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Quantum Versions of Classical Computations From Reversible Classical to Quantum Computations

Reversibility

Any sequence of quantum transforms effects a unitary transformation
U on the quantum system.

As long as no measurements are made, the initial quantum state of
the system prior to a computation can be recovered from the final
quantum state ∣ψ⟩ by running U−1 = U† on ∣ψ⟩.

Thus, any quantum computation is reversible prior to measurement in
the sense that the input can always be computed from the output.
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Irreversibility in the Classical Case

In contrast, classical computations are not in general reversible.

It is not usually possible to compute the input from the output.

E.g., while the classical NOT operation is reversible, the AND, OR
and NAND are not.

Every classical computation has a classical reversible analog that
takes only slightly more computational resources.
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Seeking Reversibility in the Classical Case

We will see how to make basic Boolean gates reversible.

Further we will see how to make entire Boolean circuits reversible in a
resources efficient way, considering:

Space;
The number of bits required;
The number of primitive gates.

This construction of efficient classical reversible versions of arbitrary
Boolean circuits easily generalizes to a construction of quantum
circuits that efficiently implement general classical circuits.
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Classical Reversible Computations

Any classical reversible computation with n input and n output bits
simply permutes the N = 2n bit strings.

Thus, for any such classical reversible computation, there is a
permutation π ∶ ZN → ZN sending an input bit string to its output bit
string.

This permutation can be used to define a quantum transformation

Uπ ∶
N−1

∑
x=0

ax ∣x⟩ ↦
N−1

∑
x=0

ax ∣π(x)⟩,

that behaves on the standard basis vectors, viewed as classical bit
strings, exactly as π did.

The transformation Uπ is unitary, since it simply reorders the standard
basis elements.
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Making Classical Computations Reversible

Any classical computation on n input and m output bits defines
function

f ∶ ZN → ZM ;
x ↦ f (x).

f mapps the N = 2n input bit strings to the M = 2m output bit strings.

Such a function can be extended in a canonical way to a reversible
function πf acting on n +m bits partitioned into two registers:

The n-bit input register;
The m-bit output register.
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Making Classical Computations Reversible (Cont’d)

The function πf is specified by

πf ∶ ZL → ZL;
(x , y) ↦ (x , y ⊕ f (x)).

Here, ⊕ denotes the bitwise exclusive-OR.

The function πf acts on the L = 2n+m bit strings, each made up of an
n-bit string x and an m-bit string y .

For y = 0, the function π acts like f , except that:

The output appears in the output register;
The input register retains the input.
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Issues of Implementation

Since πf is reversible, there is a corre-
sponding unitary transformation

Uf ∶ ∣x , y⟩ ↦ ∣x , y ⊕ f (x)⟩.

Most unitary operators do not have an efficient implementation.

Uf has an efficient implementation as long as there is a classical
circuit that computes f efficiently.

The method for constructing an efficient implementation of Uf from
an efficient classical circuit for f involves two steps.

We construct an efficient reversible classical circuit that computes f ;
We substitute quantum gates for each of the reversible gates that make
up the reversible classical circuit.
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NOT

Let b1 and b0 be two binary variables, taking only values 0 or 1.

The NOT gate is already reversible.

We will use X to refer to both:

The classical reversible gate;
The single-qubit operator

X = ∣0⟩⟨1∣ + ∣1⟩⟨0∣.
I performs a classical not operation on classical bits encoded as the
standard basis elements.
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XOR

The controlled negation performed by the

Cnot = ⋀
1

X

gate amounts to an XOR operation on its input values.

It retains the value of the first bit b1, and replaces the value of the bit
b0 with the XOR of the two values.

The quantum version behaves like the reversible version on the
standard basis vectors.

Its behavior on all other states can be deduced from the linearity of
the operator.
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AND

It is impossible to perform a reversible AND operation with only two
bits.

The three-bit controlled-controlled-NOT gate, or Toffoli gate,
T = ⋀2X can be used to perform a reversible AND operation:

T ∣b1,b0,0⟩ = ∣b1,b0,b1 ∧ b0⟩,

where ∧ is notation for the classical AND of two bit values.

The Toffoli gate is defined for all inputs.

When the value of the third bit is 1,

T ∣b1,b0,1⟩ = ∣b1,b0,1⊕ b1 ∧ b0⟩.
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Toffoli Gate and Other Boolean Connectives

By varying the values of input bits, the Toffoli gate T can be used to
construct a complete set of Boolean connectives.

Thus, Toffoli gates suffice to construct any combinatorial circuit.

The Toffoli gate computes NOT, AND, XOR and NAND in the
following way (¬ is the classical NOT acting on a single bit):

NOT ∶ T ∣1,1, x⟩ = ∣1,1,¬x⟩

AND ∶ T ∣x , y ,0⟩ = ∣x , y , x ∧ y⟩

XOR ∶ T ∣1, x , y⟩ = ∣1, x , x ⊕ y⟩

NAND ∶ T ∣x , y ,1⟩ = ∣x , y ,¬(x ∧ y)⟩.

