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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Subsection 1

Dirac’s Bra/Ket Notation for Linear Transformations
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Bra/ket Notation and Linear Transformations

Dirac’s bra/ket notation provides a convenient way of specifying linear
transformations on quantum states.

Recall that the conjugate transpose of the vector denoted by ket ∣ψ⟩
is denoted by bra ⟨ψ∣.
Moreover, the inner product of vectors ∣ψ⟩ and ∣φ⟩ is given by

⟨ψ∣φ⟩.
The outer product of the vectors ∣x⟩ and ∣y⟩ is written

∣x⟩⟨y ∣.
Matrix multiplication is associative, and scalars commute with
everything.

So relations such as the following hold:

(∣a⟩⟨b∣)∣c⟩ = ∣a⟩(⟨b∣∣c⟩)= (⟨b∣c⟩)∣a⟩.
George Voutsadakis (LSSU) Quantum Computing July 2024 4 / 93



Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Two-Dimensional Transformations

Let V be a vector space associated with a single-qubit system.

The matrix for the operator ∣0⟩⟨0⟩, with respect to the standard basis
in the standard order {∣0⟩, ∣1⟩}, is

∣0⟩⟨0∣ = (1
0
)(1 0) = (1 0

0 0
).
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Two-Dimensional Transformations (Cont’d)

Similarly, we have

∣0⟩⟨1∣ = (1
0
)(0 1) = (0 1

0 0
).

So the notation ∣0⟩⟨1∣ represents the linear transformation that maps∣1⟩ to ∣0⟩ and ∣0⟩ to the null vector.

This relationship is suggested by the notation:

(∣0⟩⟨1∣)∣1⟩ = ∣0⟩(⟨1∣1⟩) = ∣0⟩(1) = ∣0⟩;
(∣0⟩⟨1∣)∣0⟩ = ∣0⟩(⟨1∣0⟩) = ∣0⟩(0) = 0.
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Two-Dimensional Transformations (Cont’d)

Similarly

∣1⟩⟨0∣ = (0 0

1 0
), ∣1⟩⟨1∣ = (0 0

0 1
).

Thus, all two-dimensional linear transformations on V can be written
in Dirac’s notation:

(a b
c d
) = a(1 0

0 0
) + b(0 1

0 0
) + c(0 0

1 0
) + d(0 0

0 1
)

= a∣0⟩⟨0∣ + b∣0⟩⟨1∣ + c ∣1⟩⟨0∣ + d ∣1⟩⟨1∣.
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Example

The linear transformation that exchanges ∣0⟩ and ∣1⟩ is given by

X = ∣0⟩⟨1∣ + ∣1⟩⟨0∣.
We will also use the notation

X ∶ ∣0⟩ ↦ ∣1⟩,∣1⟩ ↦ ∣0⟩.
This specifies a linear transformation in terms of its effect on the
basis vectors.

The transformation X = ∣0⟩⟨1∣ + ∣1⟩⟨0∣ can also be represented by the
matrix

(0 1

1 0
),

with respect to the standard basis.

George Voutsadakis (LSSU) Quantum Computing July 2024 8 / 93



Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Example

Consider the transformation that exchanges the basis vectors ∣00⟩ and∣10⟩ and leaves the others alone.

It is written

∣10⟩⟨00∣ + ∣00⟩⟨10∣ + ∣11⟩⟨11∣ + ∣01⟩⟨01∣.
With respect to the standard basis, it has matrix representation

⎛⎜⎜⎜⎝
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠
.
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

n-Qbit Operators

An operator on an n-qubit system that maps the basis vector ∣j⟩ to ∣i⟩
and all other standard basis elements to 0 can be written

O = ∣i⟩⟨j ∣
in the standard basis.

The matrix for O has a single non-zero entry 1 in the ij-th place.

A general operator O with entries aij in the standard basis can be
written

O = ∑
i

∑
j

aij ∣i⟩⟨j ∣.
Similarly, the ij-th entry of the matrix for O in the standard basis is
given by ⟨i ∣O ∣j⟩.
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Example

We give an example of working with this notation.

We write out the result of applying operator O to a vector

∣ψ⟩ = ∑
k

bk ∣k⟩.
We have

O ∣ψ⟩ = (∑i ∑j aij ∣i⟩⟨j ∣)(∑k bk ∣k⟩)= ∑i ∑j ∑k aijbk ∣i⟩⟨j ∣∣k⟩= ∑i ∑j aijbj ∣i⟩.
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Bra/ket Notation for Arbitrary Bases

Let {∣βi ⟩} be a basis for an N-dimensional vector space V .

Then, with respect to this basis, an operator O ∶ V → V can be
written as

N∑
i=1

N∑
j=1

bij ∣βi ⟩⟨βj ∣.
In particular, the matrix for O with respect to {∣βi ⟩} has entries

Oij = bij .
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Measurement of Multiple-Qubit States Dirac’s Bra/Ket Notation for Linear Transformations

Matrix versus Bra/ket Notation

Initially the vector/matrix notation may be easier for the reader to
comprehend because it is more familiar.

Sometimes this notation is convenient for performing calculations.

But it requires choosing a basis and an ordering of that basis.

The bra/ket notation is independent of the basis and the order of the
basis elements.

It is also more compact, and suggests correct relationships, as for the
outer product, so that once it becomes familiar, it is easier to read.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Subsection 2

Projection Operators for Measurement
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Orthogonal Complement

For any subspace S of V , the subspace S⊥ consists of all vectors that
are perpendicular to all vectors in S .

The subspaces S and S⊥ satisfy

V = S ⊕ S⊥.

Thus, any vector ∣v⟩ ∈ V can be written uniquely as the sum

∣v⟩ = s⃗1 + s⃗2
of a vector s⃗1 ∈ S and a vector s⃗2 ∈ S⊥.
We use the notation s⃗i because s⃗1 and s⃗2 are generally not unit
vectors.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Projection Operators

Let V be a vector space.

Let S be a subspace of V .

