
Introduction to Quantum Computing

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Quantum Computing July 2024 1 / 130

Outline

1 Introduction to Quantum Algorithms
Computing with Superpositions
Notions of Complexity
A Simple Quantum Algorithm
Quantum Subroutines
A Few Simple Quantum Algorithms
Comments on Quantum Parallelism
Machine Models and Complexity Classes
Quantum Fourier Transformations

George Voutsadakis (LSSU) Quantum Computing July 2024 2 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Subsection 1

Computing with Superpositions

George Voutsadakis (LSSU) Quantum Computing July 2024 3 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Introducing Quantum Parallelism

Many quantum algorithms use quantum analogs of classical
computation as at least part of their computation.

Quantum algorithms often start by:

Creating a quantum superposition;
Then feeding it into a quantum version Uf of a classical circuit that
computes a function f .

This setup is called quantum parallelism.

It accomplishes nothing by itself - any algorithm that stopped at this
point would have no advantage over a classical algorithm.

However, the construction leaves the system in a state that quantum
algorithm designers have found a useful starting point.

George Voutsadakis (LSSU) Quantum Computing July 2024 4 / 130

Introduction to Quantum Algorithms Computing with Superpositions

The Walsh-Hadamard Transformation

Quantum parallelism starts by using the Walsh-Hadamard
transformation.

This is a generalization of the Hadamard transformation that creates
a superposition of all input values.

Recall that the Hadamard transformation H applied to ∣0⟩ creates a
superposition state 1√

2
(∣0⟩ + ∣1⟩).

Applied to n qubits individually, all in state ∣0⟩, H generates a
superposition of all 2n standard basis vectors, which can be viewed as
the binary representation of the numbers from 0 to 2n − 1:

(H ⊗H ⊗⋯⊗H)∣00 . . . 0⟩
= 1√

2n
((∣0⟩ + ∣1⟩) ⊗ (∣0⟩ + ∣1⟩) ⊗⋯⊗ (∣0⟩ + ∣1⟩))

= 1√
2n
(∣0 . . . 00⟩ + ∣0 . . . 01⟩ + ∣0 . . . 10⟩ + ⋯ + ∣1 . . . 11⟩)

= 1√
2n
∑2n−1

x=0 ∣x⟩.
George Voutsadakis (LSSU) Quantum Computing July 2024 5 / 130

Introduction to Quantum Algorithms Computing with Superpositions

The Walsh-Hadamard Transformation (Cont’d)

The Walsh, or Walsh-Hadamard, transformation

W = H ⊗H ⊗⋯⊗H

applies H to each of the qubits in an n-qubit state.

Using N = 2n, we may write

W ∣0⟩ = 1√
N

N−1∑
x=0
∣x⟩.

In the standard basis, the matrix for the n-qubit Walsh-Hadamard
transformation is a 2n × 2n matrix W , with entries Wrs , such that

Wsr =Wrs = 1√
2n
(−1)r ⋅s , 0 ≤ r , s ≤ 2n − 1,

where r ⋅ s is the number of common one-bits in s and r .
George Voutsadakis (LSSU) Quantum Computing July 2024 6 / 130

Introduction to Quantum Algorithms Computing with Superpositions

The Walsh-Hadamard Transformation (Cont’d)

To see this equality, note that

W (∣r⟩) = ∑
s

Wrs ∣s⟩.
Let rn−1 . . . r0 be the binary representation of r .

Let sn−1 . . . s0 be the binary representation of s.

Then we have

W (∣r⟩) = (H ⊗⋯⊗H)(∣rn−1⟩⊗⋯⊗ ∣r0⟩)
= 1√

2n
(∣0⟩ + (−1)rn−1 ∣1⟩)⊗⋯⊗ (∣0⟩ + (−1)r0 ∣1⟩)

= 1√
2n
∑2n−1

s=0 (−1)sn−1rn−1 ∣sn−1⟩⊗⋯⊗ (−1)s0r0 ∣s0⟩
= 1√

2n
∑2n−1

s=0 (−1)s ⋅r ∣s⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 7 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Quantum Parallelism

Any transformation of the form Uf = ∣x , y⟩→ ∣x , y ⊕ f (x)⟩ is linear.
Therefore, it acts on a superposition ∑ ax ∣x⟩ of input values,

Uf ∶∑
x

ax ∣x ,0⟩ →∑
x

ax ∣x , f (x)⟩.
Consider the effect of applying Uf to the superposition of values from
0 to 2n − 1 obtained from the Walsh transformation:

Uf ∶ (W ∣0⟩) ⊗ ∣0⟩ = 1√
N

N−1∑
x=0
∣x⟩∣0⟩ → 1√

N

N−1∑
x=0
∣x⟩∣f (x)⟩.

After only one application of Uf , the superposition now contains all of
the 2n function values f (x) entangled with their corresponding input
value x .

This effect is called quantum parallelism.

George Voutsadakis (LSSU) Quantum Computing July 2024 8 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Remarks

n qubits enable us to work simultaneously with 2n values.

We have the ability to hold exponentially many computed values in a
linear amount of physical space.

So quantum parallelism, in some sense, circumvents the time/space
trade-off of classical parallelism.

However, this effect is less powerful than it may initially appear.

First, it is possible to gain only limited information.

These 2n values of f are not independently accessible.

We can gain information only from measuring the states.

But measuring in the standard basis will project the final state onto a
single input /output pair ∣x , f (x)⟩, and a random one at that.

George Voutsadakis (LSSU) Quantum Computing July 2024 9 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Example

We use the basic setup of quantum parallelism.

We illustrate how useless the raw superposition arising from quantum
parallelism is on its own, without any additional transformations.

The controlled-controlled-NOT (Toffoli) gate, T , computes the
conjunction of two values.

Take as input the superposition of all possible
bit combinations of x and y together with a
single-qubit register, initially set to ∣0⟩, that is
to contain the output.

We use quantum parallelism to construct this input state in the
standard way:

W (∣00⟩) ⊗ ∣0⟩ = 1√
2
(∣0⟩ + ∣1⟩)⊗ 1√

2
(∣0⟩ + ∣1⟩) ⊗ ∣0⟩

= 1
2(∣000⟩ + ∣010⟩ + ∣100⟩ + ∣110⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 10 / 130

Introduction to Quantum Algorithms Computing with Superpositions

Example (Cont’d)

Applying the Toffoli gate T to this superposition of inputs yields

T (W ∣00⟩⊗ ∣0⟩) = 1

2
(∣000⟩ + ∣010⟩ + ∣100⟩ + ∣111⟩).

This superposition can be viewed as a truth table for conjunction.

The values of x , y and x ∧ y are entangled in such a way that
measuring in the standard basis will give one line of the truth table.

Computing the AND using quantum parallelism, and then measuring
in the standard basis, gives no advantage over classical parallelism.

Only one result is obtained;
We cannot even choose which result we get.

George Voutsadakis (LSSU) Quantum Computing July 2024 11 / 130

Introduction to Quantum Algorithms Notions of Complexity

Subsection 2

Notions of Complexity

George Voutsadakis (LSSU) Quantum Computing July 2024 12 / 130

Introduction to Quantum Algorithms Notions of Complexity

Circuit Families and Complexity

A circuit family C = {Cn} consists of circuits Cn indexed by the
maximum input size for that circuit.

