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Quantum Transformations: Linearity

A quantum transformation is a mapping from the state space of a
quantum system to itself.

Nature does not allow arbitrary quantum transformations.

It forces these transformations to respect:

Properties connected to quantum superposition;
Properties connected to quantum measurement.
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Superposition and Linearity

The transformations must be linear transformations of the vector
space associated with the state space of the quantum system.

This ensures that a state that is a superposition of other states goes
to the superposition of their images.

More precisely, for any quantum transformation U and any
superposition ∣ψ⟩ = a1∣ψ1⟩ + ⋯ + ak ∣ψk⟩,
we have

U(a1∣ψ1⟩ + ⋯ + ak ∣ψk⟩) = a1U ∣ψ1⟩ +⋯ + akU ∣ψk⟩.
Unit length vectors must go to unit length vectors.

This implies that orthogonal subspaces go to orthogonal subspaces.
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Transformations and Measurement

Measuring and then applying a transform to the outcome should give
the same result as first applying the transform and then measuring in
the transformed basis.

Specifically, the probability of obtaining outcome U ∣φ⟩ should be the
same whether:

We first apply U to ∣ψ⟩ and then measure with respect to the
decomposition ⊕USi ;
We first measure ∣ψ⟩ with respect to the decomposition ⊕Si and then
apply U .

These properties hold if U preserves the inner product.

For any ∣ψ⟩ and ∣φ⟩, the inner product of their images, U ∣ψ⟩ and
U ∣φ⟩, must be the same as the inner product between ∣ψ⟩ and ∣φ⟩,

⟨φ∣U†U ∣ψ⟩ = ⟨φ∣ψ⟩.
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Unitary Transformations

A straightforward mathematical argument shows that the last
condition holds for all ∣ψ⟩ and ∣φ⟩ only if U†U = I .
In other words, the quantum transformation U must be a unitary

linear transformation, i.e., its adjoint U† must be equal to its
inverse,

U† = U−1.
Furthermore, this condition is sufficient.

The set of allowed transformations of a quantum system corresponds
exactly to the set of unitary operators on the complex vector space
associated with the state space of the quantum system.

Since unitary operators preserve the inner product, they map
orthonormal bases to orthonormal bases.

In fact, conversely, any linear transformation that maps an
orthonormal basis to an orthonormal basis is unitary.
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Properties of Unitary Transformations

Geometrically, all quantum state transformations are rotations of the
complex vector space associated with the quantum state space.

The i -th column of the matrix is the image U ∣i⟩ of the i -th basis
vector.

So for a unitary transformation given in matrix form, U is unitary if
and only if the set of columns of its matrix representation are
orthonormal.

Since U† is unitary if and only if U is, it follows that U is unitary if
and only if its rows are orthonormal.

The product U1U2 of two unitary transformations is again unitary.

If U1 and U2 are unitary transformations of X1 and X2, the tensor
product U1 ⊗U2 is a unitary transformation of X1 ⊗ X2.

Linear combinations of unitary operators are not in general unitary.
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Transformations versus Measurement

An obvious consequence of the unitary condition is that every
quantum state transformation is reversible.

In the standard circuit model of quantum computation:

All computation is carried out by quantum transformations;
Measurement is used only at the end to read out the results.

Recall that measurement can effect changes in quantum states.

So an alternative means to achieve computation is via the dynamics
of measurement, rather than using quantum state transformations.

In an alternate, but equally powerful, model of quantum computation,
all computation takes place by measurement.
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Transformations versus Measurements (Cont’d)

The phrases quantum transformation or quantum operator refer
to unitary operators acting on the state space, not measurement
operators.

Measurements are modeled by operators.

However, the behavior of measurement is not modeled by the direct
action of the measurement’s Hermitian operator on the state space.

It is rather modeled by the indirect, probabilistic procedure described
by the measurement postulate.

One of the least satisfactory aspects of quantum theory is that there
are two distinct classes of manipulations of quantum states:

Quantum transformations;
Measurement.
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The No-Cloning Principle

A consequence of the unitary condition is that unknown quantum
states cannot be copied or cloned.

Linearity of unitary transformations alone implies this result.

Suppose U is a unitary transformation that clones,

U(∣a⟩∣0⟩) = ∣a⟩∣a⟩, for all quantum states ∣a⟩.
Let ∣a⟩ and ∣b⟩ be two orthogonal quantum states.

That U clones means

U(∣a⟩∣0⟩) = ∣a⟩∣a⟩ and U(∣b⟩∣0⟩) = ∣b⟩∣b⟩.
Consider ∣c⟩ = 1√

2
(∣a⟩ + ∣b⟩).

By linearity,

U(∣c⟩∣0⟩) = 1√
2
(U(∣a⟩∣0⟩) +U(∣b⟩∣0⟩)) = 1√

2
(∣a⟩∣a⟩ + ∣b⟩∣b⟩).
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The No-Cloning Principle (Cont’d)

But, since U is a cloning transformation,

U(∣c⟩∣0⟩) = ∣c⟩∣c⟩ = 1

2
(∣a⟩∣a⟩ + ∣a⟩∣b⟩ + ∣b⟩∣a⟩ + ∣b⟩∣b⟩).

This is not equal to 1√
2
(∣a⟩∣a⟩ + ∣b⟩∣b⟩).

Thus, there is no unitary operation that can reliably clone all
quantum states.

The No-Cloning Theorem tells us that it is impossible to clone a
specific unknown quantum state reliably.

It does not preclude the construction of a known quantum state from
a known quantum state.
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The No-Cloning Principle (Cont’d)

It is possible to perform an operation that appears to be copying the
state in one basis but does not do so in others.

For example, consider a given unknown state

a∣0⟩ + b∣1⟩.
It is possible to obtain n particles in an entangled state

a∣00 . . . 0⟩ + b∣11 . . . 1⟩.
But it is not possible to create the n particle state

(a∣0⟩ + b∣1⟩)⊗⋯⊗ (a∣0⟩ + b∣1⟩).
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Subsection 2

Some Simple Quantum Gates
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Quantum Gates and Quantum Circuits

As in classical computation, in quantum computation arbitrarily
complex computations can be achieved by composing simple elements.

The term quantum gate refers to any quantum state transformation
that acts on only a small number of qubits.

A quantum gate array or quantum circuit is a sequence of
quantum gates.
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Practical Issues

In the quantum information processing, gates are mathematical
abstractions useful for describing quantum algorithms.

Quantum gates do not necessarily correspond to physical objects, as
they do in the classical case.

So the gate terminology and its accompanying graphical notation
must not be taken too literally.

For solid state or optical implementations, there may be actual
physical gates.