The projection operator

PS ∶ V → S

is the linear operator that sends

∣v⟩↦ s⃗1,

where ∣v⟩ = s⃗1 + s⃗2 with s⃗1 ∈ S and s⃗2 ∈ S⊥.
The operator ∣ψ⟩⟨ψ∣ is the projection operator onto the subspace
spanned by ∣ψ⟩.
Projection operators are sometimes called projectors for short.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Projection Operators and Measurements

Let V be a vector space.

Let V = S1 ⊕⋯⊕ Sk be a direct sum decomposition of V into
orthogonal subspaces Si .

There are k related projection operators

Pi ∶ V → Si ,

with
Pi ∣v⟩ = s⃗i ,

where ∣v⟩ = s⃗1 +⋯+ s⃗k with s⃗i ∈ Si .
In this terminology, a measuring device with associated decomposition
V = S1 ⊕⋯⊕ Sk acting on a state ∣ψ⟩ results in the state

∣φ⟩ = Pi ∣ψ⟩∣Pi ∣ψ⟩∣
with probability ∣Pi ∣ψ⟩∣2.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Example

The projector ∣0⟩⟨0∣ acts on a single-qubit state ∣ψ⟩.
It obtains the component of ∣ψ⟩ in the subspace generated by ∣0⟩.
Let ∣ψ⟩ = a∣0⟩ + b∣1⟩.
Then (∣0⟩⟨0∣)∣ψ⟩ = (∣0⟩⟨0∣)(a∣0⟩ + b∣1⟩)

= a⟨0∣0⟩∣0⟩ + b⟨0∣1⟩∣0⟩
= a∣0⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Example

The projector ∣1⟩∣0⟩⟨1∣⟨0∣ acts on two-qubit states.

Let ∣φ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩.
Then we have

(∣1⟩∣0⟩⟨1∣⟨0∣)∣φ⟩ = (∣1⟩∣0⟩⟨1∣⟨0∣)(a00 ∣00⟩ + a01∣01⟩
+ a10∣10⟩ + a11∣11⟩)

= a00∣1⟩∣0⟩⟨10∣∣00⟩ + a01∣1⟩∣0⟩⟨10∣∣01⟩
+ a10∣1⟩∣0⟩⟨10∣∣10⟩ + a11∣1⟩∣0⟩⟨10∣∣11⟩

= a10∣1⟩∣0⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

General Projection Operators

Let V be an n-dimensional vector space.

Let S be an s-dimensional subspace, with basis {∣α0⟩, . . . , ∣αs−1⟩}.
Let PS be the projection operator onto S .

Then

PS = s−1∑
i=1
∣αi ⟩⟨αi ∣ = ∣α0⟩⟨α0∣ +⋯+ ∣αs−1⟩⟨αs−1∣.

Example: Let a two-qubit system have associated vector space V .

Let ∣ψ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩
represent a state of the two-qubit system.

Let S be the subspace spanned by ∣00⟩, ∣01⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

General Projection Operators (cont’d)

The operator
PS = ∣00⟩⟨00∣ + ∣01⟩⟨01∣

is the projection operator.

It sends ∣ψ⟩ to
PS ∣ψ⟩ = (∣00⟩⟨00∣ + ∣01⟩⟨01∣)(a00 ∣00⟩ + a01∣01⟩

+ a10∣10⟩ + a11∣11⟩)
= a00∣00⟩⟨00∣∣00⟩ + a00∣01⟩⟨01∣∣00⟩
+ a01∣00⟩⟨00∣∣01⟩ + a01∣01⟩⟨01∣∣01⟩
+ a10∣00⟩⟨00∣∣10⟩ + a10∣01⟩⟨01∣∣10⟩
+ a11∣00⟩⟨00∣∣11⟩ + a11∣01⟩⟨01∣∣11⟩

= a00∣00⟩ + a01∣01⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Adjoint or Conjugate Transpose

Let V and W be two vector spaces with inner product.

The adjoint operator or conjugate transpose O† ∶ V →W of an
operator O ∶W → V is defined to be the operator that satisfies the
following inner product relation.

For any v⃗ ∈ V and w⃗ ∈W , the inner product between O†v⃗ and w⃗ in
W is the same as the inner product between v⃗ and Ow⃗ in V :

O†v⃗ ⋅ w⃗ = v⃗ ⋅Ow⃗ .

The matrix for the adjoint operator O† of O is obtained by taking the
complex conjugate of all entries and then the transpose of the matrix
for O, where we are assuming consistent use of bases for V and W .

George Voutsadakis (LSSU) Quantum Computing July 2024 22 / 93



Measurement of Multiple-Qubit States Projection Operators for Measurement

Adjoint and Bra/ket Notation

Recall that ⟨x ∣ is the conjugate transpose of ∣x⟩.
The reader can check that

(A∣x⟩)† = ⟨x ∣A†.

In bra/ket notation, the relation between the inner product of O†∣x⟩
and ∣w⟩ and the inner product of ∣x⟩ and O ∣w⟩ is reflected in the
notation: (⟨x ∣O)∣w⟩ = ⟨x ∣(O ∣w⟩) = ⟨x ∣O ∣w⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Adjoint and Projections

By definition, a projection operator is idempotent, i.e., applying it
many times in succession has the same effect as just applying it once,

PP = P .
Furthermore, any projection operator is its own adjoint,

P = P†.

Thus, for any projection operator P and all ∣v⟩ ∈ V ,

∣P ∣v⟩∣2 = (⟨v ∣P†)(P ∣v⟩) = ⟨v ∣P ∣v⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Single-Qubit Measurement in the Standard Basis

Let V be the vector space associated with a single-qubit system.

The direct sum decomposition for V associated with measurement in
the standard basis is

V = S ⊕ S ′,

where:

S is the subspace generated by ∣0⟩;
S ′ is the subspace generated by ∣1⟩.

The related projection operators are:

P ∶ V → S , with P = ∣0⟩⟨0∣;
P ′ ∶ V → S ′, with P ′ = ∣1⟩⟨1∣.

Consider the state ∣ψ⟩ = a∣0⟩ + b∣1⟩.
Measurement of ψ results in the state P ∣ψ⟩

∣P ∣ψ⟩∣ with probability ∣P ∣ψ⟩∣2.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Single-Qubit Measurement in the Standard Basis (Cont’d)

We have
P ∣ψ⟩ = (∣0⟩⟨0∣)∣ψ⟩ = ∣0⟩⟨0∣ψ⟩ = a∣0⟩.