That is, the circuit Cn handles input of size n (bits or qubits).

The complexity of a circuit C is defined to be the number of simple
gates in the circuit, where the set of simple gates under consideration
must be specified.

Any of the finite sets of gates discussed in a previous section may be
used.

Alternatively, the infinite set consisting of all single qubit operations
together with the Cnot may be used.

George Voutsadakis (LSSU) Quantum Computing July 2024 13 / 130

Introduction to Quantum Algorithms Notions of Complexity

Circuit Complexity or Time Complexity

The circuit complexity, or time complexity, of a family of circuits
C = {Cn} is the asymptotic number of simple gates in the circuits,
expressed as a function of the input size.

The circuit complexity for a circuit family C = {Cn} is O(f (n)) if the
size of the circuit is bounded by O(f (n))
This means that the function t(n) = ∣Cn∣ satisfies

t(n) ∈ O(f (n)).
Any of the simple gate sets mentioned earlier give the same
asymptotic circuit complexity.

George Voutsadakis (LSSU) Quantum Computing July 2024 14 / 130

Introduction to Quantum Algorithms Notions of Complexity

Uniformity

Circuit complexity models are nonuniform in that different, larger
circuits are required to handle larger input sizes.

Both quantum and classical Turing machines, by contrast, propose a
single machine that can handle arbitrarily large input.

The nonuniformity of circuit models makes circuit complexity more
complicated to define than Turing machine models.

Here, in contrast to uniform models, complexity can be hidden in the
complexity of constructing the circuits Cn themselves, even if the size
of the circuits Cn is asymptotically bounded.

To get sensible notions of complexity, in particular to obtain circuit
complexity measures similar to Turing machine based ones, a separate
uniformity condition must be imposed.

Both quantum and classical circuit complexity use similar uniformity
conditions.

George Voutsadakis (LSSU) Quantum Computing July 2024 15 / 130

Introduction to Quantum Algorithms Notions of Complexity

Consistency

In addition to uniformity, a requirement that the behavior of the
circuits Cn in a circuit family C behave in a consistent manner is
usually imposed as well.

This consistency condition is usually phrased in terms of a function
g(x), and says that all circuits Cn ∈ C that can take x as input give
g(x) as output.
This condition is sometimes misunderstood to include restrictions on
the sorts of functions g(x) a consistent circuit family can compute.

For this reason, and to generalize easily to the quantum case, we
phrase this same consistency condition without explicit reference to a
function g(x).

George Voutsadakis (LSSU) Quantum Computing July 2024 16 / 130

Introduction to Quantum Algorithms Notions of Complexity

Consistency and Uniformity Conditions

Consistency Condition: A quantum or classical circuit family C is
consistent if its circuits Cn give consistent results:

For all m < n, applying circuit Cn to input x of size m must give the
same result as applying Cm to that input.

The most common uniformity condition, and the one we impose here,
is the polynomial uniformity condition.

Uniformity Condition: A quantum or classical circuit family
C = {Cn} is polynomially uniform if there exists a polynomial-time
classical algorithm that generates the circuits.

In other words, C is polynomially uniform if there exists a polynomial
f (n) and a classical program that, given n, constructs the circuit Cn

in at most O(f (n)) steps.

George Voutsadakis (LSSU) Quantum Computing July 2024 17 / 130

Introduction to Quantum Algorithms Notions of Complexity

Uniformity and Consistency in the Classical Case

The relation between the circuit complexity of polynomially uniform,
consistent circuit families and the Turing machine complexity is
understood for both the classical and quantum case.

In the classical case, for any classical function g(x) computable on a
Turing machine in time O(f (n)), there is a polynomially uniform,
consistent classical circuit family that computes g(x) in time
O(f (n) log f (n)).
Conversely, a polynomially uniform, consistent family of Boolean
circuits can be simulated efficiently by a Turing machine.

George Voutsadakis (LSSU) Quantum Computing July 2024 18 / 130

Introduction to Quantum Algorithms Notions of Complexity

Uniformity and Consistency in the Quantum Case

In the quantum case, Yao has shown that any polynomial time
computation on a quantum Turing machine can be computed by a
polynomially uniform, consistent family of polynomially sized
quantum circuits.

As in the classical case, demonstrating that any polynomially uniform,
consistent family of quantum circuit can be simulated by a quantum
Turing machine is straightforward.

Here, we are not concerned with sublinear complexity differences, i.e.,
asymptotic differences of at most a polynomial in log (f (n)).
So we discuss quantum complexity in terms of circuit complexity, with
the polynomial uniformity condition, instead of using quantum Turing
machines.

George Voutsadakis (LSSU) Quantum Computing July 2024 19 / 130

Introduction to Quantum Algorithms Notions of Complexity

Black Boxes or Oracles

The earliest quantum algorithms solve black box, or oracle,
problems.

A classical black box outputs f (x) upon input of x .

A quantum black box behaves like Uf , outputting∑x αx ∣x , f (x)⊕ y⟩ upon input of ∑x αx ∣x⟩∣y⟩.
Black boxes are purely theoretical constructs.

A black box may or may not have an efficient implementation.

For this reason, they are often called oracles.

The black box terminology (unviewable interior) emphasizes that only
the output of a black box can be used to solve the problem, not
anything about its implementation or any of the intermediate values
computed along the way.

George Voutsadakis (LSSU) Quantum Computing July 2024 20 / 130

Introduction to Quantum Algorithms Notions of Complexity

Query Complexity

The most common type of complexity discussed with respect to black
box problems is query complexity:

The number of calls to the oracle required to solve the problem.

Black box algorithms of low query complexity, algorithms that solve a
black box problem with few calls to the oracle, are only of practical
use if the black box has an efficient implementation.

The black box approach is very useful, however, in establishing lower

bounds on the circuit complexity of a problem.

If the query complexity is Ω(N) - in other words, at least Ω(N) calls
to the oracle are required - then the circuit complexity must be at
least Ω(N).

George Voutsadakis (LSSU) Quantum Computing July 2024 21 / 130

Introduction to Quantum Algorithms Notions of Complexity

Relating Quantum with Classical Complexity

Black boxes have been used to establish lower bounds on the circuit
complexity for quantum algorithms.

Their first use was to show that the quantum query complexity of
certain black box problems was strictly less than the classical query
complexity.

The number of calls to a quantum oracle needed to solve certain
problems is strictly less than the required number of calls to a
classical oracle to solve the same problem.

George Voutsadakis (LSSU) Quantum Computing July 2024 22 / 130

Introduction to Quantum Algorithms Notions of Complexity

Relating Quantum with Classical Complexity

The first few genuinely quantum algorithms that we describe solve
black box problems:

Deutsch’s problem;
the Deutsch-Jozsa problem;
the Bernstein-Vazirani problem;
Simon’s problem.

Grover’s Result: It takes only O(√N) calls to a quantum black box
to solve an unstructured search problem over N elements, whereas
the classical query complexity of unstructured search is Ω(N).

George Voutsadakis (LSSU) Quantum Computing July 2024 23 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Subsection 3

A Simple Quantum Algorithm

George Voutsadakis (LSSU) Quantum Computing July 2024 24 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Deutsch’s Problem

Deutsch’s Problem: Given a Boolean function f ∶ Z2 → Z2,
determine whether f is constant.

Deutsch’s quantum algorithm requires only a single call to a black
box for Uf to solve the problem.