In NMR and ion trap implementations the qubits are stationary
particles, and the gates are operations on these particles using
magnetic fields or laser pulses.

For such implementations, gates operate on a physical register of
qubits.
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Sufficiency Issues

Ideally, from a practical point of view, we would write all our
computations in terms of gates that are easy to implement physically
and are robust.

However, we do not yet know which ones these are.

Furthermore, we would like to realize physically a quantum computer
capable of performing arbitrary quantum transformations.

For this, it would be convenient to have only finitely many gates that
could generate all unitary transformations.

Unfortunately, such a set is impossible.

There are uncountably many quantum transformations.
On the other hand, a finite set of generators can only generate
countably many elements.
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Approximation

We will see that it is possible for finite sets of gates to generate
arbitrarily close approximations to all unitary transformations.

A number of such finite sets are known.

It is unclear which will be most practical for physical implementation.

For analyzing quantum algorithms, it is useful to have a standard set
of gates with which to analyze the efficiency of quantum algorithms.

The set we use includes:

All one-qubit gates;
A two-qubit gate that will be described later.
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Graphical Notation

Simple transformations are graphically represented by appropriately
labeled boxes which are connected to form more complex circuits.

Each horizontal line corresponds to a qubit.

The transformations on the left are performed first.

The processing proceeds from left to right.
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Graphical Notation (Cont’d)

The boxes U0,U1 and U3 correspond to single-qubit transformations.

The one labeled U2 corresponds to a two-qubit transformation.

We talk about applying an operator U to qubit i of an n-qubit
quantum system.

This means that we apply the operator

I ⊗⋯⊗ I ⊗U ⊗ I ⊗⋯⊗ I

to the entire system, where I is the single-qubit identity operator,
applied to each of the other qubits of the system.
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Pauli Transformations

The Pauli transformations are the most commonly used single-qubit
transformations.

The identity transformation I .

I ∶ ∣0⟩⟨0∣ + ∣1⟩⟨1∣ ( 1 0
0 1

) .
The negation X (the classical NOT operation on ∣0⟩ and ∣1⟩, viewed
as classical bits).

X ∶ ∣1⟩⟨0∣ + ∣0⟩⟨1∣ ( 0 1
1 0

) .
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Pauli Transformations (Cont’d)

The change Z of the relative phase of a superposition in the standard
basis.

Z ∶ ∣0⟩⟨0∣ − ∣1⟩⟨1∣ ( 1 0
0 −1 ) .

A combination Y = ZX of negation and phase change.

Y ∶ −∣1⟩⟨0∣ + ∣0⟩⟨1∣ ( 0 1−1 0
) .

In graphical notation, these gates are represented by boxes labeled
appropriately.
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Notation

There is variation in the literature as to which transformations are the
Pauli transformations, and the notation used.

The main discrepancy is whether −i(∣0⟩⟨1∣ − ∣1⟩⟨0∣) is considered the
Pauli transformation instead of Y = ∣0⟩⟨1∣ − ∣1⟩⟨0∣, as we do here.

The operator iY is Hermitian, which is a useful property in some
settings, e.g., if we wanted to use it to describe measurement.

Also, sometimes the notation σx , σy , and σz is used instead.

Throughout we use I ,X ,Y and Z for the Pauli operators representing
single-qubit transformations.

The notation σx = X , σy = −iY and σz = Z is used when the Pauli
operators are used to describe quantum states.
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The Hadamard Transformation

Another important single-qubit transformation is the Hadamard
transformation,

H = 1√
2
(∣0⟩⟨0∣ + ∣1⟩⟨0∣ + ∣0⟩⟨1∣ − ∣1⟩⟨1∣).

Alternatively, it is specified by

H ∶ ∣0⟩ → ∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩), ∣1⟩ → ∣−⟩ = 1√

2
(∣0⟩ − ∣1⟩).

This produces an even superposition of ∣0⟩ and ∣1⟩ from either of the
standard basis elements.

Note that HH = I .
In the standard basis, the matrix for the Hadamard transformation is

H = 1√
2
( 1 1

1 −1 ) .
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Multiple- from Single-Qubit Transformations

Multiple-qubit transformations can be constructed as tensor products
of single-qubit transformations.

These are uninteresting as multiple-qubit transformations.

They are equivalent to performing the single-qubit transformations on
each of the qubits separately in some order.

For example,
U ⊗ V

can be obtained by:

First applying U ⊗ I ;
Then applying I ⊗V .
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Transformations and Entanglement

More interesting are those multiple-qubit transformations that can
change the entanglement between qubits of the system.

Entanglement is not a local property.

This means that transformations that act separately on two or more
subsystems cannot affect the entanglement between those subsystems.

Let ∣ψ⟩ be a two-qubit state.

Let U and V be single-qubit unitary transformations.

Then (U ⊗ V )∣ψ⟩ is entangled if and only if ∣ψ⟩ is.
We look at a class of two-qubit controlled gates that illustrates the
effects transformations can have on entanglement.
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The Controlled-NOT

The controlled-NOT gate, Cnot, acts on the standard basis for a
two-qubit system, with ∣0⟩ and ∣1⟩ viewed as classical bits.

It flips the second bit if the first bit is 1 and leaves it unchanged
otherwise.

The Cnot transformation has representation

Cnot = ∣0⟩⟨0∣ ⊗ I + ∣1⟩⟨1∣ ⊗ X= ∣0⟩⟨0∣ ⊗ (∣0⟩⟨0∣ + ∣1⟩⟨1∣) + ∣1⟩⟨1∣ ⊗ (∣1⟩⟨0∣ + ∣0⟩⟨1∣)= ∣00⟩⟨00∣ + ∣01⟩⟨01∣ + ∣11⟩⟨10∣ + ∣10⟩⟨11∣.
From this it is easy to read off its effect on the standard basis
elements.

Cnot ∶ ∣00⟩ → ∣00⟩∣01⟩ → ∣01⟩∣10⟩ → ∣11⟩∣11⟩ → ∣10⟩.
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The Controlled-NOT (Cont’d)

The matrix representation (in the standard basis) for Cnot is

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
.

Observe that Cnot is unitary.

Moreover, it is its own inverse.

The Cnot gate cannot be decomposed into a tensor product of two
single-qubit transformations.
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The Controlled-NOT: Effect on States

The importance of the Cnot gate for quantum computation stems
from its ability to change the entanglement between two qubits.

E.g., it takes the unentangled two-qubit state 1√
2
(∣0⟩ + ∣1⟩)∣0⟩ to the

entangled state 1√
2
(∣00⟩ + ∣11⟩),

Cnot ( 1√
2
(∣0⟩ + ∣1⟩)⊗ ∣0⟩) = Cnot ( 1√

2
(∣00⟩ + ∣10⟩))

= 1√
2
(∣00⟩ + ∣11⟩).