.
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The Fredkin Gate

An alternative to the Toffoli gate, the Fredkin gate F , acts as a
controlled swap:

F = ⋀
1

S ,

where S is the two-bit swap operation S ∶ ∣xy⟩→ ∣yx⟩.

The Fredkin gate F , like the Toffoli gate T , can implement a
complete set of classical Boolean operators (∨ is the classical OR of
two bits):

NOT ∶ F ∣x ,0,1⟩ = ∣x , x ,¬x⟩

OR ∶ F ∣x , y ,1⟩ = ∣x , y ∨ x , y ∨ ¬x⟩

AND ∶ F ∣x ,0, y⟩ = ∣x , y ∧ x , y ∧ ¬x⟩.
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Using Toffoli Gates for Classical Circuits

We saw that, using just the Toffoli gate T , or the Fredkin gate F , we
can implement a complete set of classical Boolean connectives.

So, by combining T or F gates, we can realize arbitrary Boolean
circuits.

We will describe explicit implementations of certain classical
functions.

The operations Cnot and X can be implemented by Toffoli gates with
the addition of one or two bits permanently set to 1.

So we use Cnot and X gates in our construction, but all constructions
can be done using only Toffoli gates.
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Example

The circuit shown implements a one-bit full adder using Toffoli and
controlled-NOT gates:

x and y are the data bits;
s is their sum (modulo 2);
c is the incoming carry bit;
c ′ is the new carry bit.

Several one-bit adders can be strung together to achieve full n-bit
addition.
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Subsection 2

Reversible Implementations of Classical Circuits
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A Naive Reversible Implementation

We consider a classical machine that consists of:

A register of bits;
A processing unit.

The processing unit:

Performs simple Boolean operations or gates on one or two of the bits
in the register at a time;
Stores the result in one of the register’s bits.

We assume that, for a given size input, the sequence of operations
and their order of execution are fixed and do not depend on the input
data or on other external control.

In analogy with quantum circuits, we draw bits of the register as
horizontal lines.
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Example

A simple program (for four-bit conjunction) is depicted below.
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Space Complexity and Irreversibility

An arbitrary Boolean circuit can be transformed into a sequence of
operations on a register large enough register to hold:

Input bits;
Output bits;
Intermediate bits.

The space complexity of a circuit is the size of the register.

Computations performed by this machine are not reversible in general.

By reusing bits in the register, the machine erases information that
cannot be reconstructed later.
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Trivial Solution of the Irreversibility Issue

A trivial, but highly space inefficient, solution to this problem is not
to reuse bits during the entire computation.

The following figure illustrates how the circuit can be made reversible
by assigning the results of each operation to a new bit.

The operation that reversibly computes the conjunction and leaves
the result in a bit initially set to 0 is the Toffoli gate.
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Using NOT and AND Gates

The NOT gate is reversible.

Moreover, NOT and AND form a complete set of Boolean operations.

So the construction can be generalized to turn any computation using
Boolean logic operations into one using only reversible gates.

This implementation needs an additional bit for every AND
performed.

So if the original computation takes t steps, then a reversible one,
constructed in this way, requires up to t additional bits of space.
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Reusing Bits: Resetting versus Reversing

After computation, the additional space is no longer in the 0 state.

So it cannot be directly reused, e.g., to compose two reversible
circuits.

Reusing temporary bits is crucial in keeping space requirements close
to that of the original nonreversible classical computation.

Resetting a bit to zero is not reversible (it loses information).

So it cannot be used as part of a reversible computation.

Reversible computations cannot reclaim space through resetting.

They can uncompute any bit set during a reversible computation by
reversing the part of the computation that computed the bit.
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Example

Consider the computation shown.

Bits t1 and t0 are temporarily used to obtain the output in bit m0.

We may uncompute these bits, resetting them to their original 0
value, by reversing all but the last step of the circuit on the left.

These may be reused as part of a continuing computation.

The temporary bits are reclaimed at the cost of roughly doubling the
number of steps.
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Uncomputing and Reusing Bits

We can reduce the number of qubits needed by uncomputing them
and reusing them in the course of the algorithm.

The method of uncomputing bits by performing all of the steps in
reverse order, except those giving the output, works for any classical
Boolean subcircuit.

Consider a classical Boolean subcircuit consisting of t gates operating
on an s-bit register.

The naive construction requires up to t additional bits in the register.
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Example

Suppose we want to construct the conjunction of eight bits.

Simply reversing the steps, generalizing the approach for four bits,
requires six additional temporary bits and one bit for the final output.

We can save space by using the
four-bit AND circuit involving the T

gates four times and then combining
the results as shown on the right.

This construction uses two temporary
bits in addition to the two temporary
bits used in each of the four-bit ANDs.

Since each of the four-bit ANDs uncomputes its temporary bits, these
bits can be reused by the subsequent four-bit ANDs.

This circuit uses only a total of four additional temporary bits, but it
does require more gates.
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Additional Bits: Invertibility and Uncomputing

There is an art to deciding when to uncompute which bits to:

Maintain efficiency;
Retain subresults used subsequently in the computation.

The key ideas, which are the main ingredients of the general
construction, are:

Adding bits to obtain reversibility;
Uncomputing their values so that they may be reused.