Any classical algorithm requires two calls to a classical black box for
Cf , one for each input value.

The key to Deutsch’s algorithm is the nonclassical ability to place the
second qubit of the input to the black box in a superposition.

George Voutsadakis (LSSU) Quantum Computing July 2024 25 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Deutsch’s Algorithm

Recall that Uf for a single bit function f :

Takes two qubits of input;
Produces two qubits of output.

On input ∣x⟩∣y⟩, Uf produces

∣x⟩∣f (x)⊕ y⟩.
So when ∣y⟩ = ∣0⟩, the result of applying Uf is ∣x⟩∣f (x)⟩.
The algorithm applies Uf to the two-qubit state ∣+⟩∣−⟩, where:

The first qubit is the superposition ∣+⟩ = 1√
2
(∣0⟩ + ∣1⟩);

The second qubit is the superposition ∣−⟩ = 1√
2
(∣0⟩ − ∣1⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 26 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Deutsch’s Algorithm (Cont’d)

We obtain

Uf (∣+⟩∣−⟩) = Uf (12(∣0⟩ + ∣1⟩)(∣0⟩ − ∣1⟩))
= 1

2 (∣0⟩(∣0 ⊕ f (0)⟩ − ∣1⊕ f (0)⟩)
+∣1⟩(∣0 ⊕ f (1)⟩ − ∣1⊕ f (1)⟩)) .

In other words,

Uf (∣+⟩∣−⟩) = 1

2

1∑
x=0
∣x⟩(∣0 ⊕ f (x)⟩ − ∣1⊕ f (x)⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 27 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Deutsch’s Algorithm (Cont’d)

Suppose f (x) = 0.
1√
2
(∣0⊕ f (x)⟩ − ∣1⊕ f (x)⟩) = 1√

2
(∣0⟩ − ∣1⟩) = ∣−⟩.

Suppose f (x) = 1.
1√
2
(∣0⊕ f (x)⟩ − ∣1⊕ f (x)⟩) = 1√

2
(∣1⟩ − ∣0⟩) = − ∣−⟩.

Therefore,

Uf (1√
2

1∑
x=0
∣x⟩∣−⟩) = 1√

2

1∑
x=0
(−1)f (x)∣x⟩∣−⟩.

For f constant, (−1)f (x) is just a physically meaningless global phase,
so the state is simply ∣+⟩∣−⟩.
For f not constant, the term (−1)f (x) negates exactly one of the
terms in the superposition so, up to a global phase, the state is ∣−⟩∣−⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 28 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Deutsch’s Algorithm (Cont’d)

Now we apply the Hadamard transformation H to the first qubit.

We finally measure it (in the default standard basis).

Then, with certainty, we obtain:

∣0⟩, if f is constant;
∣1⟩, if f is not constant.

Thus with a single call to Uf we can determine, with certainty,
whether f is constant or not.

George Voutsadakis (LSSU) Quantum Computing July 2024 29 / 130

Introduction to Quantum Algorithms A Simple Quantum Algorithm

Comments

It may be surprising that this algorithm succeeds with certainty.

The most commonly remembered aspect of quantum mechanics is its
probabilistic nature.

This leads to the naive expectation that anything done with quantum
means must be probabilistic.

At least, it makes one think that anything that exhibits peculiarly
quantum properties must be probabilistic.

We already know, from our study of quantum analogs to classical
computations, that the first of these expectations does not hold.

The algorithm for Deutsch’s problem shows that even inherently
quantum processes do not have to be probabilistic.

George Voutsadakis (LSSU) Quantum Computing July 2024 30 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Subsection 4

Quantum Subroutines

George Voutsadakis (LSSU) Quantum Computing July 2024 31 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Importance of Uncomputing Qubits

In quantum computation, uncomputing qubits used temporarily as
part of subroutines is crucial even when conserving space and reusing
qubits is not an issue.

Failing to uncompute temporary qubits can result in entanglement
between the computational qubits and the temporary qubits.

This entanglement may destroy the calculation.

If a subroutine claims to compute state ∑i αi ∣xi ⟩, it is not okay if it
actually computes ∑i αi ∣xi⟩∣yi ⟩ and throws away the qubits storing∣yi⟩ unless there is no entanglement between the two registers.

There is no entanglement if ∑i αi ∣xi ⟩∣yi ⟩ = (∑i αi ∣xi ⟩)⊗ ∣yi ⟩, which
can happen only if ∣yi ⟩ = ∣yj ⟩, for all i and j .

In general, the states ∑i αi ∣xi ⟩ and ∑i αi ∣xi ⟩∣yi ⟩ behave quite
differently, even if we have access only to the first register of the
second state.

George Voutsadakis (LSSU) Quantum Computing July 2024 32 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Illustration Using Deutsch’s Algorithm

We illustrate the difference by showing how using the first state when
expecting the second can mess up computation.

Suppose we replace the black box Uf used in Deutsch’s problem with
the black box for Vf that outputs

Vf ∶ ∣x , t, y⟩ → ∣x , t ⊕ x , y ⊕ f (x)⟩.
We show that Deutsch’s algorithm no longer works.

George Voutsadakis (LSSU) Quantum Computing July 2024 33 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Illustration Using Deutsch’s Algorithm (Cont’d)

We begin with:

Qubit ∣t⟩ in the state ∣0⟩;
The first qubit, as before, in the state ∣+⟩;
The third, as before, in the state ∣−⟩.

Apply Vf to obtain

Vf (∣+⟩∣0⟩∣−⟩) = Vf (1√
2

1∑
x=0
∣x⟩∣0⟩∣−⟩) = 1√

2

1∑
x=0
(−1)f (x)∣x⟩∣x⟩∣−⟩.

The first qubit is now entangled with the second qubit.

George Voutsadakis (LSSU) Quantum Computing July 2024 34 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Illustration Using Deutsch’s Algorithm (Cont’d)

Because of this entanglement, applying H to the first qubit and then
measuring it no longer has the desired effect.

For example, suppose f is constant.

Then the state is (∣00⟩ + ∣11⟩)∣−⟩.
Applying H ⊗ I ⊗ I results in the state

1

2
(∣00⟩ + ∣10⟩ + ∣01⟩ − ∣11⟩)∣−⟩.

The second and fourth terms do not cancel now.

There is an equal chance of measuring the first qubit as ∣0⟩ or ∣1⟩.
A similar calculation shows that, when the function is not constant,
there is also an equal chance of measuring the first qubit as ∣0⟩ or ∣1⟩.
Thus, we can no longer distinguish the two cases.

Entanglement with ∣t⟩ has destroyed the quantum computation.

George Voutsadakis (LSSU) Quantum Computing July 2024 35 / 130

Introduction to Quantum Algorithms Quantum Subroutines

A Remedy

Had Vf properly uncomputed t so that at the end of the calculation it
was in state ∣0⟩, the algorithm would still work properly.

For example, for f constant, we would have state

1

2
(∣00⟩ + ∣10⟩ + ∣00⟩ − ∣10⟩)∣−⟩.

The appropriate terms would cancel to yield (∣00⟩)∣−⟩.
If a quantum subroutine claims to produce a state ∣ψ⟩, it must not
produce a state that looks like ∣ψ⟩ but is entangled with other qubits.

In particular, if a subroutine makes use of other qubits, by the end
these qubits must not be entangled with the other qubits.

