This protocol has the intriguing property that in theory Alice and Bob
can prepare shared keys as they need them, never needing to store
keys for any length of time.

In practice, to prepare keys on an as-needed basis in this way, Alice
and Bob would need to be able to store their EPR pairs so that they
are not corrupted during that time.

The capability of long-term reliable storage of entangled states does
not exist at present.
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