By choosing carefully when and what to uncompute, it is possible to
make a positive tradeoff.

We sacrifice some additional gates;
We obtain a much more efficient use of space.

We will see, e.g., an explicit efficient implementation of an m-way
AND.
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General Construction: Goals

We look at how, by carefully choosing which bits to uncompute when,
a reversible version of any classical computation can be achieved with
only minor increases in the number of gates and bits.

We show that any classical circuit using t gates and s bits, has a
reversible counterpart using only:

O(t1+ε) gates;
O(s log t) bits.

For t ≫ s, this construction:

Uses significantly less space than the (s + t) space of the naive
approach described previously;
Incurs only a small increase in the number of gates.

George Voutsadakis (LSSU) Quantum Computing July 2024 29 / 78



Quantum Versions of Classical Computations Reversible Implementations of Classical Circuits

Analysis of Number of Bits Used

Let C be a classical circuit, composed of AND and NOT gates.

Suppose C uses no more than t gates and s bits.

The circuit C can be partitioned into r = ⌈ t
s
⌉ subcircuits C1, . . . ,Cr ,

each containing s or fewer consecutive gates,

C = C1C2 . . .Cr .

Each subcircuit Ci has s input and s output bits, some of which may
be unchanged.

We know each circuit Ci can be
replaced by a reversible circuit Ri

using at most s additional bits.

The circuit Ri returns its input as well as the s output values used in
the subsequent computation.

The input values will be used to uncompute and recompute Ri in
order to save space.
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General Methodology: Three Steps

In general, Ri can be constructed using at most 3s gates.

Step 1: Compute all of the output values in a reversible way.
For every AND or NOT gate in the original circuit Ci , the circuit Ri

has a Toffoli or NOT gate.
This step uses the same number of gates, s, as Ci , and uses no more
than s additional bits.

Step 2: Copy all of the output values, the values used in subsequent parts of
the computation, to the output register, a set of no more than s

additional bits.
Step 3: Perform the sequence of gates used to carry out step 1, but this time in

reverse order.
In this way all bits, except those in the output register, are reset to
their original values.
Specifically, all temporary bits are returned to 0, and we have recovered
all of the input values.
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A Space-Inefficient Configuration

The circuits R1 . . .Rr are combined as in the figure.

The configuration performs the computation C in a reversible but
space-inefficient way.

The subcircuits Ri can be combined in a special way that uses space
more efficiently by uncomputing and reusing some of the bits.
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Improving on Space-Efficiency

We would like to uncompute and reuse some of the bits.

Uncomputing requires additional gates.

So we must choose carefully when to uncompute in order to reduce
the usage of space without needing too many more gates.

First, we show how to obtain a reversible version using:

O(t log2 3) gates;
O(s log t) bits

Then we improve on this method to obtain:

O(t1+ε) gates;
O(s log t) bits.
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Uncomputing and Recomputing to Reuse Space

The basic principle for combining the r = ⌈ t
s
⌉ circuits Ri is indicated in

the following:

The idea is to uncompute and recompute parts of the state selectively
to reuse the space.

We systematically modify the computation R1R2 . . .Rr to:

Reduce the total amount of space used;
Reset all the temporary bits to zero by the end of the computation.
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Transformation B

To simplify the analysis, we take r to be a power of two, r = 2k .

For 1 ≤ i ≤ k , let ri = 2i .

We perform a recursive transformation B that:

Breaks a sequence into two equal-sized parts;
Recursively transforms the parts;
Composes the part as shown.

B(R1, . . . ,Rri+1) = B(R1, . . . ,Rri )B(R1+ri , . . . ,Rri+1)(B(R1, . . . ,Rri ))−1,B(R) = R .

Note that (B(R1, . . . ,Rri ))−1 acts on exactly the same bits as
B(R1, . . . ,Rri ) and so requires no additional space.

George Voutsadakis (LSSU) Quantum Computing July 2024 35 / 78



Quantum Versions of Classical Computations Reversible Implementations of Classical Circuits

Space Requirements

The transformed computation uncomputes all space except the
output of the last step.

So the additional space usage is bounded by s.

Thus, B(R1, . . . ,Rri ) requires at most s more space than
B(R1, . . . ,Rri−1).
The recursion proceeds for k = log2 r steps.

For the space S(i) required for step i , we have

S(i) ≤ s + S(i − 1), S(1) ≤ 2s.

It follows that the final computation B(R1, . . . ,Rr) requires space

S(r) ≤ (k + 1)s = s(log2 r + 1).
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Gate Requirements

Let T (i) be the number of circuits Rj executed by the computation
B(R1, . . . ,Rri ).
By the definition of B, it follows that

T (i) = 3T (i − 1), T (1) = 1.

So the number of reversible circuits Ri that our reversible version of
C uses is

T (2k) = 3T (2k−1) = ⋯ = 3k = 3log2 r = r log2 3.

Moreover, each requires fewer than 3s gates.

Thus, any classical computation of t steps and s bits can be done
reversibly in:

O(t log2 3) steps;
O(s log2 t) bits.
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Improving the Bound

To obtain the O(t1+ε) bound, instead of using a binary
decomposition, we consider an m-ary decomposition.