The following quantum subroutines are careful to uncompute any
auxiliary qubits so that at the end of the algorithm they are always in
state ∣0⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 36 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Phase Change for a Subset of Basis Vectors

Aim: Change the phase of terms in a superposition ∣ψ⟩ = ∑ ai ∣i⟩
depending on whether i is in a subset X of {0,1, . . . ,N − 1} or not.
More specifically, we wish to find an efficient implementation of the
quantum transformation

S
φ

X
∶
N−1∑
x=0

ax ∣x⟩→ ∑
x∈X

axe
i φ∣x⟩ + ∑

x∉X
ax ∣x⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 37 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Comments on Efficiency

We explained how to realize an arbitrary unitary transformation
without regard to efficiency.

Applying that algorithm blindly would give an implementation of Sφ

X

using more than N = 2n simple gates.

We now show how, for any efficiently computable subset X , the
transformation S

φ
X
can be implemented efficiently.

An efficiently implementable S
φ
X
is used in some of the quantum

algorithms we describe later that outperform classical ones.

George Voutsadakis (LSSU) Quantum Computing July 2024 38 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Role of Uf

We can hope to implement Sφ
X
efficiently only if there is an efficient

algorithm for computing membership in X .

More precisely, the Boolean function f ∶ Z2n → Z2, where

f (x) = { 1, if x ∈ X ,
0, otherwise

must be efficiently computable, say in polynomial time in n.

Most subsets X do not have this property.

For subsets X with this property, the main result of the preceding set
implies that there is an efficient quantum circuit for Uf .

Given such an implementation for Uf , we can compute S
φ

X
using a

few additional steps.

George Voutsadakis (LSSU) Quantum Computing July 2024 39 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Implementation of the Phase Shift

We proceed in steps:

Use Uf to compute f in a temporary qubit;
Use the value in that qubit to effect the phase change;
Uncompute f in order to remove any entanglement between the
temporary qubit and the rest of the state.

We encode as follows.

define Phasef (φ)∣x[k]⟩ =
quibit a[1] a temporary bit (1)
Uf ∣x ,a⟩ compute f in a (2)
K(φ2)∣a⟩ (3)
T (−φ

2)∣a⟩ (4)
U−1f ∣x ,a⟩ uncompute f (5)

George Voutsadakis (LSSU) Quantum Computing July 2024 40 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Comments on the Implementation

We know that

T (−φ
2
)K (φ

2
) = (1 0

0 ei φ
) .

So, together, Steps (3) and (4) shift the phase by eiφ if and only if
bit a is one.

Strictly speaking, we do not need to do Step (3) at all, since it is a
physically meaningless global phase shift.

But performing Step (3) makes it easier to see that we get the desired
result.

George Voutsadakis (LSSU) Quantum Computing July 2024 41 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Comments on the Implementation (Cont’d)

Alternatively, we could replace Steps (3) and (4) by a single step

⋀
1

K(φ)∣a⟩∣xi ⟩,
where i can be any of the qubits in register x .

This is because placing a phase in any term of the tensor product is
the same as placing it in any other term.

We need to uncompute Uf in Step (5) to remove the entanglement
between register ∣x⟩ and the temporary qubit.

This results in ∣x⟩ being in the desired state, no longer entangled with
the temporary qubits.

George Voutsadakis (LSSU) Quantum Computing July 2024 42 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Special Case φ = π

The important special case φ = π has an alternative, surprisingly
simple, implementation that generalizes the trick used in the
algorithm for Deutsch’s problem.

Given Uf as above, the transformation Sπ
X can be implemented by:

Initializing a temporary qubit b to ∣−⟩ = 1√
2
(∣0⟩ − ∣1⟩);

Using Uf to compute into this register.

Consider ∣ψ⟩ = ∑x∈X ax ∣x⟩ +∑x∉X ax ∣x⟩.
We compute

Uf (∣ψ⟩⊗ ∣−⟩) = Uf (∑x∈X ax ∣x⟩⊗ ∣−⟩) +Uf (∑x∉X ax ∣x⟩⊗ ∣−⟩)
= − (∑x∈X ax ∣x⟩⊗ ∣−⟩) + (∑x∉X ax ∣x⟩⊗ ∣−⟩)= (Sπ

X ∣ψ⟩)⊗ ∣−⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 43 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Special Case φ = π (Illustration)

In particular, the following circuit, acting on the n-qubit state ∣0⟩
together with an ancilla qubit in state ∣1⟩ creates the superposition∣ψX ⟩ = ∑(−1)f (x)∣x⟩:

For elegance, and to be able to reuse the ancilla qubit, we may want
to apply a final Hadamard transformation to the ancilla qubit, in
which case the circuit is

George Voutsadakis (LSSU) Quantum Computing July 2024 44 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Special Case φ = π (Geometry)

Geometrically, when acting on the N-dimensional vector space
associated with the quantum system, the transformation Sπ

X is a
reflection about the (N − k)-dimensional hyperplane perpendicular to
the k-dimensional hyperplane spanned by {∣x⟩ ∶ x ∈ X}.
A reflection in a hyperplane sends any vector ∣v⟩ perpendicular to the
hyperplane to its negative −∣v⟩.
For any unitary transformation U, the transformation USπ

XU
−1 is a

reflection in the hyperplane perpendicular to the hyperplane spanned
by the vectors {U ∣x⟩ ∶ x ∈ X}.

George Voutsadakis (LSSU) Quantum Computing July 2024 45 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Special Case φ = π (Cont’d)

We can write the result of applying Sπ
X to the superposition W ∣0⟩ as

1√
N
∑(−1)f (x)∣x⟩,

where f is the Boolean function for membership in X ,

f (x) = { 1, if x ∈ X ,
0, otherwise.

Conversely, given a Boolean function f , we define

Sπ
f ∶= Sπ

X ,

where X = {x ∶ f (x) = 1}.
George Voutsadakis (LSSU) Quantum Computing July 2024 46 / 130

Introduction to Quantum Algorithms Quantum Subroutines

State-Dependent Phase Shifts

Aim: Efficiently approximate to accuracy s the transformation on
n-qubits that changes the phase of the basis elements by

∣x⟩→ eiφ(x)∣x⟩,
where:

The function φ(x) that describes the desired phase shift angle φ for
each term x has an associated function f ∶ Zn → Zs that is efficiently
computable;
The value of the i-th bit of f (x) is the i-th term in the following binary
expansion for φ(x):

φ(x) ≈ 2π f (x)
2s

.

George Voutsadakis (LSSU) Quantum Computing July 2024 47 / 130

Introduction to Quantum Algorithms Quantum Subroutines

State-Dependent Phase Shifts (Cont’d)

The implementation can be only as efficient as the function f .

Given a quantum circuit that efficiently implements Uf , we can
perform the state-dependent phase shift in O(s) steps in addition to
2 uses of Uf .

The ability to compute f efficiently is a strong one, in that most
functions do not have this property.

George Voutsadakis (LSSU) Quantum Computing July 2024 48 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Changing Phase Subroutine

We show how to implement the subprogram that changes the phase
of an s-qubit standard basis state ∣x⟩ by the angle φ(x) = 2πx

2s .

Let P(φ) be the transformation that shifts the phase in a qubit, if
that bit is 1, but does nothing, if that bit is 0,

P(φ) = T (−φ
2
)K (φ

2
) = (1 0

0 eiφ
) .