We remarked that Cnot is its own inverse.

So it can also take an entangled state to an unentangled one.
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The Controlled-NOT: Diagram

The controlled-NOT gate is so common that it has its own graphical
notation.

The open circle indicates the control bit;
The × indicates negation of the target bit;
The line between them indicates that the negation is conditional,
depending on the value of the control bit.

Some authors use a solid circle to indicate negative control, in which
the target bit is toggled when the control bit is 0 instead of 1.
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Controlled-Q

We consider a useful class of two-qubit controlled gates, which
generalizes the Cnot gate.

These gates perform a single-qubit transformation Q on the second
qubit, when the first qubit is ∣1⟩, and do nothing, when it is ∣0⟩.
They have graphical representation
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Controlled-Q (Cont’d)

We use the following shorthand for a controlled-Q transformation,

⋀Q = ∣0⟩⟨0∣ ⊗ I + ∣1⟩⟨1∣ ⊗Q.

E.g., in this notation The transformation Cnot becomes

⋀X .

In the standard computational basis, the two-qubit operator ⋀Q is
represented by the 4 × 4 matrix

( I 0
0 Q

) .
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Controlled Phase Shift

We look at the controlled phase shift

⋀ ei θ,

where ei θ is shorthand for ei θI .

In the standard basis, the controlled phase shift changes the phase of
the second bit if and only if the control bit is one:

⋀ ei θ = ∣00⟩⟨00∣ + ∣01⟩⟨01∣ + ei θ ∣10⟩⟨10∣ + ei θ ∣11⟩⟨11∣.
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Controlled Phase Shift (Cont’d)

Its effect on the standard basis elements is as follows.

⋀ ei θ ∶ ∣00⟩ → ∣00⟩∣01⟩ → ∣01⟩
∣10⟩ → ei θ ∣10⟩
∣11⟩ → ei θ ∣11⟩

Finally, its matrix representation is

⎛⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 ei θ 0

0 0 0 ei θ

⎞⎟⎟⎟⎟⎠
.
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Controlled Phase Shift (Cont’d)

The controlled phase shift makes use of a single-qubit transformation.

This transformation was a physically meaningless global phase shift
when applied to a single-qubit system.

But, when used as part of a conditional transformation, this phase
shift becomes nontrivial, since it changes the relative phase between
elements of a superposition.

E.g., it takes

1√
2
(∣00⟩ + ∣11⟩) ↦ 1√

2
(∣00⟩ + ei θ ∣11⟩).
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The Swap Circuit

Graphical icons can be combined into quantum circuits.

The following circuit, for instance, swaps the value of the two bits.

In other words, this swap circuit takes

∣00⟩ ↦ ∣00⟩ ∣01⟩ ↦ ∣10⟩ ∣10⟩ ↦ ∣01⟩ ∣11⟩ ↦ ∣11⟩.
Additionally, for all single-qubit states ∣ψ⟩ and ∣φ⟩,

∣ψ⟩∣φ⟩ ↦ ∣φ⟩∣ψ⟩.
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Caution 1: Phases in Specifications of Transformations

We discussed the important distinction between the quantum state
space (projective space) and the associated complex vector space.

We need to keep this distinction in mind when interpreting the
standard ways quantum state transformations are specified.

A unitary transformation on the complex vector space is completely
determined by its action on a basis.

The unitary transformation is not completely determined by specifying
what states the states corresponding to basis states are sent to, a
subtle distinction.

E.g., the controlled phase shift takes the four quantum states
represented by ∣00⟩, ∣01⟩, ∣10⟩ and ∣11⟩ to themselves.

∣10⟩ and ei θ∣10⟩ represent exactly the same quantum state;

∣11⟩ and ei θ∣11⟩ represent exactly the same quantum state.
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Caution 1: Phases in Specifications (Cont’d)

As we saw above, this transformation is not the identity

transformation since it takes 1√
2
(∣00⟩ + ∣11⟩) to 1√

2
(∣00⟩ + ei θ ∣10⟩).

To avoid mistakes, remember that notation such as

∣00⟩ → ∣00⟩ ∣01⟩ → ∣01⟩ ∣10⟩ → ei θ ∣10⟩ ∣11⟩ → ei θ ∣11⟩
is used to specify a unitary transformation on the complex vector
space in terms of vectors in that vectors space.

It is not a representation in terms of the states corresponding to these
vectors.

Specifying that the vector ∣0⟩ goes to the vector −∣1⟩ is different from
specifying that ∣0⟩ goes to ∣1⟩ because the two vectors −∣1⟩ and ∣1⟩
are different vectors even if they correspond to the same state.

The quantum transformation on the state space is easily derived from
the unitary transformation on the associated complex vector space.
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Caution 2: Basis Dependence of the Notion of Control

The notion of the control bit and the target bit is a carryover from
the classical gate and should not be taken too literally.

In the standard basis, the Cnot operator behaves exactly as the
classical gate does on classical bits.

However, one should not conclude that the control bit is never
changed.

When the input qubits are not one of the standard basis elements, the
effect of the controlled gate can be somewhat counterintuitive.
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Caution 2: Basis Dependence of Control (Cont’d)

E.g., consider the Cnot gate in the Hadamard basis {∣+⟩, ∣−⟩}:
Cnot ∶ ∣ + +⟩ → ∣ + +⟩∣ + −⟩ → ∣ − −⟩∣ − +⟩ → ∣ − +⟩∣ − −⟩ → ∣ + −⟩.

In the Hadamard basis:

The state of the second qubit remains unchanged;
The state of the first qubit is flipped depending on the state of the
second bit.

Thus, in this basis the sense of which bit is the control bit and which
the target bit has been reversed.

The transformation has not been changed at all.

Only the way we are thinking about it has changed.
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Caution 2: Basis Dependence of Control (Cont’d)

In most bases, we do not see a control bit or a target bit at all.

E.g., as we have seen, the controlled-NOT transforms

1√
2
(∣0⟩ + ∣1⟩)∣0⟩ ↦ 1√

2
(∣00⟩ + ∣11⟩).

In this case the controlled-NOT entangles the qubits so that it is not
possible to talk about their states separately.

A related fact, useful in constructing algorithms and in quantum error
correction, is that the following two circuits are equivalent:
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Caution 3: Reading Circuit Diagrams

The graphical representation of quantum circuits can be misleading if
one is not careful to interpret it properly.

In particular, one cannot determine the effect the transformation has
on the input qubits, even if they are all in standard basis states, by
simply looking at the line in the diagram corresponding to that qubit.