For simplicity, suppose that r is a power of m, r = mk .

For 1 ≤ i ≤ k , let ri = mi .

We use the abbreviation

R⃗x ,i ∶= R1+(x−1)ri , . . . ,Rxri .

We have

B(R⃗1,i+1) = B(R⃗1,i , R⃗2,i , . . . , R⃗m,i)
= B(R⃗1,i)B(R⃗2,i)⋯B(R⃗m−1,i),

B(R⃗m,i),
B(R⃗m−1,i)−1⋯B(R⃗2,i)−1B(R⃗1,i)−1,

B(R) = R .
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Improving the Bound (Cont’d)

In each step of the recursion, each block is split into m pieces and
replaced with 2m − 1 blocks.

Since r = mk , we stop recursing after k steps.

At this point r = mk subcircuits C1 have been replaced by (2m − 1)k
reversible circuits Ri .

So the total number of circuits Ri for the final computation is
(2m − 1)k .
We rewrite this terms of r .

(2m − 1)logm r = r logm (2m−1) ≈ r logm 2m = r
1+ 1

log2 m .

The number of primitive gates in Ri is bounded by 3s and r = ⌈ t
s
⌉.

The total number of gates for a reversible circuit of t gates is

T (t) ≈ 3s ( t
s
)1+

1
log2 m < 3t

1+ 1
log2 m .
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Improving the Bound (Cont’d)

For any ǫ > 0, we may choose m large enough that 1
log2 m

< ǫ.
So the number of gates required is O(t1+ǫ).
The space bound remains the same as before, O(s log2 t).
Reversible versions of classical Boolean circuits constructed in this
manner can be turned directly into quantum circuits consisting
entirely of Toffoli and X gates.

Our argument was given in terms of Boolean circuits.

The same argument shows that any classical Turing machine can be
turned into a reversible one.

Given any classical circuit for f , an implementation of Uf can be
constructed of comparable number of gates and bits.
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Uncomputing to Disentangle

The care needed in uncomputing and reusing bits generalizes to
qubits where the need for uncomputing values is even greater.

Uncomputing ensures that temporary qubits are no longer entangled
with output qubits.

Unentangling temporary values at the end of a computation is one of
the differences between classical and quantum implementations.

Quantum transformations, being reversible, cannot reset qubits.

One might think that temporary qubits could be reset by:

Measuring the qubit;
Depending on the measurement outcome, performing a transformation
to set them to ∣0⟩.

But the temporary qubits may be entangled with qubits containing
the desired result, or results used later in the computation.

So measuring the temporary qubits may alter those results.
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Subsection 3

A Language for Quantum Implementations
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Notation for Registers

Quantum variables are names for registers.

Registers are taken to be subsets of qubits of a single global quantum
register.

Suppose x is the variable name for an n-qubit register.

We write x[n] if we wish to make the number of qubits in x explicit.

We use xi to refer to the i -th qubit of x .

We wite xi⋯xk for qubits i through k of the register denoted by x .

We order the qubits of a register from highest index to lowest index.

So, if register x contains a standard basis vector ∣b⟩, then
b = ∑

i

xi2
i .
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Notation for Transformations

Suppose U is a unitary transformation on n qubits.

Let x , y and z be names for registers with total length n qubits.

Then the program step

U ∣x , y , z⟩ = U ∣x⟩∣y⟩∣z⟩
means “apply U to the qubits denoted by the register names in the
order given”.

It is illegal to use any qubit twice in this notation.

So the registers x , y and z must be disjoint.

This restriction is necessary because “wiring” different input values to
the same quantum bit is not possible or even meaningful.
Note that the ket notation is slightly abused, being used to stand for:

A placeholder, a qubit, that can contain a qubit value, a quantum state;
The qubit value itself.

Context should keep the two uses clear.
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Example

The Toffoli gate, with control bits b5 and b3 and
target bit b2, has the graphical representation
shown.

It is awkward to represent in the standard tensor
product notation because the qubits it acts on
are not adjacent.

In our notation, this transformation can be written as

T ∣b5,b3,b2⟩.
The notation T ∣b2,b3,b2⟩ is not allowed, since it repeats qubits.
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Example (Cont’d)

Consider the notation

(T ⊗Cnot ⊗H)∣x5⋯x3⟩∣x1, x0⟩∣x7⟩,
for a transformation acting on six qubits of a ten-qubit register
x = x9x8⋯x0.

It is another way of representing the transformation

I ⊗ I ⊗H ⊗ I ⊗T ⊗ I ⊗ Cnot,

where the separate kets indicate which qubits the transformation
making up the tensor product is acting upon.

The Toffoli gate T acts on qubits x5, x4 and x3.
The Cnot acts on qubits x1 and x0.
The Hadamard gate H acts on qubit x7.

The notation (T ⊗ Cnot ⊗H)∣x5⋯x3⟩∣x4, x0⟩∣x7⟩
is illegal, as the first and second registers are not disjoint.
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Control

Controlled operations are so frequently used that we give them their
own notation.

Let b and x be disjoint registers.