Hence ∣P ∣ψ⟩∣2 = ⟨ψ∣P ∣ψ⟩
= ⟨ψ∣(∣0⟩⟨0∣)∣ψ⟩
= ⟨ψ∣0⟩⟨0∣ψ⟩
= aa

= ∣a∣2.
So the result of the measurement is

a∣0⟩
∣a∣ with probability ∣a∣2.

Since an overall phase factor is physically meaningless, the state
represented by ∣0⟩ has been obtained with probability ∣a∣2.
A similar calculation shows that the state represented by ∣1⟩ is
obtained with probability ∣b∣2.

George Voutsadakis (LSSU) Quantum Computing July 2024 26 / 93



Measurement of Multiple-Qubit States Projection Operators for Measurement

Two-Qubit Measurement in the Standard Basis

Let V be the vector space associated with a two-qubit system.

Consider an arbitrary two-qubit state

∣φ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩.
Let a measurement have decomposition

V = S00 ⊕ S01 ⊕ S10 ⊕ S11,

where Sij is the one-dimensional complex subspace spanned by ∣ij⟩.
The related projection operators Pij ∶ V → Sij are:

P00 = ∣00⟩⟨00∣;
P01 = ∣01⟩⟨01∣;
P10 = ∣10⟩⟨10∣;
P11 = ∣11⟩⟨11∣.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Two-Qubit Measurement in the Standard Basis (Cont’d)

The state after measurement will be
Pij ∣ψ⟩
∣Pij ∣ψ⟩∣ with probability ∣Pij ∣ψ⟩∣2.

Recall that:

Two unit vectors ∣v⟩ and ∣w⟩ represent the same quantum state if

∣v⟩ = ei θ ∣w⟩, for some θ;

∣v⟩ ∼ ∣w⟩ indicates that ∣v⟩ and ∣w⟩ represent the same quantum state.

In a way similar to the single qubit case, we can determine that the
state after measurement is:

P00 ∣ψ⟩
∣P00 ∣ψ⟩∣ =

a00∣00⟩
∣a00∣ ∼ ∣00⟩, with probability ⟨ψ∣P00∣ψ⟩ = ∣a00∣2;∣01⟩ with probability ∣a01∣2;∣10⟩ with probability ∣a10∣2;∣11⟩, with probability ∣a11∣2.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Measuring a Two-Qubit State for Bit Equality

Let V be the vector space associated with a two-qubit system.

Consider a measurement with associated direct sum decomposition

V = S1 ⊕ S2,

where:
S1 is the subspace generated by {∣00⟩, ∣11⟩}, the subspace in which the
two bits are equal;
S2 is the subspace generated by {∣10⟩, ∣01⟩}, the subspace in which the
two bits are not equal.

Let P1 and P2 be the projection operators onto S1 and S2 respectively.

Suppose a system is in state

∣ψ⟩ = a00∣00⟩ + a01∣01⟩ + a10∣10⟩ + a11∣11⟩.
After measurement, the state becomes

Pi ∣ψ⟩
∣Pi ∣ψ⟩∣ , with probability

∣Pi ∣ψ⟩∣2 = ⟨ψ∣Pi ∣ψ⟩.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Measuring a Two-Qubit State for Bit Equality (Cont’d)

Let
c1 = ⟨ψ∣P1∣ψ⟩ = √∣a00∣2 + ∣a11∣2;
c2 = ⟨ψ∣P2∣ψ⟩ = √∣a01∣2 + ∣a10∣2.

After measurement the state will be:

∣u⟩ = 1
c1
(a00∣00⟩ + a11∣11⟩), with probability ∣c1∣2 = ∣a00∣2 + ∣a11∣2;∣v⟩ = 1

c2
(a01∣01⟩ + a10∣10⟩), with probability ∣c2∣2 = ∣a01∣2 + ∣a10∣2.

Thus, we know that:

If the first outcome happens, the two bit values are equal, but we do
not know whether they are 0 or 1;
If the second case happens, the two bit values are not equal, but we do
not know which one is 0 and which one is 1.

Thus, the measurement does not determine the value of the two bits,
only whether the two bits are equal.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Comments on the Example

As in the case of single-qubit states, most states are a superposition
with respect to a measurement’s subspace decomposition.

In the previous example, the initial state is a superposition containing
components with both equal and unequal bit values.

This is transformed by measurement either to a state (generally still a
superposition of standard basis elements), in which in all components
the bit values are equal, or to a state in which the bit values are not
equal in all of the components.
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Measurement of Multiple-Qubit States Projection Operators for Measurement

Two-Qubit State With Respect to the Bell Basis

Recall the four Bell states

∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩), ∣Ψ+⟩ = 1√

2
(∣01⟩ + ∣10⟩),

∣Φ−⟩ = 1√
2
(∣00⟩ − ∣11⟩), ∣Ψ−⟩ = 1√

2
(∣01⟩ − ∣10⟩).

Consider the direct sum decomposition of V into the subspaces
generated by the Bell states

V = SΦ+ ⊕ SΦ− ⊕ SΨ+ ⊕ SΨ− .

Suppose we measue the state ∣00⟩ with respect to this decomposition.

Since ∣00⟩ = 1√
2
(∣Φ+⟩ + ∣Φ−⟩), this yields:

∣Φ+⟩, with probability 1
2
;∣Φ−⟩, with probability 1

2
.

We can also determine the outcomes and their probabilities for the
three other standard basis elements, and a general two-qubit state.
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Subsection 3

Hermitian Operator Formalism for Measurement
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Eigenvalues, Eigenvectors and Eigenspaces

Let O ∶ V → V be a linear operator.

Recall that, if
Ov⃗ = λv⃗ ,

for some non-zero vector v⃗ ∈ V , then λ is an eigenvalue and v⃗ is a
λ-eigenvector of O.

If both v⃗ and w⃗ are λ-eigenvectors of O, then v⃗ + w⃗ is also a
λ-eigenvector.

So the set of all λ-eigenvectors forms a subspace of V .

It is called the λ-eigenspace of O.