Look at the following circuit acting on input state ∣0⟩∣0⟩.

The Hadamard transformation is its own inverse.

So it might at first appear that the first qubit’s state would remain
unchanged by the transformation.
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Caution 3: Reading Circuit Diagrams (Cont’d)

It is not the case that the first qubit’s state remains unchanged.

Recall from Caution 2 that the controlled-NOT gate does not leave
the first qubit unaffected in general.

In fact, this circuit takes

∣00⟩ ↦ 1

2
(∣00⟩ + ∣10⟩ + ∣01⟩ − ∣11⟩).

This cannot be seen immediately from the circuit, but must be
explicitly calculated.
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Subsection 3

Applications of Simple Gates
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Introducing Dense Coding

Dense coding aims to encode and transmit two classical bits.

It uses:

A shared EPR pair;
One quantum bit.

EPR pairs can be distributed ahead of time.

So only one qubit needs to be physically transmitted to communicate
two bits of information.

This result is surprising, since, as was explained, only one classical
bit’s worth of information can be extracted from a qubit.
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Introducing Teleportation

Teleportation is the opposite of dense coding.

It uses two classical bits to transmit the state of a single qubit.

Teleportation is surprising in two respects.

In spite of the No-Cloning Principle of quantum mechanics, there
exists a mechanism for the transmission of an unknown quantum
state.

It shows that two classical bits suffice to communicate a qubit state
that can be in any one of an infinite number of possible states.
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Initial Setup for Dense Coding and Teleportation

The key to both dense coding and teleportation is the use of
entangled particles.

The initial setup is the same for both processes.

Alice and Bob wish to communicate.

Each is sent one of the entangled particles making up an EPR pair

∣ψ0⟩ = 1√
2
(∣00⟩ + ∣11⟩).

Suppose Alice is sent the first particle, and Bob the second:

∣ψ0⟩ = 1√
2
(∣0A⟩∣0B ⟩ + ∣1A⟩∣1B ⟩).
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Initially Allowable Transformations

Up until Alice sends Bob her particle or vice versa:

Alice can perform transformations only on her particle;
Bob can perform transformations only on his particle.

In other words, until a particle is transmitted between them:

Alice can perform transformations only of the form Q ⊗ I on the EPR
pair, where Q is a single-qubit transformation;
Bob can perform transformations only of the form I ⊗Q.

More generally, for K = 2k , let I (K) be the 2k × 2k identity matrix.

If Alice has n qubits and Bob has m qubits, then:

Alice can perform transformations only of the form U ⊗ I (M), where U

is an n-qubit transformation;
Bob can perform transformations only of the form I (N) ⊗U .
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Dense Coding: Alice

Alice wishes to transmit the state of two classical bits encoding one of
the numbers 0 through 3.

Depending on this number, Alice performs one of the Pauli
transformations {I ,X ,Y ,Z} on her qubit of the entangled pair ∣ψ0⟩.
The resulting state is shown in the following table.

Value Transformation New state

0 ∣ψ0⟩ = (I ⊗ I)∣ψ0⟩ 1√
2
(∣00⟩ + ∣11⟩)

1 ∣ψ1⟩ = (X ⊗ I)∣ψ0⟩ 1√
2
(∣10⟩ + ∣01⟩)

2 ∣ψ2⟩ = (Z ⊗ I)∣ψ0⟩ 1√
2
(∣00⟩ − ∣11⟩)

3 ∣ψ3⟩ = (Y ⊗ I)∣ψ0⟩ 1√
2
(−∣10⟩ + ∣01⟩)

Alice then sends her qubit to Bob.
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Dense Coding: Illustration
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Dense Coding: Bob

To decode the information, Bob applies:
A controlled-NOT to the two qubits of the entangled pair;
The Hadamard transformation H to the first qubit.

1√
2
(∣00⟩ + ∣11⟩)

1√
2
(∣10⟩ + ∣01⟩)

1√
2
(∣00⟩ − ∣11⟩)

1√
2
(−∣10⟩ + ∣01⟩)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Cnot→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
(∣00⟩ + ∣10⟩)

1√
2
(∣11⟩ + ∣01⟩)

1√
2
(∣00⟩ − ∣10⟩)

1√
2
(−∣11⟩ + ∣01⟩)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
2
(∣0⟩ + ∣1⟩)⊗ ∣0⟩

1√
2
(∣1⟩ + ∣0⟩)⊗ ∣1⟩

1√
2
(∣0⟩ − ∣1⟩)⊗ ∣0⟩

1√
2
(−∣1⟩ + ∣0⟩)⊗ ∣1⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
H⊗I→
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣00⟩∣01⟩∣10⟩∣11⟩
Bob then measures the two qubits in the standard basis to obtain the
two-bit binary encoding of the number Alice wished to send.
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Quantum Teleportation

The objective of teleportation is to transmit enough information
about the quantum state of a particle, using only classical bits, so
that a receiver can reconstruct the exact quantum state.

By the No-Cloning Principle, a quantum state cannot be copied.

So the quantum state of the original particle cannot be preserved.

That is, the original state at the source must be destroyed in the
course of creating the state at the target.

This is the property giving quantum teleportation its name.
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Quantum Teleportation: Alice

Alice has a qubit whose state ∣φ⟩ = a∣0⟩ + b∣1⟩ she does not know.

She wants to send this state to Bob through classical channels.

As in the setup for the dense coding application, Alice and Bob each
possess one qubit of an entangled pair

∣ψ0⟩ = 1√
2
(∣00⟩ + ∣11⟩).

The starting state is the three-qubit quantum state

∣φ⟩⊗ ∣ψ0⟩ = 1√
2
(a∣0⟩⊗ (∣00⟩ + ∣11⟩) + b∣1⟩⊗ (∣00⟩ + ∣11⟩))

= 1√
2
(a∣000⟩ + a∣011⟩ + b∣100⟩ + b∣111⟩).

Alice controls the first two qubits.

Bob controls the last qubit.
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Quantum Teleportation: Illustration
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Quantum Teleportation: Alice (Cont’d)

Alice applies the decoding step used by Bob in the dense coding
scenario to the combined state of the qubit ∣φ⟩ to be transmitted and
her half of the entangled pair.