The notation ∣b⟩ control U ∣x⟩
means that, on any standard basis vector, the operator U is applied to
the contents of register x only if all of the bits in b are 1.

Writing ¬∣b⟩ control U ∣x⟩ is a shorthand for the sequence

X ⊗⋯⊗X ∣b⟩∣b⟩ control U ∣x , y⟩
X ⊗⋯⊗X ∣b⟩.

If we write a sequence of state transformations, they are intended to
be applied in order.
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Qubit for Local Temporary Registers

We allow programs to declare local temporary registers using

qubit t[n].
However, the program must restore the qubits in these registers to
their initial ∣0⟩ state.
This condition ensures that:

Temporary qubits can be reused for different executions of the program;
The overall storage requirement is bounded.

It also ensures that the temporary qubits do not remain entangled
with the other registers.
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Define

We allow naming sequences of program steps.

This is done using command define.

Unlike commands such as control, the command define does not do
anything to the qubits.

It defines a new function by telling the machine what sequence of
commands a new function variable name represents.
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Example

Define addition modulo 2, with an incoming carry bit.

Sum ∶ ∣c ,a,b⟩ → ∣c ,a, (a + b + c) mod 2⟩
define Sum ∣c⟩∣a⟩∣b⟩ =∣a⟩ control X ∣b⟩∣c⟩ control X ∣b⟩.

It operates on three single qubits by adding the value of a and the
value of the carry c to the value of b.

The program would be drawn as the circuit
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Carry

A corresponding carry operator is of the form

Carry ∶ ∣c ,a,b, c ′⟩→ ∣c ,a,b, c ′ ⊕ C(a,b, c)⟩,
where the carry C(a,b, c) is 1 if two or more of the bits a,b, c , are 1,

C(a,b, c) = (a ∧ b) ⊕ (c ∧ (a ⊕ b)).
A program for Carry might look like

define Carry ∣c , a,b, c ′⟩ =
∣a⟩∣b⟩ control X ∣c ′⟩ Compute a ∧ b in register c ′

∣a⟩ control X ∣b⟩ Compute a⊕ b in register b
∣c⟩∣b⟩ control X ∣c ′⟩ Toggle result c ′ if c and current value of b
∣a⟩ control X ∣b⟩ Reset b to original value
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Carry (Cont’d)

A program for Carry.

define Carry ∣c , a,b, c ′⟩ =
∣a⟩∣b⟩ control X ∣c ′⟩ Compute a ∧ b in register c ′

∣a⟩ control X ∣b⟩ Compute a⊕ b in register b
∣c⟩∣b⟩ control X ∣c ′⟩ Toggle result c ′ if c and current value of b
∣a⟩ control X ∣b⟩ Reset b to original value

Starting in Step (2), register b temporarily holds the XOR of the
original values of a and b.

In Step (3), this value of register b means that c ′ is toggled if c and
exactly one of the original values of a and b is 1.

Register b is reset to its original value in Step (4).
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Classical versus Quantum Registers

Repetition and conditional execution of sequences of quantum state
transformations can be controlled using classical programming
constructs.

Only classical, not quantum, information can be used in the control
structure.

However, in quantum algorithms there is a choice as to:

Which classical input values are placed in quantum registers;
Which input values are used simply as part of the classical control
structure.
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Classical versus Quantum Registers (Cont’d)

For instance, one program to add x to itself n times might take
classical input n and use it only as part of the classical control.

Another might place n in an additional quantum register.

The two programs would be of the form

An ∶ ∣x ,0⟩ ↦ ∣x ,nx⟩,
A ∶ ∣x ,n,0⟩ ↦ ∣x ,n,nx⟩,

respectively.

This distinction will be more important when we consider quantum
algorithms that act on superpositions of input values.

Only input values placed in quantum registers, not input values that
are part of the classical control structure, can be in superposition.
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Recursion

The definition of a new program may use the same program
recursively, provided that the recursion can be unwound classically.

Recursive application of functions is allowed only as a shorthand for a
classically specified sequence of quantum transformations.

We can use the
qubit t[n]

construction recursively, as long as the recursion depth is bounded by
a static classical constant.
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Subsection 4

Some Example Programs for Arithmetic Operations
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Transformation Flip

We define a transformation Flip that generalizes the Toffoli gate T .

The transformation Flip acts on:

An m-qubit register a = ∣am−1 . . . a0⟩;
An (m − 1)-qubit register b = ∣bm−2 . . . b0⟩.

It negates qubit bi exactly when the following (i + 2)-conjunction
holds,

i+1

⋀
j=0

aj .

We define Flip in terms of Toffoli gates T .

These Toffoli gates perform bit flips on some of the qubits of register
b depending on the contents of a.
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Transformation Flip (Cont’d)

We encode as follows.

define Flip ∣a[2]⟩∣b[1]⟩ = (base case m = 2)
T ∣a1⟩∣a0⟩∣b⟩

define Flip ∣a[m]⟩∣b[m − 1]⟩ = (general case m ≥ 3)
T ∣am−1⟩∣bm−3⟩∣bm−2⟩
Flip ∣am−2 . . . a0⟩∣bm−3 . . . b0⟩
T ∣am−1∣bm−3∣bm−2⟩.