The following program performs the s-qubit transformation
Phase ∶ ∣a⟩→ exp (i2π a

2s)∣a⟩:
define Phase ∣a[s]⟩ =

for i ∈ [0 . . . s − 1]
P (2π

2i
) ∣ai⟩

George Voutsadakis (LSSU) Quantum Computing July 2024 49 / 130

Introduction to Quantum Algorithms Quantum Subroutines

The n-Qubit Transformation Phasef

The Phase program is used as a subroutine in a program that
implements the n-qubit transformation

Phasef ∶ ∣x⟩→ exp(2πi f (x)
2s
)∣x⟩.

We implement this as follows.

define Phasef ∣x[k]⟩ =
qubit a[s] an s-bit temporary register (1)
Uf ∣x⟩∣a⟩ compute f in a (2)
Phase ∣a⟩ perform phase shift by 2πa

2s (3)
U−1f ∣x⟩∣a⟩ uncompute f (4)

George Voutsadakis (LSSU) Quantum Computing July 2024 50 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Comments

After Step (2), register a is entangled with x and contains the binary
expansion of the angle φ(x) for the desired phase shift for the basis
vector ∣x⟩.
Since registers a and x are entangled, changing the phase in register a
during Step (3) is equivalent to changing the phase in register x .

Step (4) uncomputes Uf to remove this entanglement so that the
contents of register x end up in the desired state, no longer entangled
with the temporary qubits.

George Voutsadakis (LSSU) Quantum Computing July 2024 51 / 130

Introduction to Quantum Algorithms Quantum Subroutines

State-Dependent Single-Qubit Amplitude Shifts

Aim: Efficiently approximate, to accuracy s, rotating each term in a
superposition by a single-qubit rotation R(β(x)), where the angle
β(x) depends on the quantum state in another register.

More specifically, we wish to implement a transformation that takes

∣x⟩⊗ ∣b⟩→ ∣x⟩⊗ (R(β(x))∣b⟩),
where:

β(x) ≈ f (x) 2π
2s
;

The approximating function f ∶ Zn → Zs is efficiently computable.

From an efficient implementation of Uf , we can implement the
transformation Rotf in O(s) steps plus two calls to Uf .

George Voutsadakis (LSSU) Quantum Computing July 2024 52 / 130

Introduction to Quantum Algorithms Quantum Subroutines

Transformation Rot

The subroutine Rotf uses an auxiliary transformation Rot.

Rot shifts the amplitude in qubit b by the amount specified in register
a,

∣a⟩⊗ ∣b⟩→ ∣a⟩⊗ (R (a2π
2s
) ∣b⟩) ,

where the contents of the s-qubit register a give the angle by which
to rotate up to accuracy 2−s .

Using our program notation, this
transformation can be described
more concisely by

define Rot ∣a[s]⟩∣b[1]⟩ =
for i ∈ [0 . . . s − 1]∣ai⟩ control R (2π2i) ∣b⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 53 / 130

Introduction to Quantum Algorithms Quantum Subroutines

The Rotation Rotf

The desired rotation specified by the function f can be achieved by
the program:

define Rotf ∣x[k]⟩∣b[1]⟩ =
qubit a[s] an s-bit temporary register
Uf ∣x⟩∣a⟩ compute f in a

Rot ∣a,b⟩ perform rotation by 2πa
2s

U−1f ∣x⟩∣a⟩ uncompute f

George Voutsadakis (LSSU) Quantum Computing July 2024 54 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Subsection 5

A Few Simple Quantum Algorithms

George Voutsadakis (LSSU) Quantum Computing July 2024 55 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem

A function f is balanced if an equal number of input values to the
function return 0 and 1.

Deutsch-Jozsa Problem: Given a function f ∶ Z2n → Z2 that is
known to be either constant or balanced, and a quantum oracle

Uf ∶ ∣x⟩∣y⟩ → ∣x⟩∣y ⊕ f (x)⟩
for f , determine whether the function f is constant or balanced.

George Voutsadakis (LSSU) Quantum Computing July 2024 56 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem (First Step)

The algorithm begins by using the phase change subroutine to negate
terms of the superposition corresponding to basis vectors ∣x⟩ with
f (x) = 1.
The subroutine returns the state

∣ψ⟩ = 1√
N

N−1

∑
i=0
(−1)f (i)∣i⟩.

The subroutine uses a temporary qubit in state ∣−⟩.
It is vital that the subroutine end with that qubit unentangled with
any other qubits.

After disentanglement, the temporary qubit may be safely ignored.

George Voutsadakis (LSSU) Quantum Computing July 2024 57 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem (Second Step)

Next, apply the Walsh transform W to the resulting state ∣ψ⟩.
We calculate

∣φ⟩ = W (∣ψ⟩)
= W (1√

N
∑N−1

i=0 (−1)f (i)∣i⟩)
= 1√

N
∑N−1

i=0 (−1)f (i)W (∣i⟩)
= 1√

N
∑N−1

i=0 ((−1)f (i) 1√
N
∑N−1

j=0 (−1)i ⋅j ∣j⟩)
= 1

N ∑
n−1
i=0 ((−1)f (i)∑N−1

j=0 (−1)i ⋅j ∣j⟩) .

George Voutsadakis (LSSU) Quantum Computing July 2024 58 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem (Constant Case)

Now suppose f is constant.

Then (−1)f (i) = (−1)f (0) is simply a global phase.

So the state ∣φ⟩ is simply ∣0⟩,
∣φ⟩ = (−1)f (0) 1

2n ∑j∈Zn
2
(∑i∈Zn

2
(−1)i ⋅j)∣j⟩

= (−1)f (0) 1
2n ∑i∈Zn

2
(−1)i ⋅0∣0⟩

(∑i∈Zn
2
(−1)i ⋅j = 0, for j ≠ 0)

= (−1)f (0)∣0⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 59 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem (Balanced Case)

Next, suppose f balanced.

Let
X0 = {x ∶ f (x) = 0}.

Then we have

∣φ⟩ = 1

2n
∑
j∈Zn

2

⎛
⎝∑i∈X0

(−1)i ⋅j − ∑
i∉X0

(−1)i ⋅j⎞⎠ ∣j⟩.
In this case, for j = 0, the amplitude is zero,

∑
j∈X0

(−1)i ⋅j − ∑
j∉X0

(−1)i ⋅j = 0.

George Voutsadakis (LSSU) Quantum Computing July 2024 60 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Deutsch-Jozsa Problem (Conclusion)

Thus, measurement of state ∣φ⟩ in the standard basis will return:

∣0⟩, with probability 1, if f is constant;
A non-zero ∣j⟩, with probability 1, if f is balanced.

This quantum algorithm solves the Deutsch-Jozsa problem with a
single evaluation of Uf .

Any classical algorithm must evaluate f at least 2n−1 + 1 times to
solve the problem with certainty.

Thus, there is an exponential separation between the query complexity
of this quantum algorithm and the query complexity for any possible
classical algorithm that solves that problem with certainty.

On the other hand, there are classical algorithms that solve this
problem in fewer evaluations, but only with high probability of success.

George Voutsadakis (LSSU) Quantum Computing July 2024 61 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Bernstein-Vazirani Problem

Bernstein-Vazirani Problem: Determine the value of an unknown
bit string u of length n, where only queries of the form q ⋅ u, for some
query string q, are allowed.