I.e., Alice applies Cnot ⊗ I followed by H ⊗ I ⊗ I to this state,

(H ⊗ I ⊗ I)(Cnot ⊗ I)(∣φ⟩ ⊗ ∣ψ0⟩)= (H ⊗ I ⊗ I)(Cnot ⊗ I) 1√
2
(a∣000⟩ + a∣011⟩ + b∣100⟩ + b∣111⟩)

= (H ⊗ I ⊗ I) 1√
2
(a∣000⟩ + a∣011⟩ + b∣110⟩ + b∣101⟩)

= 1
2(a(∣000⟩ + ∣011⟩ + ∣100⟩ + ∣111⟩)+ b(∣010⟩ + ∣001⟩ − ∣110⟩ − ∣101⟩))= 1
2(∣00⟩(a∣0⟩ + b∣1⟩) + ∣01⟩(a∣1⟩ + b∣0⟩)+ ∣10⟩(a∣0⟩ − b∣1⟩) + ∣11⟩(a∣1⟩ − b∣0⟩)).

Alice measures the first two qubits and obtains one of the four
standard basis states ∣00⟩, ∣01⟩, ∣10⟩ and ∣11⟩ with equal probability.
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Quantum Teleportation: Alice (Cont’d)

Depending on the result of her measurement, the quantum state of
Bob’s qubit is projected to one of:

a∣0⟩ + b∣1⟩, a∣1⟩ + b∣0⟩, a∣0⟩ − b∣1⟩, a∣1⟩ − b∣0⟩.
Alice sends the result of her measurement as two classical bits to Bob.

After these transformations, crucial information about the original
state ∣φ⟩ is contained in Bob’s qubit.

There is now nothing Alice can do on her own to reconstruct the
original state of her qubit.

In fact, the No-Cloning Principle implies that at any given time, only
one of Alice or Bob can reconstruct the original quantum state.
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Quantum Teleportation: Bob

When Bob receives the two classical bits from Alice, he knows how
the state of his half of the entangled pair compares to the original
state of Alice’s qubit.

Bob can reconstruct the original state of Alice’s qubit, ∣φ⟩, by
applying the appropriate decoding transformation to his qubit,
originally part of the entangled pair.

The following table shows:
The state of Bob’s qubit before the decoding has taken place;
The corresponding classical bits that Bob receives from Alice;
The decoding operator Bob should use depending on the bits received.

State Bits Received Decoding
a∣0⟩ + b∣1⟩ 00 I

a∣1⟩ + b∣0⟩ 01 X

a∣0⟩ − b∣1⟩ 10 Z

a∣1⟩ − b∣0⟩ 11 Y
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Quantum Teleportation and Dense Coding

After decoding, Bob’s qubit will be in the quantum state,

a∣0⟩ + b∣1⟩.
This is the state in which Alice’s qubit started.

This decoding step is the encoding step of dense coding.

The encoding step was the decoding step of dense coding.

So teleportation and dense coding are, in some sense, inverses of each
other.
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Subsection 4

Realizing Unitary Transformations as Quantum Circuits

George Voutsadakis (LSSU) Quantum Computing July 2024 59 / 100



Quantum State Transformations Realizing Unitary Transformations as Quantum Circuits

Shifts, Rotations and Phase Rotations

We show that all single-qubit transformations can be written as a
combination of three types of transformations.

Phase shifts K(δ) = ei δI ;
Rotations R(β) = ( cosβ sinβ− sinβ cosβ

);
Phase rotations T (α) = ⎛⎝

eiα 0

0 e−iα

⎞
⎠.

Note that the following properties hold.

K(δ1 + δ2) = K(δ1)K(δ2);
R(β1 + β2) = R(β1)R(β2);
T (α1 + α2) = T (α1)T (α2).

In addition, the operator K commutes with K , T and R .
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Comments

Rather than write K(δ), we frequently just write the scalar factor ei δ .

As a transformation on a single-qubit system, K(δ) performs a global
phase change, which is equivalent to the identity.

However, we include it here because it will be used later as part of
multiple-qubit conditional transformations in which this factor
becomes a relative phase shift that is physically relevant.

The transformations R(α) and T (α) are rotations by 2α about the
y - and z-axis of the Bloch sphere respectively.
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Decomposition of Single-Qubit Transformations

We show that any single-qubit unitary transformation Q can be
decomposed into a sequence of transformations of the form

Q = K(δ)T (α)R(β)T (γ).
K(δ) is a global phase shift with no physical effect.

So the space of all single-qubit transformations has only three real
dimensions.

Consider the transformation

Q = ( u00 u01
u10 u11

) .
Since Q is unitary, we have

QQ† = Q†Q = I .
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Decomposition of Single-Qubit Transformations (Cont’d)

These give

∣u00∣2 + ∣u01∣2 = 1, u00u10 + u01u11 = 0, ∣u11∣2 + ∣u10∣2 = 1,∣u00∣2 + ∣u10∣2 = 1, u00u01 + u10u11 = 0, ∣u11∣2 + ∣u01∣2 = 1.
We get ∣u00∣ = ∣u11∣ and ∣u01∣ = ∣u10∣.
So we may set

∣u00∣ = ∣u11∣ = cosβ and ∣u01∣ = ∣u10∣ = sinβ,
for some angle β.

Now, we can write Q as

Q = ⎛⎝
ei θ00 cos (β) ei θ01 sin (β)
−ei θ10 sin (β) ei θ11 cos (β)

⎞
⎠ .
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Decomposition of Single-Qubit Transformations (Cont’d)

Furthermore, the phases are not independent.

u10u00 + u11u01 = 0 implies that θ10 − θ00 = θ11 − θ01.
We have

K(δ)T (α)R(β)T (γ) = ⎛⎝
ei (δ+α+γ) cosβ ei (δ+α−γ) sinβ

−ei (δ−α+γ) sinβ ei (δ−α−γ) cosβ

⎞
⎠ .

So we can find δ,α, γ for a given Q by solving the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ + α + γ = θ00
δ + α − γ = θ01
δ − α + γ = θ10

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Since θ11 = θ10 − θ00 + θ01, the solution also satisfies δ − α − γ = θ11.
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Singly Controlled Single-Qubit Transformations

Consider an arbitrary single-qubit unitary transformation

Q = K(δ)T (α)R(β)T (γ).
The controlled gate ⋀Q can be implemented by:

First constructing ⋀K(δ);
Then implementing ⋀Q′,

for Q′ = T (α)R(β)T (γ).
Then we have ⋀Q = (⋀K(δ))(⋀Q ′).
We show how to implement these two transformations in terms of
basic gates.
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Implementation of Conditional Phase Shift

The conditional phase shift can be implemented by primitive
single-qubit operations.