An inductive argument shows that Flip, when defined in this way,
behaves as described.

The transformation Flip, when applied to an m-qubit register a and
an (m − 1)-qubit register b, uses 2(m − 2) + 1 Toffoli gates T .
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The AndTemp Operation

Next we define an AndTemp operation that acts on:

An m-qubit register a;
An (m − 2)-qubit register c ;
A single qubit register b.

It stores in b the conjunction of bits in a, making temporary use of
the qubits in c .

We will use AndTemp to construct an AND operation that makes
more efficient use of qubits.
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The AndTemp Operation (Cont’d)

We encode as follows.

define AndTemp ∣a[2]⟩∣b[1]⟩ = (base case m = 2)
T ∣a1⟩∣a0⟩∣b⟩

define AndTemp ∣a[m]⟩∣b[1]⟩∣c[m − 2]⟩ = (general case m − 3)
Flip ∣a⟩(∣b⟩∣c⟩) Compute conjunction in b (1)
Flip ∣am−2 . . . a0⟩∣c⟩ Reset c (2)

The parentheses in Flip∣a⟩(∣b⟩∣c⟩) indicate that Flip is applied to:

The m-qubit register a;
The m − 1 qubit register that is the concatenation of registers b and c .

By the definition of Flip, Step (1) leaves the conjunction of the aj in
b but changes the contents of c in the process.

Step (2) undoes these changes to c .
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The AndTemp Operation (Cont’d)

AndTemp requires 4m − 8 gates:

The first Flip uses 2(m − 2) + 1 Toffoli gates;
The second Flip uses 2(m − 3) + 1 Toffoli gates.

The m − 2 qubits in register c can be in any state at the start of the
computation.

They will be returned to their original states by the end of the
computation.

So we can use these to compute the m-way AND, provided there are
sufficiently many computational qubits already (n ≥ 2m − 2).

Clever use of this property of AndTemp will allow us to define an And

on up to n qubits that uses only 1 additional temporary qubit.
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Efficient Implementation of AND

To construct the conjunction using less space, we recursively use
AndTemp on one half of the qubits, using the other half temporarily
and vice versa.

Thus, a general And operator that requires a single temporary qubit
can be defined as follows.

Let k = ⌊m2 ⌋ and define

j = { k − 2, for even m,
k − 1, for odd m.

The operator And flips b if and only if all bits of a are 1.

define And ∣a[1]⟩∣b[1]⟩ = Trivial unary case, m = 1
Cnot∣a0⟩∣b⟩

define And ∣a[2]⟩∣b[1]⟩ = Binary case, m = 2
T ∣a1⟩∣a0⟩∣b⟩
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Efficient Implementation of AND (Cont’d)

For the general case, we encode as follows.

define And ∣a[m]⟩∣b⟩ = General case, 3 ≤ m

qubit t[1] use a temporary qubit
AndTemp ∣am−1 . . . ak⟩∣t⟩∣aj . . . a0⟩ (1)
AndTemp (∣t⟩∣aj . . . a0⟩)∣b⟩∣ak+j−2 . . . ak⟩ (2)
AndTemp ∣am−1 . . . ak⟩∣t⟩∣aj . . . a0⟩ (3)

Step (1) computes the conjunction of the high-order bits using the
low-order bits temporarily.

In step (2) we compute the conjunction of the low-order bits using
the high-order bits temporarily.

Since AndTemp uses a linear number of gates, so does And.
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Multiply Controlled Single-Qubit Transformations

The linear implementation of And enables a linear implementation of
the multiply controlled single-qubit transformations ⋀i

x Q.

Given an m-bit bit string z , let X (z) be the transformation

X (z) = X ⊗ I ⊗⋯⊗X ⊗ X ,

which contains:

An X at any position where z has a 0 bit;
An I at any position where z has a 1 bit.

We implement the transformation Conditional(z ,Q), which acts on
qubit b with single-qubit transformation Q if and only if the bits of
register a match bit string z .

George Voutsadakis (LSSU) Quantum Computing July 2024 64 / 78



Quantum Versions of Classical Computations Some Example Programs for Arithmetic Operations

Multiply Controlled Single-Qubit Transformations (Cont’d)

We encode as follows.

define Conditional(z ,Q)∣a[m]⟩∣b[1]⟩ =
qubit t use a temporary qubit (1)
X (z)∣a⟩ if a and z match, a becomes all 1’s (2)
And ∣a⟩∣t⟩ AND bits of a (3)∣t⟩ control Q ∣b⟩ if a matched z , apply Q to b (4)
And ∣a⟩∣t⟩ uncompute AND (5)
X (z)∣a⟩ uncompute match (6)

This construction uses 2 additional qubits and only O(m) simple
gates.

When z is 11 . . . 1 and Q = X , then Conditional(z ,Q) is simply the
And operator.
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In-Place Addition

We define an Add transformation that adds two n-bit binary numbers.