The best classical algorithm uses O(n) calls to fu(q) = q ⋅ u mod 2.

A quantum algorithm, closely related to the algorithm for the
Deutsch-Jozsa problem, can find u in just a single call to Ufu .

On a quantum computer it is possible to determine u exactly with a
single query (in superposition).

George Voutsadakis (LSSU) Quantum Computing July 2024 62 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Bernstein-Vazirani Problem (Cont’d)

Let
fu(q) = q ⋅ u mod 2.

Let, also,
Ufu ∶ ∣q⟩∣b⟩↦ ∣q⟩∣b ⊕ fu(q)⟩.

Recall that in the special case φ = π, the phase change subroutine can
be accomplished by the circuit

Applying this circuit results in the state ∣ψX ⟩ in the first register, with

∣ψX ⟩ = 1√
2n
∑
q

(−1)fu(q)∣q⟩ = 1√
2n
∑
q

(−1)u⋅q ∣q⟩.
George Voutsadakis (LSSU) Quantum Computing July 2024 63 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Bernstein-Vazirani Problem (Cont’d)

Now, applying the Walsh-Hadamard transformation W to this state,
produces the state ∣u⟩.

Recall that W ∣x⟩ = 1√
2n
∑z(−1)x ⋅z ∣z⟩.

Thus
W ∣ψX ⟩ = W (1√

2n
∑q(−1)u⋅q ∣q⟩)

= 1√
2n
∑q(−1)u⋅qW ∣q⟩

= 1
2n ∑q(−1)u⋅q(∑z(−1)q⋅z ∣z⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 64 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Bernstein-Vazirani Problem (Cont’d)

Continuing, we have

W ∣ψX ⟩ = 1
2n ∑q(−1)u⋅q(∑z(−1)q⋅z ∣z⟩)

= 1
2n ∑q∑z(−1)(u⊕z)⋅q ∣z⟩)

= 1
2n ∑z ∑q(−1)(u⊕z)⋅q ∣z⟩)

= ∣u⟩. (∑q(−1)(u⊕z)⋅q = 0, if u ⊕ z ≠ 0)
Thus, measurement in the standard basis gives ∣u⟩ with certainty.

George Voutsadakis (LSSU) Quantum Computing July 2024 65 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

A Simpler Explanation

A common explanation for how quantum algorithms works involves:

Using quantum parallelism, compute on all possible inputs at the same
time;
Then cleverly manipulate the resulting superposition.

The description we gave for the Bernstein-Vazirani algorithm fits this
framework.

There is a question, however, as to whether quantum parallelism is
the right way of looking at algorithms.

To illustrate this point, we give an alternative description, due to
Mermin, of exactly this same algorithm.

George Voutsadakis (LSSU) Quantum Computing July 2024 66 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

A Simpler Explanation (Cont’d)

The key to Mermin’s explanation of the algorithm is to look at the
circuit in the Hadamard basis.

Consider the quantum black box for Ufu in the Hadamard basis.

It behaves as if consisting of a circuit containing a Cnot from qubit i
to the ancilla if and only if the ith bit of u is 1.

Recall that Hadamard operations reverse the control and target roles
of the qubits.

George Voutsadakis (LSSU) Quantum Computing July 2024 67 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

A Simpler Explanation (Cont’d)

The Bernstein-Vazirani algorithms consists of starting with the state∣0 . . . 0⟩∣1⟩ and applying Hadamard transformations to every qubit
before and after the call to the black box for Ufu .

Thus, the Bernstein-Vazirani algorithm
behaves as if it were a circuit consisting
only of Cnot operations from the ancilla
qubit to the qubits corresponding to 1-
bits of u.

From this view of the circuit, it is immediate that the qubits end up
in the state ∣u⟩.
This much simpler explanation, not speaking of quantum parallelism
or of “computing on all possible inputs”, is the right way to look at
the algorithm.

George Voutsadakis (LSSU) Quantum Computing July 2024 68 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Simon’s Problem

Simon’s Problem: Given a 2-to-1 function f such that, for some
“hidden” a ∈ Zn

2,

f (x) = f (x ⊕ a), for all x ∈ Zn
2,

find the hidden string a ∈ Zn
2.

Simon describes a quantum algorithm that can find a in only O(n)
calls to Uf , followed by O(n2) additional steps.
The best a classical algorithm can do is O(2n/2) calls to f .

Simon’s algorithm suggested to Shor an approach to the factoring
problem, now known as Shor’s algorithm.

When we study Shor’s algorithm, we will see that there are structural
similarities between Shor’s algorithm and Simon’s algorithm.

George Voutsadakis (LSSU) Quantum Computing July 2024 69 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Simon’s Problem (Cont’d)

To determine a, create the superposition ∑x ∣x⟩∣f (x)⟩.
Suppose we measure the right part of the register.

Let f (x0) be the measured value.

This projects the state of the left register to

1√
2
(∣x0⟩ + ∣x0 ⊕ a⟩).

Applying the Walsh-Hadamard transformation W leads to

W (1√
2
(∣x0⟩ + ∣x0 ⊕ a⟩))

= 1√
2
(1√

2n
∑y((−1)x0 ⋅y + (−1)(x0⊕a)⋅y)∣y⟩)

= 1√
2n+1
∑y(−1)x0⋅y(1 + (−1)a⋅y)∣y⟩

= 2√
2n+1
∑y ⋅ a even(−1)x0⋅y ∣y⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 70 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Simon’s Problem (Cont’d)

Measurement of this state results in a random y , such that

y ⋅ a = 0 mod 2.

So the unknown bits ai of a must satisfy the equation

y0 ⋅ a0 ⊕⋯⊕ yn−1 ⋅ an−1 = 0.
This computation is repeated until n linearly independent equations
have been found.

Each time the computation is repeated, the resulting equation has at
least a 50 percentage chance of being linearly independent of the
previous equations obtained.

George Voutsadakis (LSSU) Quantum Computing July 2024 71 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Simon’s Problem (Cont’d)

After repeating the computation 2n times, there is a 50 percentage
chance that n linearly independent equations have been found.

These equations can be solved to find a in O(n2) steps.
Thus, with high likelihood, the hidden string a will be found using:

O(n) calls to Uf ;
O(n2) steps to solve the resulting set of equations.

George Voutsadakis (LSSU) Quantum Computing July 2024 72 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation

The Problem: Let N = 2n.
Alice and Bob are each given an N-bit number, u and v , respectively.

The objective is for Alice to compute an n-bit number a and Bob to
compute an n-bit number b such that

dH(u, v) = 0 → a = b
dH(u, v) = N

2 → a ≠ b
else → no condition on a and b

where dH(u, v) is the Hamming distance between u and v .

In other words, Alice and Bob need an algorithm that produces a and
b from any u and v such that:

If u = v , then a = b;
If u and v differ in half of their bits, then a ≠ b;
If the Hamming distance of u and v is anything other than 0 or N

2
, a

and b can be anything.

George Voutsadakis (LSSU) Quantum Computing July 2024 73 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Non-Triviality)

This problem is nontrivial because u and v are exponentially larger
than a and b.

Given a sufficient supply of entangled pairs, this problem can be
solved without additional communication between Alice and Bob.