⋀K(δ) = ∣0⟩⟨0∣ ⊗ I + ∣1⟩⟨1∣ ⊗K(δ)
= ∣0⟩⟨0∣ ⊗ I + ei δ ∣1⟩⟨1∣ ⊗ I

= (∣0⟩⟨0∣ + ei δ ∣1⟩⟨1∣) ⊗ I

= ( 1 0

0 ei δ
)⊗ I

= ei
δ

2
⎛
⎝

e−i
δ

2 0

0 ei
δ

2

⎞
⎠⊗ I

= (K ( δ2)T (− δ
2
))⊗ I .
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Implementation of Conditional Phase Shift (Cont’d)

We showed

⋀K(δ) = (K (δ
2
)T (−δ

2
))⊗ I .

It may appear surprising that the conditional phase shift K(δ) can be
realized by a circuit acting on the first qubit only, with no
transformations acting directly on the second qubit.

The reason that transformations on the first qubit suffice is that a
phase shift affects the whole quantum state, not just a single qubit.

In particular, ∣x⟩⊗ a∣y⟩ = a∣x⟩⊗ ∣y⟩.
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Implementation of ⋀Q ′

For Q ′ = T (α)R(β)T (γ), define the following transformations:

Q0 = T (α)R(β2 ),
Q1 = R(−β

2 )T (−γ−α2 ),
Q2 = T (γ−α2 ).

The claim is that ⋀Q ′ can be defined as

⋀Q ′ = (I ⊗Q0)Cnot(I ⊗Q1)Cnot(I ⊗Q2).
Graphically, we have
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Implementation of ⋀Q ′ (Cont’d)

This circuit transforms ∣0⟩⊗ ∣x⟩ as follows.
(I ⊗Q0)Cnot(I ⊗Q1)Cnot(I ⊗Q2)(∣0⟩ ⊗ ∣x⟩)
= (I ⊗Q0)Cnot(I ⊗Q1)Cnot(∣0⟩⊗Q2∣x⟩)
= (I ⊗Q0)Cnot(I ⊗Q1)(∣0⟩ ⊗Q2∣x⟩)
= (I ⊗Q0)Cnot(∣0⟩⊗Q1Q2∣x⟩)
= (I ⊗Q0)(∣0⟩⊗Q1Q2∣x⟩)
= ∣0⟩⊗Q0Q1Q2∣x⟩.
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Implementation of ⋀Q ′ (Cont’d)

Similarly, it transforms ∣1⟩⊗ ∣x⟩ as follows.
(I ⊗Q0)Cnot(I ⊗Q1)Cnot(I ⊗Q2)(∣1⟩ ⊗ ∣x⟩)
= (I ⊗Q0)Cnot(I ⊗Q1)Cnot(∣1⟩⊗Q2∣x⟩)
= (I ⊗Q0)Cnot(I ⊗Q1)(∣1⟩ ⊗ XQ2∣x⟩)
= (I ⊗Q0)Cnot(∣1⟩⊗Q1XQ2∣x⟩)
= (I ⊗Q0)(∣1⟩⊗ XQ1XQ2∣x⟩)
= ∣1⟩⊗Q0XQ1XQ2∣x⟩.
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Implementation of ⋀Q ′ (Cont’d)
Finally, note the following

Q0Q1Q2 = T (α)R(β2 )R(−β
2 )T (−γ−α2 )T (γ−α2 )

= T (α)R(β2 − β
2 )T (−γ−α2 + γ−α

2 )= T (α)IT (−α)
= I ;

Q0XQ1XQ2 = T (α)R(β2 )XR(−β
2 )T (−γ−α2 )XT (γ−α2 )

= T (α)R(β2 )(XR(−β
2 )X )(XT (−γ−α2 )X )T (γ−α2 )

= T (α)R(β2 )R(β2 )T (γ+α2 )T (γ−α2 )= T (α)R(β)T (γ)
= Q ′.

In this way, we can realize a version of an arbitrary single qubit
transformation controlled by a single qubit.
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Multiply Controlled Single-Qubit Transformations

The graphical notation for controlled operations generalizes to more
than one control bits.

Let ⋀k Q be the (k + 1)-qubit transformation that applies Q to qubit
0 when qubits 1 through k are all 1.

Example: The controlled-controlled-NOT

gate, or Toffoli gate ⋀2X , negates the last
bit of three if and only if the first two are both
1.

The subscript 2 in the notation ⋀2X indicates that there are two
control bits.

We write the Cnot gate as both ⋀X and ⋀1X .
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Implementations

The previous construction can be iterated to obtain arbitrary
single-qubit transformations controlled by k qubits.

To implement ⋀2Q, a three-qubit gate, applying Q controlled by two
qubits, we replace each of Q0,Q1 and Q2 in the previous construction
with a single-qubit controlled version.

This circuit can be expanded, as in the previous section, into
single-qubit and controlled-NOT gates, for a total of:

Twenty five single-qubit gates;
Twelve controlled-NOT gates.
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Implementations (Cont’d)

Repeating this process leads to circuits for controlled versions of
single-qubit transformations with k control bits, ⋀k Q.

The circuits obtained in this way have:

5k single-qubit transformations;
1
2
(5k − 1) controlled-NOT gates.

We will see later that significantly more efficient implementations of⋀k Q are known.
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Control Patterns

All of the controlled gates seen so far are executed when the control
bits are 1.

To implement a singly controlled gate that is executed when the
control bit is 0, the control bit can be negated.

More generally, consider any length k bit-string s.

By temporarily negating the appropriate control qubits, we may
realize a controlled gate that applies Q to qubit 0 exactly when the
other k qubits are in the pattern s.
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Control Patterns (Cont’d)

More precisely, let ∣s⟩ be the k-qubit standard basis vector labeled
with bit-string s.

This construction implements the (k + 1)-qubit controlled gate that:

Applies the single-qubit transformation Q to qubit 0 when qubits 1
though k are in the basis state ∣s⟩;
Does nothing when qubits 1 though k are in a different basis state.

Such constructions can be further generalized to (k + 1)-qubit
controlled gates that:

Apply the single-qubit transformation Q to qubit i when the other
qubits are in a specific basis state;
Do nothing when the other qubits are in a different basis state.

This transformation applies Q to the two-dimensional subspace
spanned by the two basis vectors ∣xk . . . xi . . . x0⟩ and ∣xk . . . x̂i . . . x0⟩,
where x̂i = xi ⊕ 1, that differ only in bit i , and it leaves the orthogonal
subspace invariant.

George Voutsadakis (LSSU) Quantum Computing July 2024 76 / 100



Quantum State Transformations Realizing Unitary Transformations as Quantum Circuits

Notation

The upcoming slides use such control gates to exhibit an explicit
implementation of an arbitrary unitary transformation.

The construction uses two different transformations related to a pair
consisting of a k-bit string s and a single-qubit transformation Q.