The transformation

Add ∶ ∣c⟩∣a⟩∣b⟩→ ∣c⟩∣a⟩∣(a + b + c) mod 2n+1⟩
acts on:

Two n-qubit registers a and c ;
An (n + 1)-qubit register b.

It adds two n-bit numbers, placed in registers a and b, and puts the
result in register b, when register c and the highest order bit, bn, of
register b are initially 0.

The implementation of Add uses n recursion steps, where n is the
number of bits in the numbers to be added.

The ith step in the recursion adds the n− i highest bits, with the carry
in the lowest of these n − i highest bits having first been computed.

The construction uses Sum and Carry defined previously.
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In-Place Addition (Cont’d)

We consider the two cases, n = 1 and n > 1:

define Add ∣c⟩∣a⟩∣b[2]⟩ = base case n = 1
Carry ∣c⟩∣a⟩∣b0⟩∣b1⟩ carry in high bit of b (1)
Sum ∣c⟩∣a⟩∣b0⟩ sum in low bit of b (2)

define Add ∣c[n]⟩∣a[n]⟩∣b[n + 1]⟩ = general case n > 1
Carry ∣c0⟩∣a0⟩∣b0⟩∣c1⟩ compute the carry for low bits (3)
Add ∣cn−1 . . . c1⟩∣an−1 . . . a1⟩∣bn . . . b1⟩ add n − 1 highest bits (4)
Carry−1∣c0⟩∣a0⟩∣b0⟩∣c1⟩ uncompute the carry (5)
Sum ∣c0⟩∣a0⟩∣b0⟩ compute the low order bit (6)
Step (5) is needed to ensure that the carry register is reset to its
initial value.

The Carry−1 operator is implemented by running, in reverse order, the
inverse of each transformation in the definition of the Carry operator.
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Modular Addition

The following program defines modular addition for n-bit binary
numbers a and b,

AddMod ∣a⟩∣b⟩∣M⟩→ ∣a⟩∣(b + a) mod M⟩∣M⟩,
where:

a and M are n-qubit registers;
b is an (n + 1)-qubit register.

When the highest order bit, bn, of register b is initially 0, the
transformation AddMod replaces the contents of register b with b + a

mod M, where M is the contents of register M.

The contents of registers a and M (and the temporaries c and t) are
unchanged by AddMod.

The construction makes use of the Add transformation we defined
previously.
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Modular Addition (Cont’d)

We encode as follows.

define AddMod ∣a[n]⟩∣b[n + 1]⟩∣M[n]⟩ =
qubit t use a temporary bit (1)
qubit c[n] storage for the n-bit carry (2)
Add ∣c⟩∣a⟩∣b⟩ add a to b (3)
Add−1∣c⟩∣M⟩∣b⟩ subtract M from b (4)∣bn⟩ control X ∣t⟩ toggle t when underflow (5)∣t⟩ control Add ∣c⟩∣M⟩∣b⟩ when underflow, add M back to b (6)
Add−1∣c⟩∣a⟩∣b⟩ subtract a again (7)¬∣bn⟩ control X ∣t⟩ reset t (8)
Add ∣c⟩∣a⟩∣b⟩ construct final result (9)
Classically, Steps (3) through (6) are all that are needed.

In Step (4), if M > b, subtracting M from b causes bn to become 1.

Steps (7) through (9) are needed to reset t.
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Modular Addition (Cont’d)

Note that each Add operation internally resets ∣c⟩ back to its original
value.

The condition 0 ≤ a,b <M is necessary.

For values outside that range, an operation that sends ∣a,b,M⟩ to∣a,b + a mod M,M⟩ is not reversible and therefore not unitary.

If this condition does not hold, for example if b ≥M initially, then the
final value of b may still be greater than M, since the algorithm
subtracts M at most once.
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Modular Multiplication

The TimesMod transformation multiplies two n-bit binary numbers a
and b modulo another n-bit binary number M.

The transformation

TimesMod ∣a⟩∣b⟩∣M⟩∣p⟩ → ∣a⟩∣b⟩∣M⟩∣(p + ba) mod M⟩
is defined by the following program that successively adds bi2

ia

mod M to the result register p.

It is assumed that a <M, but b can be arbitrary.

Both a and p are (n + 1)-qubit registers.
The additional high-order bit is needed for intermediate results.

The operation Shift simply cyclically shifts all bits by 1.

This can be done by swapping bits ai+1 with ai for all i , starting with
the high-order bits.

Shift acts as multiplication by 2, since the high-order bit of a will be
0.
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Modular Multiplication (Cont’d)

We encode as follows.

define TimesMod ∣a[n + 1]⟩∣b[k]⟩∣M[n]⟩∣p[n + 1]⟩ =
qubit t[k] use k temporary bits (1)
qubit c[n] carry register for addition (2)
for i ∈ [0 . . . k − 1] iterate through bits of b (3)
Add−1∣c⟩∣M⟩∣a⟩ subtract M from a (4)∣an⟩ control X ∣ti ⟩ ti = 1 if M > a (5)∣ti ⟩ control Add ∣c⟩∣M⟩∣a⟩ add M to a if ti is set (6)∣bi ⟩ control AddMod ∣an−1 . . . a0⟩∣p⟩∣M⟩ add a to p if bi is set (7)
Shift ∣a⟩ multiply a by 2 (8)

for i ∈ [k − 1 . . . 0] clear t and restore a (9)
Shift−1∣a⟩ divide a by 2 (10)∣ti ⟩ control Add−1∣c⟩∣M⟩∣a⟩ perform all steps in reverse (11)∣an⟩ control X ∣ti ⟩ clear ith bit of t (12)
Add ∣c⟩∣M⟩∣a⟩ add M to a (13)
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Modular Multiplication (Cont’d)

Lines (4)-(6) compute the a mod M.