For an operator with a diagonal matrix representation, the eigenvalues
are simply the values along the diagonal.
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Hermitian Operators

An operator O ∶ V → V is Hermitian if it is equal to its adjoint,

O† = O.
The eigenspaces of Hermitian operators have special properties.

Suppose λ is an eigenvalue of an Hermitian operator O.

Let ∣x⟩ be a λ-eigenvector.

We have

λ⟨x ∣x⟩ = ⟨x ∣λ∣x⟩ = ⟨x ∣(O ∣x⟩) = (⟨x ∣O†)∣x⟩ = λ⟨x ∣x⟩.
Hence, λ = λ.
So all eigenvalues of a Hermitian operator are real.
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Hermitian Operators and Orthogonal Decompositions

We show that the eigenspaces Sλ1 ,Sλ2 , . . . ,Sλk of a Hermitian
operator are orthogonal and satisfy

Sλ1 ⊕ Sλ2 ⊕⋯⊕ Sλk = V .
Claim: For any operator, two distinct eigenvalues have disjoint
eigenspaces.

Assume ∣x⟩ is a unit vector.

Suppose O ∣x⟩ = λ∣x⟩ and O ∣x⟩ = µ∣x⟩.
Thus, (λ − µ)∣x⟩ = 0.
This implies that λ = µ.
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Hermitian Operators and Decompositions (Cont’d)

Claim: For any Hermitian operator, the eigenvectors for distinct
eigenvalues must be orthogonal.

Let λ ≠ µ be two eigenvalues.

Let ∣v⟩ be a λ-eigenvector and ∣w⟩ is a µ-eigenvector.
Then

λ⟨v ∣w⟩ = (⟨v ∣O†)∣w⟩ = ⟨v ∣(O ∣w⟩) = µ⟨v ∣w⟩.
By hypothesis, λ and µ are distinct eigenvalues.

So ⟨v ∣w⟩ = 0.
Thus, Sλi and Sλj are orthogonal for λi ≠ λj .
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Measurement of Multiple-Qubit States Hermitian Operator Formalism for Measurement

Hermitian Operators and Decompositions (Cont’d)

Claim: The direct sum of all of the eigenspaces for a Hermitian
operator O ∶ V → V is the whole space V .

A unitary operator U satisfies U†U = I .
The columns of a unitary matrix U form an orthonormal set.

If O is Hermitian, then so is UOU−1 for any unitary operator U.

Any operator has at least one eigenvalue λ and λ-eigenvector vλ.

This implies that, for any matrix A ∶ V → V , there is a unitary
operator U, such that the matrix for UAU−1 is upper triangular.

(That is, all entries below the diagonal are zero).

It follows that, for any Hermitian operator O ∶ V → V , with
eigenvalues λ1, . . . , λk , the direct sum of the λi -eigenspaces Si gives
the whole space,

V = Sλ1 ⊕ Sλ2 ⊕⋯⊕ Sλk .
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The Eigenspace Decomposition

Let V be an N-dimensional vector space.

O ∶ V → V be an Hermitian operator.

Let λ1, λ2, . . . , λk be the k ≤ N distinct eigenvalues of O.

We have just shown that

V = Sλ1 ⊕⋯⊕ Sλk ,

where Sλi is the eigenspace of O with eigenvalue λi .

This direct sum decomposition of V is called the eigenspace

decomposition of V for the Hermitian operator O.

Thus, any Hermitian operator O ∶ V → V uniquely determines a
subspace decomposition for V .
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Arbitrary Decompositions as Eigenspace Decompositions

Any decomposition of a vector space V into the direct sum of
subspaces S1, . . . ,Sk can be realized as the eigenspace decomposition
of a Hermitian operator O ∶ V → V .

Let Pi be the projectors onto the subspaces Si .

Let λ1, λ2, . . . , λk be any set of distinct real values.

Then

O = k∑
i=1
λiPi

is a Hermitian operator with the desired direct sum decomposition.

When describing a measurement, instead of directly specifying the
associated subspace decomposition, we can specify a Hermitian
operator whose eigenspace decomposition is that decomposition.
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Remarks

It is important to recognize that quantum measurement is not
modeled by the action of a Hermitian operator on a state.

The projectors Pj associated with a Hermitian operator O act on a
state.

The Hermitian operator O itself does not act on a state.

Which projector acts on the state depends on the probabilities

pj = ⟨ψ∣Pj ∣ψ⟩.
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Example

Consider a state ∣ψ⟩ = a∣0⟩ + b∣1⟩.
Suppose we measure it according to the Hermitian operator

Z = ∣0⟩⟨0∣ − ∣1⟩⟨1∣.
We do have

( 1 0
0 −1

)( a

b
) = ( a

−b
) .

However, this does not result in the state a∣0⟩ − b∣1⟩.
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Multiplication by a Hermitian Operator

Direct multiplication by a Hermitian operator generally does not even
result in a well-defined state.

Example:

( 0 0
0 1

) ∣0⟩ = ( 0 0
0 1

)( 1
0
)

= ( 0
0
) .
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Observables

As we already saw, given a single instance of an unknown single-qubit
state a∣0⟩ + b∣1⟩, there is no way to determine experimentally what
state it is in.

That is, we cannot directly observe the quantum state.

It is only the results of measurements that we can directly observe.

For this reason, the Hermitian operators we use to specify
measurements are called observables.
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The Measurement Postulate

The measurement postulate of quantum mechanics states that:

Any quantum measurement can be specified by a Hermitian operator
O, called an observable.
The possible outcomes of measuring a state ∣ψ⟩ with an observable O

are labeled by the eigenvalues of O.
Measurement of state ∣ψ⟩ results in the outcome labeled by the
eigenvalue λi of O with probability ∣Pi ∣ψ⟩∣2, where Pi is the projector
onto the λi -eigenspace.
(Projection) The state after measurement is the normalized projection

Pi ∣ψ⟩∣Pi ∣ψ⟩∣
of ∣ψ⟩ onto the λi -eigenspace Si .
Thus, the state after measurement is a unit length eigenvector of O
with eigenvalue λi .
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Measuring a Single Qubit in the Standard Basis

We build up a Hermitian operator that specifies the measurement of a
single qubit system in the standard basis.