The first applies Q to the i-th qubit with the standard ordering of the
basis {∣0⟩, ∣1⟩}, when the other k qubits are in state ∣s⟩;
The second applies XQX to the i-th qubit, when the other qubits are
in state ∣s⟩.

We use the notation ⋀i
x Q, where x is a (k + 1)-bit bit-string such

that xk . . . xi+1xi−1 . . . x0 = sk−1 . . . s0, to represent both of these
transformations depending on the value of xi .

When xi is 0, the single-qubit transformation Q is applied.
When xi is 1, the transformation XQX is applied.
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Properties

When i is specified, the notation x̂ means that the i -th bit of a
bit-string x has been flipped,

x̂ = x ⊕ 2i .

For any single-qubit transformation Q, if Q̂ = XQX ,

i⋀̂
x

Q = i⋀
x

Q̂.

Geometrically, ⋀i
x Q is a rotation in the two-dimensional complex

subspace spanned by standard basis vectors ∣x⟩ and ∣x̂⟩.
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Example

On a two-qubit system ∣b1b0⟩, the notation ⋀i
x Q affords, e.g., the

description of the following transformations.

⋀0
10X is the standard Cnot, with b1 being the control bit and b0 being

the target.⋀0
11X also represents the Cnot transformation, since for X , we have

X = XXX .⋀0
00X is a controlled-NOT transformation except that now X is

performed only when b1 has value 0.⋀1
01X describes the standard Cnot but with b0 as the control bit and b1

as the target.
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Preview: General Unitary Transformations

This section presents a systematic way to implement an arbitrary
unitary transformation on the 2n-dimensional vector space associated
with the state space of an n-qubit system.

The intuitive idea behind the construction is that:

Any unitary transformation is simply a rotation of the 2n-dimensional
complex vector space underlying the n-qubit quantum state space;
Any rotation can be obtained by a sequence of rotations in
two-dimensional subspaces.
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Ordering Using a Gray Code

Let N = 2n.
We write all matrices in the standard basis, but with a nonstandard
ordering {∣x0⟩, . . . , ∣xN−1⟩},
so that successive basis elements differ by only one bit.

Such a sequence of binary numbers is called a Gray code.

Any Gray code will do.

For 0 ≤ i ≤ N − 2, we let:

ji be the bit on which ∣xi ⟩ and ∣xi+1⟩ differ;
Bi be the shared pattern of all the other bits in ∣xi ⟩ and ∣xi+1⟩.

We show how to realize an arbitrary unitary operator U as a sequence
of multiply controlled single-qubit operators ⋀ji

xi Q that perform a
series of rotations, each in a two-dimensional subspace spanned by
successive basis elements.
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Goal for Expressing Transformations

Consider transformations Um, 0 ≤ m ≤ N − 2, of the form

Um = ( I (m) 0
0 VN−m

) ,
where:

I (m) is the m ×m identity matrix;
VN−m is an (N −m) × (N −m)-unitary matrix.

We show that, given any (N ×N)-matrix Um−1, 0 < m ≤ N − 2, of this
form, we can write

Um−1 = CmUm,

where:
Cm is the product of multiply controlled single-qubit operators;
Um has a larger identity component I (m) than Um−1.

Then, taking VN = U, the unitary operator U can be written as

U = U0 = C1 . . .CN−2UN−2.

George Voutsadakis (LSSU) Quantum Computing July 2024 82 / 100



Quantum State Transformations Realizing Unitary Transformations as Quantum Circuits

Goal for Expressing Transformations (Cont’d)

The transformation UN−2 has the form

UN−2 = ( I (N−2) 0
0 V2

) .
This is simply the operation ⋀j

x V2, where:

x = xN−2;
j = jN−2 is the bit in which the basis vectors ∣xN−2⟩ and ∣xN−1⟩ differ.

So it suffices to show how to implement the Cm using multiply
controlled single-qubit operators.

Then we will have succeeded in showing that any unitary operator can
be expressed in terms of such operators.

It would then follow that any unitary operator can be implemented
using only Cnot, K(δ), R(β) and T (α).
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Expressing Transformations

The basis vector ∣xm⟩ is the first basis vector on which Um−1 acts
nontrivially.

Write ∣vm⟩ = Um−1∣xm⟩ = am∣xm⟩ +⋯ + aN−1∣xN−1⟩.
We may assume aN−1 is a positive real, possibly by multiplying Um−1
by a global phase.

It suffices to find a unitary transformation Wm, composed only of
multiply controlled single-qubit transformations, that:

Takes ∣vm⟩ to ∣xm⟩;
Does not affect any of the first m elements of the basis.

Then WmUm−1 would have the desired form.

We would then take Um =WmUm−1 and Cm =W −1
m .
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Expressing Transformations (Cont’d)

To define Wm, begin by rewriting the coefficients of the last two
components of ∣vm⟩.

aN−2∣xN−2⟩ + aN−1∣xN−1⟩ = √∣aN−2∣2 + ∣aN−1∣2 aN−2√
∣aN−2∣2+∣aN−1∣2

∣xN−2⟩
+√∣aN−2∣2 + ∣aN−1∣2 aN−1√

∣aN−2∣2+∣aN−1∣2
∣xN−1⟩

= √∣aN−2∣2 + ∣aN−1∣2 ∣aN−2∣√
∣aN−2∣2+∣aN−1∣2

ei φN−2 ∣xN−2⟩
+√∣aN−2∣2 + ∣aN−1∣2 ∣aN−1∣√

∣aN−2∣2+∣aN−1∣2
∣xN−1⟩.

Now set

cN−2 =√∣aN−2∣2 + ∣aN−1∣2, cos (θN−2) = ∣aN−2∣
cN−2

, sin (θN−2) = ∣aN−1∣
cN−2

.

Then we have

∣vm⟩ = am∣xm⟩+⋯+cN−2 cos (θN−2)eiφN−2 ∣xN−2⟩+cN−2 sin (θN−2)∣xN−1⟩.
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Expressing Transformations (Cont’d)

We wrote

Um−1∣xm⟩ = am∣xm⟩ +⋯+ aN−3∣xN−3⟩
+cN−2 cos (θN−2)ei φN−2 ∣xN−2⟩ + cN−2 sin (θN−2)∣xN−1⟩.

Then we form the operator

jN−2⋀
xN−2

R(θN−2) jN−2⋀
xN−2

K(−φN−2).
It takes Um−1∣xm⟩ to am∣xm⟩ +⋯+ a′N−2∣xN−2⟩, where a′N−2 = cN−2.

⋀jN−2
xN−2

K(−φN−2) cancels the eiφN−2 factor.