The second loop, (9)-(13), undoes all the steps of the first one,
(3)-(8), except the conditional addition to the output p (Line 7).

The transformation that sends

∣a,b,M⟩ ↦ ∣a,ab mod M,M⟩
is not unitary.

This is seen, e.g., by

∣2,1,4⟩ ↦ ∣2,2,4⟩;
∣2,3,4⟩ ↦ ∣2,2,4⟩.

So modular multiplication cannot be defined as an in-place operation.
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Modular Exponentiation (Copy Transformation)

We implement modular exponentiation,

ExpMod ∣a⟩∣b⟩∣M⟩∣0⟩ → ∣a⟩∣b⟩∣M⟩∣ab mod M⟩
using O(n2) temporary qubits where a,b and M are n-qubit registers.

The Copy transformation

Copy ∶ ∣a⟩∣b⟩→ ∣a⟩∣a ⊕ b⟩
copies the contents of an n-bit register a to another n-bit register b
whenever the register b is initialized to 0.

The operation Copy can be implemented as bitwise XOR operations
between the corresponding bits in registers a and b.

define Copy ∣a[n]⟩∣b[n]⟩ =
for i ∈ [0 . . . n − 1] bit-wise∣ai ⟩ control X ∣bi ⟩ XOR a with b
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Modular Exponentiation (SquareMod Transformation)

The modular squaring operation SquareMod

SquareMod ∶ ∣a⟩∣M⟩∣s⟩ → ∣a⟩∣M⟩∣(s + a2) mod M⟩
places the result of squaring the contents of register a, modulo the
contents of register M, in the register s.

We encode as follows.

define SquareMod ∣a[n + 1]⟩∣M[n]⟩∣s[n + 1]⟩ =
qubit t[n] use n temporary bits (1)
Copy ∣an−1 . . . a0⟩∣t⟩ copy n bits of a to t (2)
TimesMod ∣a⟩∣t⟩∣M⟩∣s⟩ compute a2 mod M (3)
Copy−1 ∣an−1 . . . a0⟩∣t⟩ clear t (4)
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Modular Exponentiation

We give a recursive definition of modular exponentiation

ExpMod ∶ ∣a⟩∣b⟩∣M⟩∣p⟩∣e⟩ → ∣a⟩∣b⟩∣M⟩∣p⟩∣e ⊕ (pab) mod M⟩.
We encode fist the base case.

define ExpMod ∣a[n + 1]⟩∣b[1]⟩∣M[n]⟩∣p[n + 1]⟩∣e[n + 1]⟩ = base case
¬∣b0⟩ control Copy ∣p⟩∣e⟩ result is p (1)∣b0⟩ control TimesMod ∣a⟩∣p⟩∣M⟩∣e⟩ result is pa1 mod M (2)
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Modular Exponentiation (Cont’d)

For the general case, we have

define ExpMod ∣a[n + 1]⟩∣b[k]⟩∣M[n]⟩∣e[n + 1]⟩ = general case k > 1
qubit u[n + 1] for a2 mod M (3)
qubit v[n + 1] for (pab0) mod M (4)
¬∣b0⟩ control Copy ∣p⟩∣v⟩ v = pa0 mod M (5)∣b0⟩ control TimesMod ∣a⟩∣p⟩∣M⟩∣e⟩ e = pa1 mod M (6)
SquareMod ∣a⟩∣M⟩∣u⟩ compute a2 mod M in u (7)
ExpMod ∣u⟩∣bk−1 . . . b1⟩∣M⟩∣v⟩∣e⟩ compute v(a2)b/2 mod M (8)
SquareMod−1∣a⟩∣M⟩∣u⟩ uncompute u (9)∣b0⟩ control TimesMod−1∣a⟩∣p⟩∣M⟩∣e⟩ uncompute e (10)
¬∣b0⟩ control Copy−1∣p⟩∣v⟩ uncompute v (11)
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Modular Exponentiation (Comments)

The program unfolds recursively k times, once for each bit of b.

Steps (5)-(8), together with the base case, Steps (1) and (2), perform
the classical computation.

The division b
2 in Step (8) is integer division.

Each recursive step requires two temporary registers of size n + 1 that
are reset at the end in Steps (9) and (11).

Thus, the algorithm requires a total of 2(k − 1)(n + 1) temporary
qubits.

The algorithm for modular multiplication requires O(n2) steps to
multiply two n-bit numbers.

Thus, the modular exponentiation requires O(kn2) steps.

More efficient multiplication algorithms are possible and the
complexity can be reduced to O(kn log n log log n).
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