The subspace decomposition corresponding to this measurement is

V = S ⊕ S ′,

where:
S is the subspace generated by ∣0⟩;
S ′ is the subspace generated by ∣1⟩.

The projectors associated with S and S ′ are P = ∣0⟩⟨0∣ and P ′ = ∣1⟩⟨1∣,
respectively.

Let λ and λ′ be any two distinct real values, say λ = 2 and λ′ = −3.
Consider the operator

O = 2∣0⟩⟨0∣ − 3∣1⟩⟨1∣ = ( 2 0
0 −3

) .
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Measuring a Single Qubit in the Standard Basis (Cont’d)

O is a Hermitian operator specifying the measurement of a
single-qubit state in the standard basis.

Any other distinct values for λ and λ′ could have been used.

To specify single-qubit measurements in the standard basis, we will
generally use either of

∣1⟩⟨1∣ = ( 0 0
0 1

) ,
Z = ∣0⟩⟨0∣ − ∣1⟩⟨1∣ = ( 1 0

0 −1
) .
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Measuring a Single Qubit in the Hadamard Basis

We construct a Hermitian operator corresponding to measurement of
a single qubit in the Hadamard basis {∣+⟩, ∣−⟩}.
The subspaces under consideration are:

S+, generated by ∣+⟩;
S−, generated by ∣−⟩.

They have associated projectors

P+ = ∣+⟩⟨+∣ = 1
2(∣0⟩⟨0∣ + ∣0⟩⟨1∣ + ∣1⟩⟨0∣ + ∣1⟩⟨1∣);

P− = ∣−⟩⟨−∣ = 1
2(∣0⟩⟨0∣ − ∣0⟩⟨1∣ − ∣1⟩⟨0∣ + ∣1⟩⟨1∣).

We are free to choose distinct λ+ and λ− any way we like.

Say we take λ+ = 1 and λ− = −1.
Then

X = ∣0⟩⟨1∣ + ∣1⟩⟨0∣ = ( 0 1
1 0

)
is a Hermitian operator for single-qubit measurement in the
Hadamard basis.
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Example

Consider the Hermitian operator

A = ∣01⟩⟨01∣ + 2∣10⟩⟨10∣ + 3∣11⟩⟨11∣.
Take the standard basis in the standard order {∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩}.
Then A has matrix representation

⎛⎜⎜⎜⎝
0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3

⎞⎟⎟⎟⎠
.

The eigenspace decomposition for A consists of four subspaces.

Each subspace is generated by one of the vectors ∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩.
The operator A is one of many Hermitian operators that specify
measurement with respect to the full standard basis decomposition
described in a previous example.
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Example

Consider the Hermitian operator

B = ∣00⟩⟨00∣ + ∣01⟩⟨01∣ + π(∣10⟩⟨10∣ + ∣11⟩⟨11∣) =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 π 0
0 0 0 π

⎞⎟⎟⎟⎠
.

It specifies measurement of a two-qubit system with respect to the
subspace decomposition

V = S0 ⊕ S1,

where:

S0 is generated by {∣00⟩, ∣01⟩};
S1 is generated by {∣10⟩, ∣11⟩}.

So B specifies measurement of the first qubit in the standard basis, as
described in a previous example.
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Example

Consider the Hermitian operator

C = 2(∣00⟩⟨00∣ + ∣11⟩⟨11∣) + 3(∣01⟩⟨01∣ + ∣10⟩⟨10∣) =
⎛⎜⎜⎜⎝

2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

⎞⎟⎟⎟⎠
.

It specifies measurement with respect to the subspace decomposition

V = S2 ⊕ S3,

where:

S2 is generated by {∣00⟩, ∣11⟩};
S3 is generated by {∣01⟩, ∣10⟩}.

So C specifies the measurement for bit equality, also described in a
previous example.
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Orthonormal Eigenbases

Given the subspace decomposition for a Hermitian operator O, it is
possible to find an orthonormal eigenbasis of V for O.

If O has n distinct eigenvalues, as in the general case, the eigenbasis
is unique up to length one complex factors.

If O has fewer than n eigenvalues, some of the eigenvalues are
associated with an eigenspace of more than one dimension.

In this case, a random orthonormal basis can be chosen for each
eigenspace Si .

The matrix for the Hermitian operator O with respect to any of these
eigenbases is diagonal.
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Hermitian Operators and Projectors

Any Hermitian operator O with eigenvalues λj can be written as

O = ∑
j

λjPj ,

where Pj are the projectors for the λj -eigenspaces of O.

Every projector is Hermitian with eigenvalues 1 and 0 where the
1-eigenspace is the image of the operator.

Let S be an m-dimensional subspace of V .

Suppose S is spanned by the basis {∣i1⟩, . . . , ∣im⟩}.
The associated projector

PS = m∑
j=1
∣ij⟩⟨ij ∣

maps vectors in V into S .
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Projectors, Direct Sums and Traces

Let S and T be orthogonal subspaces of V .

Let PS and PT be projectors for S and T , respectively.

The projector for the direct sum S ⊕T is

PS +PT .

Let P be a projector onto a subspace S .

Then tr(P), the sum of the diagonal elements of any matrix
representing P , is the dimension of S .

This argument applies to any basis, since the trace is basis
independent.
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Tensor Product

Let V and W be vector spaces.

Let A be a linear operator on V .

Let B be a linear operator on W .

The tensor product

A⊗ B

acts on elements v ⊗w of the tensor product space V ⊗W by

(A⊗ B)(v ⊗w) = Av ⊗ Bw .

It follows from this definition that

(A⊗B)(C ⊗D) = AC ⊗BD.
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Tensor Product, Eigenvalues and Eigenspaces

Let V0 and V1 be vector spaces.

Let O0 be a Hermitian operator on V0.

Let O1 be a Hermitian operator on V1.

Then O0 ⊗O1 is a Hermitian operator on the space V0 ⊗ V1.

Suppose Oi has eigenvalues λij with associated eigenspaces Sij .

Then O0 ⊗O1 has eigenvalues λ′jk = λ0jλ1k .
If an eigenvalue λ′jk = λ0jλ1k is unique, then its associated eigenspace
S ′jk is the tensor product of S0j and S1k .