On the other hand, a classical solution requires communication of at
least N

2 bits between the two parties.

George Voutsadakis (LSSU) Quantum Computing July 2024 74 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Set-Up)

Suppose Alice and Bob share n entangled pairs of particles (ai ,bi),
each in state

1√
2
(∣00⟩ + ∣11⟩),

where:
Alice can access particles ai ;
Bob can access particles bi .

We write the state of the 2n particles making up these n entangled
pairs in order a0,a1, . . . ,an−1,b0,b1, . . . ,bn−1.

So the entire 2n-qubit state is written

1√
N

N−1

∑
i=0
∣i , i⟩,

where:
Alice can manipulate the first n qubits;
Bob can manipulate the last n qubits.

George Voutsadakis (LSSU) Quantum Computing July 2024 75 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Solution)

The problem can be solved without additional communication.

Alice applies the following:
Using the phase change subroutine, with f (i) = ui , she performs

∑∣i⟩→∑(−1)ui ∣i⟩;

She then applies the Walsh transform W on her n qubits.

Bob applies the following:
Using the phase change subroutine, with f (i) = vi , he performs

∑∣i⟩→∑(−1)vi ∣i⟩;

He then applies the Walsh transform W on his n qubits.

Together their particles are now in the common global state

∣ψ⟩ =W (1√
N

N−1

∑
i=0
(−1)ui⊕vi ∣i⟩∣i⟩) .

George Voutsadakis (LSSU) Quantum Computing July 2024 76 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Solution Cont’d)

Alice and Bob now measure their respective part of the state to
obtain results a and b.

We need to show that a and b have the desired properties.

The probability that measurement results in a = x = b is

∣⟨x , x ∣ψ⟩∣2.
We must show that this probability is

{ 1, if u = v ,
0, if dH(u, v) = N

2 .

George Voutsadakis (LSSU) Quantum Computing July 2024 77 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Solution Cont’d)

Use W (ℓ) indicates that W is acting on an ℓ qubit state.

Simplify the state

∣ψ⟩ = W (2n) (1√
N
∑N−1

i=0 (−1)ui⊕vi ∣i⟩∣i⟩)
= 1√

N
∑N−1

i=0 (−1)ui⊕vi (W (n)∣i⟩⊗W (n)∣i⟩)
= 1

N
√
N
∑N−1

i=0 ∑
N−1
j=0 ∑

N−1
k=0 (−1)ui⊕vi (−1)i ⋅j(−1)i ⋅k ∣jk⟩.

Now we obtain

⟨x , x ∣ψ⟩ = 1

N
√
N
∑N−1

i=0 (−1)ui⊕vi (−1)i ⋅x(−1)i ⋅x
= 1

N
√
N
∑N−1

i=0 (−1)ui⊕vi .

George Voutsadakis (LSSU) Quantum Computing July 2024 78 / 130

Introduction to Quantum Algorithms A Few Simple Quantum Algorithms

Distributed Computation (Solution Cont’d)

We found

⟨x , x ∣ψ⟩ = 1

N
√
N

N−1

∑
i=0
(−1)ui⊕vi .

Suppose u = v .
Then (−1)ui⊕vi = 1. Consequently, ⟨x , x ∣ψ⟩ = 1√

N
.

So the probability ∣⟨x , x ∣ψ⟩∣2 = 1
N
.

The probability, summed over the N possible values of x , is 1.
So when Alice and Bob measure they obtain, with probability 1, states
a and b with a = b = x for some bit string x .
Suppose dH(u, v) = N

2
The sum

⟨x , x ∣ψ⟩ = 1

N
√
N

N−1

∑
i=0
(−1)ui⊕vi

has an equal number of +1 and −1 terms. So ⟨x , x ∣ψ⟩ = 0.
Thus, Alice and Bob measure the same value with probability 0.

George Voutsadakis (LSSU) Quantum Computing July 2024 79 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

Subsection 6

Comments on Quantum Parallelism

George Voutsadakis (LSSU) Quantum Computing July 2024 80 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

Two Important Misconceptions

Quantum parallelism’s role in quantum computation has often been
misunderstood.

So it is worth addressing some common misconceptions.

Consider the notation 1√
N
∑N−1

x=0 ∣x , f (x)⟩.
It suggests that exponentially more computation is being done by the
quantum operation Uf acting on the superposition ∑x ∣x ,0⟩ than by a
classical computer computing f (x) from x .

The next paragraph explains how this view is misleading and how it
does not explain the power of quantum computation.

The exponential size of the n-qubit quantum state space may seem to
suggest that an exponential speedup over the classical case can
always be obtained using quantum parallelism.

This statement is generally incorrect, although in certain special cases
quantum computation does provide such speedups.

George Voutsadakis (LSSU) Quantum Computing July 2024 81 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

On the Exponential Speedup

Recall that only one input/output pair can be extracted by
measurement in the standard basis from the superposition generated
quantum parallelism.

It is not possible to extract more input/output pairs in any other way,
since only m bits of information can be extracted from an m-qubit
state.

Thus, while the 2n values of f (x) appear in the single superposition
state, it still takes 2n computations of Uf to obtain them all, no
better than the classical case.

George Voutsadakis (LSSU) Quantum Computing July 2024 82 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

On the Exponential Speedup (Cont’d)

This limitation leaves open the possibility that any classical algorithm
that takes 2n steps to obtain n bits of output could be done in a
single step on a quantum computer.

Some algorithms do give speedups of this magnitude over classical
algorithms.

However, the optimality of Grover’s algorithm (to be shown) shows
that there are problems of this form for which it is known that no
quantum algorithm can provide an exponential speedup.

Furthermore, lower bound results exist that show that, for many
problems, quantum computation cannot provide any speedup at all.

Thus, quantum parallelism and quantum computation do not, in
general, provide the exponential speedup suggested by the notation.

George Voutsadakis (LSSU) Quantum Computing July 2024 83 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

The State Space Approximation Limitations

A superposition like 1√
N
∑ ∣x , f (x)⟩ is still only a single state of the

quantum state space.

The n-qubit quantum state space is extremely large, so large that the
vast majority of states cannot even be approximated by an efficient
quantum algorithm.

Thus, an efficient quantum algorithm cannot even come close to most
states in the state space.

For this reason, quantum parallelism does not, and efficient quantum
algorithms cannot, make use of the full state space.

As Mermin’s explanation of the Bernstein-Vazirani algorithm
illustrates, even when quantum parallelism can be used to describe an
algorithm, it is not necessarily correct to view it as key to the
algorithm.

George Voutsadakis (LSSU) Quantum Computing July 2024 84 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

Techniques for Manipulating the State

Many algorithms are described in terms of quantum parallelism.

The heart of the algorithm is the way in which the algorithm
manipulates the state generated by quantum parallelism.

This sort of manipulation has no classical analog.

It usually requires nontraditional programming techniques.

We list a couple of general techniques.

George Voutsadakis (LSSU) Quantum Computing July 2024 85 / 130

Introduction to Quantum Algorithms Comments on Quantum Parallelism

Techniques for Manipulating the State

Amplify output values of interest:

The general idea is to transform the state in such a way that values of
interest have:

A larger amplitude;
Therefore, a higher probability of being measured.

Grover’s algorithm (to be seen) exploits this approach.

Find properties of the set of all the values of f (x):
This idea is exploited in Shor’s algorithm (to be seen), which uses a
quantum Fourier transformation to obtain the period of f .