⋀jN−2
xN−2

R(θN−2) rotates so that all of the amplitude that was in ∣xN−1⟩ is
now in ∣xN−2⟩.
None of the other basis vectors are affected because the controlled part
of the operators ensure that only basis vectors with bits in pattern
BN−2 are affected.
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Expressing Transformations (Cont’d)

To obtain the rest of Wm, we iterate this procedure over all pairs of
coordinates {aN−3,a′N−2} through {am,a′m+1}.
In this way, we obtain the operator

Wm = jm⋀
xm

R(θm) jm⋀
xm

K(−φm)⋯ jN−2⋀
xN−2

R(θN−2) jN−2⋀
xN−2

K(−φN−2),
where

ai = ∣ai ∣ei φi , ci =√∣ai ∣2 + ∣ai+1∣2, cos (θi) = ∣ai ∣
ci
, sin (θi) = ∣a′i+1∣

ci
.

It takes ∣vm⟩ to a′m∣xm⟩, where a′i = ci .
The coefficient a′m = 1, since the image of ∣vm⟩ must be a unit vector,
and the final ⋀jm

xm K(−φm) ensures that it is a positive real.
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Comments on Efficiency

While this procedure provides an implementation for any unitary
operator U in terms of simple transformations, the number of gates
needed is exponential in the number of qubits.

For this reason, it has limited practical value in that more efficient
implementations are needed for realistic computations.

Most unitary operators do not have efficient realizations in terms of
simple gates.

The art of quantum algorithm design is in finding useful unitary
operators that have efficient implementations.
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Subsection 5

A Universally Approximating Set of Gates
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Finite Sets of Gates

We just showed that all unitary transformations can be realized as a
sequence of single-qubit transformations and controlled-not gates.

From a practical point of view, we would prefer to deal with a finite
set of gates.

For any finite set of gates there are unitary transformations that
cannot be realized as a combination of these gates.
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The Solovay-Kitaev Theorem

There are finite sets of gates that can approximate any unitary
transformation to arbitrary accuracy.

Furthermore, for any desired level of accuracy 2−d , this approximation
can be done efficiently.

The Solovay-Kitaev Theorem asserts that, there is a polynomial
p(d), such that any single-qubit unitary transformation can be
approximated to within 2−d by a sequence of no more than p(d)
gates from the finite set.

We will not prove the Solovay-Kitaev Theorem.

We will exhibit a finite set of gates that can be used to approximate
all unitary transformations.
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Four Gates

We saw that any unitary transformation can be realized using
single-qubit and Cnot gates.

So it suffices to find a finite set of gates that can approximate all
single-qubit transformations.

Consider the set consisting of the following four gates.

The Hadamard gate H,

H = 1√
2
( 1 1

1 −1 ) = 1√
2
(∣0⟩⟨0∣ + ∣1⟩⟨0∣ + ∣0⟩⟨1∣ − ∣1⟩⟨1∣).

The phase gate Pπ

2
,

Pπ

2
= ( 1 0

0 ei π/2
) = ∣0⟩⟨0∣ + i ∣1⟩⟨1∣.
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Four Gates (Cont’d)

The π
8 -gate Pπ

4
,

Pπ

4
= ( 1 0

0 ei
π

4
) = ∣0⟩⟨0∣ + ei π

4 ∣1⟩⟨1∣.
The Cnot gate

Cnot =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠
= ∣00⟩⟨00∣ + ∣01⟩⟨01∣ + ∣10⟩⟨11∣ + ∣11⟩⟨10∣.

Recall the single-qubit operator T (θ) = ei θ ∣0⟩⟨0∣ + e−i θ ∣1⟩⟨1∣.
The π

8 -gate Pπ

4
got its name because, up to a global phase, it acts in

the same way as the gate T (−π
8 ), Pπ

4
= ei π

8 T (−π
8 ).

Unfortunately the name stuck in spite of the confusion it causes.
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Rational and Irrational Rotations

A rotation R is a rational rotation if, for some integer m, Rm = I .
If no such m exists, then R is an irrational rotation.

It may seem surprising that a set of gates consisting only of rational
rotations on the Bloch sphere can approximate all single qubit
transformations.

The proof of sufficiency proceeds by using these gates to construct an
irrational rotation.

Such a construction is possible because the group of rotations of a
sphere differs from the group of rotations of a Euclidean plane.

In the plane, the product of two rational rotations is always rational;
The analogous statement is not true for rotations of the sphere.
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A Sketch of the Argument

The gate Pπ

4
is a rotation by π/4 about the z-axis of the Bloch

sphere.

The transformation S = HPπ

4
H is a rotation by π

4 about the x-axis.

It can be shown that V = Pπ

4
S is an irrational rotation.

Since V is irrational, any rotation W about the same axis can be
approximated to within arbitrary precision 2−d by some power of V .

Recall that any single-qubit transformation may be achieved (up to
global phase) by combining rotations about the y - and z-axes.
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A Sketch of the Argument (Cont’d)

For every single-qubit operation W , there exist angles α, β, γ and δ
such that

W = K(δ)T (α)R(β)T (γ),
where:

T (α) rotates by angle α about the z-axis;
R(α) rotates by angle α about the y -axis.

The set of rotations about any two distinct axes can achieve arbitrary
single-qubit transformations.

Now HVH has a different axis from V .

Therefore, the two transformations H and V generate all single-qubit
operators.

There exist other universally approximating finite sets, each with its
own advantages and disadvantages.
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Subsection 6

The Standard Circuit Model
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The Circuit Model

A circuit model for quantum computation describes all computations
in terms of a circuit composed of:

Simple gates;
A sequence of measurements.

The simple gates are drawn from either one of the following:

A universal set of simple gates;
A universally approximating set of quantum gates.
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The Standard Circuit Model

The standard circuit model for quantum computation takes as:

Its gate set the Cnot gate together with all single qubit transformations;
Its set of measurements single-qubit measurements in the standard
basis.

So all computations in the standard model consist of:

A sequence of single-qubit and Cnot gates;
A sequence of single-qubit measurements in the standard basis.
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Comments on the Choice

A finite set of gates would be more realistic than the infinite set of all
single-qubit transformations.

However, the infinite set is easier to work with.

Moreover, by the results of Solovay and Kitaev, the infinite set does
not yield significantly greater computational power.

For conceptual clarity, the n qubits of the computation are often
organized into registers, subsets of the n qubits.

George Voutsadakis (LSSU) Quantum Computing July 2024 100 / 100


	Outline
	Quantum State Transformations
	Unitary Transformations
	Some Simple Quantum Gates
	Applications of Simple Gates
	Realizing Unitary Transformations as Quantum Circuits
	A Universally Approximating Set of Gates
	The Standard Circuit Model