In general, the eigenvalues λ′jk need not be distinct.

Suppose an eigenvalue λ′ of O0 ⊗O1 that is the product of
eigenvalues of O0 and O1 in multiple ways, λ′ = λ′j1k1 =⋯ = λ′jmkm .
Then λ′ has eigenspace

S = (S0j1 ⊗ S1k1)⊕⋯⊕ (S0jm ⊗ S1km).
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Hermitian Operators on Tensor Products

Most Hermitian operators O on V0⊗V1 cannot be written as a tensor
product of two Hermitian operators O0 and O1 acting on V0 and V1,
respectively.

Such a decomposition is possible only if each subspace in the
subspace decomposition described by O can be written as

S = S0 ⊗ S1,

for S0 and S1 in the subspace decompositions associated to O0 and
O1, respectively.

For most Hermitian operators this condition does not hold.

However, it does hold for all observables we have described so far.
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Example

Consider the operator

( 1 0
0 −1

)⊗ ( 2 0
0 3

) = (∣0⟩⟨0∣ − ∣1⟩⟨1∣) ⊗ (2∣0⟩⟨0∣ + 3∣1⟩⟨1∣)
= 2∣00⟩⟨00∣ + 3∣01⟩⟨01∣

− 2∣10⟩⟨10∣ − 3∣11⟩⟨11∣.
This specifies the full measurement in the standard basis.

However, it uses a different Hermitian operator from the one used in
a previous example for the same purpose.
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Example

Consider the operator

( 1 0
0 π

)⊗ ( 1 0
0 1

) = ∣00⟩⟨00⟩ + ∣01⟩⟨01∣ + π(∣10⟩⟨10∣ + ∣11⟩⟨11∣).
It specifies measurement of the first qubit in the standard basis, as
described in a previous example.

The same role is played by
Z ⊗ I ,

where Z = ∣0⟩⟨0∣ − ∣1⟩⟨1∣.
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Example

Consider the Hermitian operator

Z ⊗ Z = ∣00⟩⟨00∣ − ∣01⟩⟨01∣ − ∣10⟩⟨10∣ + ∣11⟩⟨11∣.
It specifies the measurement for bit equality, also described in a
previous example.
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A Non-Tensor Two-Qubit Measurement

We now give an example of a two-qubit measurement that cannot be
expressed as the tensor product of two single-qubit measurements.

This shows that not all measurements are tensor products of single
qubit measurements.

Consider a two-qubit state.

Let M be the observable, with matrix representation

M =
⎛⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠
.

M determines whether both bits are set to one.
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A Non-Tensor Two-Qubit Measurement (Cont’d)

Measurement with the operator M results in a state contained in one
of the two subspaces S0 and S1, where:

S1 is the subspace spanned by {∣11⟩};
S0 is spanned by {∣00⟩, ∣01⟩, ∣10⟩}.

Measuring with M is quite different from measuring both qubits in
the standard basis and then performing the classical AND operation.

E.g., consider the state

∣ψ⟩ = 1√
2
(∣01⟩ + ∣10⟩).

It remains unchanged when measured with M .
Measuring both qubits of ∣ψ⟩ would result in either the state ∣01⟩ or∣10⟩.
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Measurements on Single Qubits and on Subsystems

Any Hermitian operator Q1 ⊗Q2 on a two-qubit system is said to be
composed of single-qubit measurements if Q1 and Q2 are
Hermitian operators on the single-qubit systems.

Furthermore, any Hermitian operator of the form Q ⊗ I or I ⊗Q ′ on a
two-qubit system is said to be a measurement on a single qubit of
the system.

More generally, a Hermitian operator of the form

I ⊗⋯⊗ I ⊗Q ⊗ I ⊗⋯⊗ I

on an n-qubit system is said to be a single-qubit measurement of
the system.

Any Hermitian operator of the form A⊗ I on a system V ⊗W , where
A is a Hermitian operator acting on V , is said to be a measurement

of subsystem V .
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Distinguishing Two Decompositions

Suppose we are measuring an n-qubit system.

There are two totally distinct types of decompositions of the vector
space V under consideration:

The tensor product decomposition into the n separate qubits;
The direct sum decomposition into k ≤ 2n subspaces associated with
the measuring device.

These decompositions could not be more different.

In particular, a tensor component Vi of V = V1 ⊗⋯⊗ Vn is not a
subspace of V .

Similarly, the subspaces associated with measurements do not
correspond to the subsystems, such as individual qubits, of the whole
system.
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Measuring n-Qubit Systems

We mentioned that only one classical bit of information can be
extracted from a single qubit.

We can now both generalize this statement and make it more precise.

Any observable on an n-qubit system has ≤ 2n distinct eigenvalues.

So there are at most 2n possible results of a given measurement.

Thus, a single measurement of an n-qubit system will reveal at most
n bits of classical information.

In general, the measurement changes the state.

So any further measurements give information about the new state,
not the original one.
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Subsection 4

EPR Paradox and Bell’s Theorems
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Bohm’s Experiment

Imagine a source that:

Generates EPR pairs 1√
2
(∣00⟩ + ∣11⟩);

Sends the first particle to Alice;
Sends the second particle to Bob.

Alice and Bob can be arbitrarily far apart.

Each person can measure only the particle he or she receives.

More precisely, for O and O ′ single-qubit observables:
Alice can use only observables of the form O ⊗ I ;
Bob can use only observables of the form I ⊗O′.
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Bohm’s Experiment (Cont’d)

Suppose Alice measures her particle in the standard single-qubit basis
and observes the state ∣0⟩.
The effect of this measurement is to project the state of the quantum
system onto that part of the state compatible with the results of
Alice’s measurement.

So the combined state will now be ∣00⟩.
Suppose Bob now measures his particle.

He will always observe ∣0⟩.
Thus it appears that Alice’s measurement has affected the state of
Bob’s particle.

Similarly, if Alice measures ∣1⟩, so will Bob.
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Bohm’s Experiment (Cont’d)

By symmetry, if Bob were to measure his qubit first, Alice would
observe the same result as Bob.

When measuring in the standard basis, Alice and Bob will always
observe the same results, regardless of the relative timing.

The probability that either qubit is measured to be ∣0⟩ is 1
2 .

However, the two results are always correlated.
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EPR (Einstein, Podolsky, Rosen) Paradox

Suppose the measurements are relativistically spacelike separated:

The particles are far enough apart;
The measurements happen close in time.

It may then sound as if an interaction between these particles is
happening faster than the speed of light.

We said earlier that a measurement performed by Alice appears to
affect the state of Bob’s particle, but this wording is misleading.

Following special relativity, it is incorrect to think of one measurement
happening first and causing the results of the other.

It is possible to set up the EPR scenario so that:

One observer sees Alice measure first, then Bob;
Another observer sees Bob measure first, then Alice.

According to relativity, physics must explain equally well the
observations of both observers.
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Randomness and Correlation

The causal terminology we used cannot be compatible with both
observers’ observations.

The actual experimental values are invariant under change of observer.

The experimental results can be explained equally well by Bob
measuring first and then Alice as the other way around.

This symmetry shows, while there is correlation between the two
particles, Alice and Bob cannot use their EPR pair to communicate
faster than the speed of light.

All that can be said is that Alice and Bob will observe correlated

random behavior.
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Randomness and Correlation (Cont’d)

Even though the results themselves are perfectly compatible with
relativity theory, the behavior remains mysterious.

Suppose Alice and Bob had a large number of EPR pairs that they
measure in sequence.

Then they would see an odd mixture of correlated and probabilistic
results.

Each of their sequences of measurements appears completely random;
But if Alice and Bob compare their results, they see that they
witnessed the same random sequence from their two separate particles.

Their sequence of entangled pairs behaves like a pair of magic coins.

They always land the same way up when tossed together;
But whether they both land heads or both land tails is completely
random.
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Local Hidden Variable Theories

So far, quantum mechanics is not the only theory that can explain
these results.

They could also be explained by a classical theory that postulates
that:

Particles have an internal hidden state that determines the result of
the measurement;
This hidden state is:

Identical in two particles generated at the same time by the EPR

source;

Varies randomly over time as the pairs are generated.

Such theories are known as local hidden variable theories.
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Local Hidden Variable Theories (Cont’d)

According to local hidden variable theories, the reason we see
random, instead of deterministic, results is simply because we, as of
yet, have no way of accessing the hidden states.

The hope of proponents of such theories was that, eventually, physics
would advance to a stage in which this hidden state would be known
to us.

The local part comes from the assumption that the hidden variables
are internal to each of the particles and do not depend on external
influences.

In particular, the hidden variables do not depend on the state of
faraway particles or measuring devices.
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Limitations of Local Hidden Variable Theories

Is it possible to construct a local hidden variable theory that agrees
with all of the experimental results we use quantum mechanics to
model?

The answer is “no”.

Bell’s work of 1964 made it possible to construct experiments that
could distinguish quantum mechanics from all local hidden variable
theories.

Since then such experiments have been done, and all of the results
have agreed with those predicted by quantum mechanics.

Thus, no local hidden variable theory can explain how nature works.

Bell showed that any local hidden variable theory predicts results that
satisfy an inequality, known as Bell’s inequality.
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Setup for Bell’s Theorem

Imagine an EPR source that emits pairs of photons whose
polarizations are in an entangled state

∣ψ⟩ = 1√
2
(∣ ↑↑⟩ + ∣→→⟩),

where we are using the notation ∣ ↑⟩ and ∣→⟩ for photon polarization.

We suppose that the two photons travel in opposite directions.

Each is raveling towards a polaroid (polarization filter).
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Setup for Bell’s Theorem (Cont’d)

The polaroids can be set at three different angles.

In the special case we consider first, the polaroids can be set to:

Vertical;+60○ off vertical;−60○ off vertical.
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Quantum-Mechanical Predictions

Let Oθ be a single-qubit observable with:

1-eigenspace generated by ∣v⟩ = cosθ∣0⟩ + sin θ∣1⟩;−1-eigenspace generated by ∣v⊥⟩ = − sin θ∣0⟩ + cos θ∣1⟩.
Suppose we measure the state ∣ψ⟩ using Oθ1 ⊗Oθ2 .

Quantum mechanics predicts this results in a state with eigenvalue 1
with probability cos2 (θ1 − θ2).
In other words, we can show that the probability that the state ends
up in the subspace generated by {∣v1⟩∣v2⟩, ∣v⊥1 ⟩∣v⊥2 ⟩}, and not the
−1-eigenspace generated by {∣v1⟩∣v⊥2 ⟩, ∣v⊥1 ⟩∣v2⟩}, is cos2 (θ1 − θ2).
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Polaroids and Observables

We use the following notation.

M↗ for the observable corresponding to the −60○ setting;
M↑ for the observable corresponding to the vertical setting;
M↖ for the observable corresponding to the +60○ setting.

Each observable has two possible outcomes.

Outcome P , in which the photon passes through the polaroid;
Outcome A, in which the photon is absorbed by the polaroid.
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Polaroids, Observables and Probabilities

Measurement with observable Oθ1 ⊗Oθ2 results in a state with
eigenvalue 1 with probability cos2 (θ1 − θ2).
We can compute the probability that measurement of two photons,
by polaroids set at angles θ1 and θ2, give the same result, PP or AA.

Suppose both polaroids are set at the same angle.

Both photons will pass through or both will be absorbed.

So both photon measurements give the same results with probability
cos2 0 = 1.
Suppose the polaroid on the right is set to vertical, and the one on
the left is set to +60○.

Then both measurements agree with probability cos2 60 = 1
4 .
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Polaroids, Observables and Probabilities (Cont’d)

Assume the two polaroids are not set at the same angle.

The difference between the angles is either 60 or 120 degrees.

So in all of these cases the two measurements:

Agree 1
4
of the time;

Disagree 3
4
of the time.

Suppose the polaroids are set randomly for a series of EPR pairs
emanating from the source.

With probability 1
3
the polaroid orientation will be the same and the

measurements will agree.
With probability 2

3
the polaroid orientation will differ and the

measurements will agree with probability 1
4
.

Thus, overall, the measurements will agree with probability
1
3 +

2
3 ⋅

1
4 = 1

2 and disagree half the time.

These are indeed the probabilities observed experimentally.
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Predictions of Hidden-Variable Theory

We show that no local hidden variable theory can give these
probabilities.

Suppose there is some hidden state associated with each photon that
determines the result of measuring the photon with a polaroid in each
of the three possible settings.

There are only 23 binary combinations in
which these states can respond to
measurement by polaroids in the 3
orientations.

We label these 8 possibilities h0, . . . ,h7, as
shown in the table on the right.

↗ ↑ ↖
h0 P P P

h1 P P A

h2 P A P

h3 P A A

h4 A P P

h5 A P A

h6 A A P

h7 A A A
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Predictions of Hidden-Variable Theory (Cont’d)

We can think of hi as the equivalence class of all hidden states,
however these might look, that give the indicated measurement
results.

Experimentally, it has been established that both polaroids, when set
at the same angle, always give the same result when measuring the
photons of an EPR pair ∣ψ⟩.
Suppose a local hidden variable theory models experimental results.

Then it must predict that both photons of the entangled pair are in
the same equivalence class of hidden states hi .

For example, if the photon on the right responds to the three polaroid
positions ↗, ↑,↖ with PAP , then so must the photon on the left.
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Predictions of Hidden-Variable Theory (Cont’d)

Now consider the 9 possible combinations of orientations of the two
polaroids {(↗,↗), (↗, ↑), . . . , (↖,↖)}.
We calculate the expected agreement of the measurements for photon
pairs in each hidden state hi .

Consider hidden states h0 and h7 ({PPP,PPP} and {AAA,AAA}).
Measurements agree for all possible pairs of orientations.

So we get 100 percent agreement.

Consider the hidden state h1, {PPA,PPA}.
Measurements agree in five of the nine possible orientations and
disagree in the others.

We get 5
9 agreement and 4

9 disagreement.

George Voutsadakis (LSSU) Quantum Computing July 2024 84 / 93



Measurement of Multiple-Qubit States EPR Paradox and Bell’s Theorems

Predictions of Hidden-Variable Theory (Cont’d)

The other six cases are similar to h1.

We get 5
9 agreement and 4

9 disagreement.

No matter with what probability distribution the EPR source emits
photons with hidden states, the expected agreement between the two
measurements will be at least 5

9 .

Thus, no local hidden variable theory can give the 50-50 agreement
predicted by quantum theory and seen in experiments.
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Setup for Bell’s Inequality

A sequence of EPR pairs emanate from a photon source toward two
polaroids.

The polaroids can be set at any triple of three distinct angles a, b and
c .

We record the results of repeated measurements at random settings
of the polaroids, chosen among a, b and c .

We count the number of times that the measurements match for any
pair of settings.
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Probabilities

Let Pxy denote the sum of the observed probability that either of the
following happens:

The two photons interact in the same way with both polaroids (either
both pass through, or both are absorbed) when the first polaroid is set
at angle x and the second at angle y ;
The two photons interact in the same way with both polaroids when
the first polaroid is set at angle y and the second at angle x .

Whenever the two polaroids are on the same setting, the
measurement of the photons will always give the same result.

So, we have Pxx = 1, for any setting x .
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Bell’s Inequality

We now show that the Bell’s inequality

Pab + Pac +Pbc ≥ 1
holds for any local hidden variable theory and any sequence of
settings for each of the polaroids.

We show that the inequality holds for the probabilities associated with
any one equivalence class of hidden states.

From this, we deduce that it holds for any distribution of these
equivalence classes.

According to any local hidden variable theory, the result of measuring
a photon by a polaroid in each of the three possible settings is
determined by a local hidden state h of the photon.

Again, we think of h as an equivalence class of all hidden states that
give the indicated measurement results.
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Bell’s Inequality (Cont’d)

We know that both polaroids, when set at the same angle, always give
the same result when measuring the photons in an EPR state ∣ψ⟩.
This means that both photons of the entangled pair must be in the
same equivalence class of hidden states h.

E.g., if the photon on the right responds to the three polaroid
positions a,b, c with PAP , then so must the photon on the left.
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Bell’s Inequality (Cont’d)

Let Ph
xy be 1 if the result of the two measurements agree on states

with hidden variable h, and 0 otherwise.

Any measurement has only two possible results, P and A.

So the result of measuring a photon, with a given hidden state h, in
each of the three polaroid settings, a,b and c , will be the same for at
least one of the settings.

Moreover, the two photons of state ∣ψ⟩ are in the same hidden state.

It follows that, for any h,

Ph
ab +P

h
ac + P

h
bc ≥ 1.
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Bell’s Inequality (Cont’d)

Let wh be the probability with which the source emits photons of kind
h.

Then the sum of the observed probabilities Pab + Pac + Pbc is a
weighted sum, with weights wh, of the results for photons of each
hidden kind h:

Pab +Pac + Pbc = ∑
h

wh(Ph
ab + P

h
ac + P

h
bc).

The weighted average of numbers all greater than 1 is greater than 1.

So, since Ph
ab +P

h
ac + P

h
bc ≥ 1, for any h, we may conclude that

Pab +Pac + Pbc ≥ 1.
This inequality holds for any local hidden-variable theory and gives us
a testable requirement.
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Discussion

Quantum theory predicts that the probability that the two results will
be the same is the square of the cosine of the angle between the two
polaroid settings.

Suppose that the angle between settings a and b is θ.

Suppose that the angle between settings b and c is φ.

Then the inequality becomes

cos2 θ + cos2 φ + cos2 (θ + φ) ≥ 1.
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Discussion (Cont’d)

Consider the special case of the previous section.

Quantum theory tells us that for θ = φ = 60○, each term is 1
4 .

Since 3
4 < 1, these probabilities violate Bell’s inequality.

Therefore, no local, deterministic theory can give the same predictions
as quantum mechanics.

Experimental results confirm the prediction of quantum theory and
nature’s violation of Bell like inequalities.

George Voutsadakis (LSSU) Quantum Computing July 2024 93 / 93


	Outline
	Measurement of Multiple-Qubit States
	Dirac's Bra/Ket Notation for Linear Transformations
	Projection Operators for Measurement
	Hermitian Operator Formalism for Measurement
	EPR Paradox and Bell's Theorems