Other algorithms that take this approach are the ones given for:

The Deutsch-Jozsa Problem;
The Bernstein-Vazirani Problem;
Simon’s Problem.

George Voutsadakis (LSSU) Quantum Computing July 2024 86 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Subsection 7

Machine Models and Complexity Classes

George Voutsadakis (LSSU) Quantum Computing July 2024 87 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Languages and Machines

Computational complexity classes are defined in terms of a language

and machines that recognize that language.

In this section, the term machine refers to any quantum or classical
computing device that runs a single algorithm on which we can count
the number of computation steps and storage cells used.

A language L over an alphabet Σ is a subset of the finite strings Σ∗

of elements from Σ.

A language L is recognized by a machine M if, for each string
x ∈ Σ∗, the machine M can determine if x ∈ L.
Exactly what determine means depends on the kind of machine we
are considering.

Example: Given input x , a classical deterministic machine may answer
Yes, x ∈ L, or No, x ∉ L, or it may never halt.

Probabilistic and quantum machines might answer Yes or No

correctly with certain probabilities.

George Voutsadakis (LSSU) Quantum Computing July 2024 88 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Classical Machines and Quantum Analogs

We consider five kinds of classical machines:

Deterministic (D);
Nondeterministic (N);
Randomized (R);
Probabilistic (Pr);
Bounded probability of error (BP).

Each of these types of classical machine has a quantum analog (EQ,
NQ,RQ, PrQ,BQ).

Of particular interest will be:

Quantum deterministic (exact) machines (EQ);
Quantum bounded probability of error machines (BQ).

We use these types of machine to define numerous complexity classes
of varying resource constraints.

George Voutsadakis (LSSU) Quantum Computing July 2024 89 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Deterministic Machines

For each kind of machine M, there is a single language LM that M
recognizes.

A machine is deterministic if, whenever it sometimes answers Yes on
a given input x , it always answers Yes on that input.

A deterministic machine D recognizes the language

LD = {x ∈ Σ∗ ∶ D(x) = Yes} = {x ∶ P(D(x) = Yes) = 1}.
By definition of deterministic, the probability

P(D(x) = Yes) = 0, for all x ∉ L.

George Voutsadakis (LSSU) Quantum Computing July 2024 90 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Bounded Probability of Error Machines

A bounded probability of error machine, acting on a given input x ,
either answers Yes with probability at least 1

2 + ǫ or with probability

no more than 1
2 − ǫ.

Given a bounded probability of error machine BP ,

LBP = {x ∶ P(BP(x) = Yes) ≥ 1

2
+ ǫ} .

For x ∉ LBP ,
P(BP(x) = Yes) ≤ 1

2
− ǫ.

George Voutsadakis (LSSU) Quantum Computing July 2024 91 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Conditions on Various Types of Machines

A machine may not give an answer at all for some inputs.

The table summarizes the conditions for the various types of
machines we consider.

The quantum machine types recognize a language with the same
probability as their classical counterparts.

George Voutsadakis (LSSU) Quantum Computing July 2024 92 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Relations Between the Machines

The next figure illustrates containment relations between the kinds of
machines.

Containment means that, e.g., by definition, each D machine is also
an R machine.

George Voutsadakis (LSSU) Quantum Computing July 2024 93 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

The Role of ǫ

A language is recognized by a kind of machine if there exists a
machine of that kind that recognizes it.

The set of languages recognized by the types of machines we have
defined does not depend on the particular value of ǫ.

Example: Suppose we are given a Pr machine M that answers Yes,
for x ∈ L, with probability P(x ∈ L) > 1

2 + ǫ.

We can construct a new Pr machine M ′ that:

Runs M three times;
Answers Yes if M answers Yes at least two times.

Then M ′ will accept x ∈ L with probability > 1
2 +

3
2ǫ − ǫ

3.

George Voutsadakis (LSSU) Quantum Computing July 2024 94 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

The Role of ǫ (Cont’d)

Since the exact value of ǫ is not important, some authors use a fixed
value, such as ǫ = 1

4 .

However, the case P(x ∈ L) > 1
2 is different from P(x ∈ L) > 1

2 + ǫ.

In the former case no polynomial number of repetitions can guarantee
an increase in the success probability above a given threshold 1

2 + ǫ.

George Voutsadakis (LSSU) Quantum Computing July 2024 95 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Time and Space Complexity

One is concerned about the probability that a machine answer
correctly.

But complexity theory is also concerned about quantifying the
amount of resources, particularly time and space, that a machine uses
to obtain its answers.

A machine recognizes a language L in time O(f) if, for any string
x ∈ Σ∗ of length n, it answers Yes or No within t(n) steps and
t ∈ O(f).
A machine recognizes a language L in space O(f) if, for any string
x ∈ Σ∗ of length n, it answers Yes or No using at most s(n) storage
units, measured in bits or qubits, where s ∈ O(f).

George Voutsadakis (LSSU) Quantum Computing July 2024 96 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Complexity Classes

A complexity class is the set of languages recognized by a particular
kind of machine within given resource bounds.

Specifically, for m ∈ {D,EQ,N,R,Pr,BP}, we consider the classes
mTime(f) and mSpace(f).
Language L is in complexity class mTime(f) if there exists a machine
M of kind m that recognizes L in time O(f).
Language L is in complexity class mSpace(f) if there exists a
machine M of kind m that recognizes L in space O(f).

George Voutsadakis (LSSU) Quantum Computing July 2024 97 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

List of Complexity Classes

We are particularly interested in machines that use only a polynomial
amount of resources, and to a lesser extent in those that use only an
exponential amount.

For example, we are interested in the class P = DTime(nk) of
machines that respond to an input of length n using only O(nk) time,
for some k .

The following shorthand notations are common:

P DTime(nk) EQP EQTime(nk)
NP NTime(nk) R RTime(nk)
PP PrTime(nk) BPP BPTime(nk)

BQP BQTime(nk) PSpace DSpace(nk)
NPSpace NSpace(nk) EXP DTime(kn)

George Voutsadakis (LSSU) Quantum Computing July 2024 98 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Time Complexity and Halting

For time classes, we can assume that machines always halt, since the
function f provides an upper bound on the possible runtimes.

However, machines in the space complexity classes may never halt on
some inputs.

Therefore, we define mHSpace(f) to be the class of languages that
are recognized by a halting machine of type m in space O(f).
Obviously, mHSpace(f) ⊆mSpace(f).
Note that in the circuit model all computations will terminate.

Analysis of the complexity of nonhalting space classes requires a
different model of computation, such as quantum Turing machines.

George Voutsadakis (LSSU) Quantum Computing July 2024 99 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

Relations Between Complexity Classes

We give informal arguments for some of the containment relations
involving quantum complexity classes.

The figure depicts the known containment relations involving classical
and quantum time complexity classes.

Nothing is known about the relation between BQP and NP or PP.

George Voutsadakis (LSSU) Quantum Computing July 2024 100 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

P ⊆ EQP and EQP ⊆ BQP

P ⊆ EQP: Consider a classical polynomial time computation.

It can be performed by a polynomial size circuit family.

The circuit family can be made to operate reversibly, with only a
slight increase in time and space.

Any reversible polynomial time algorithm can be turned into a
polynomial time exact quantum algorithm.

EQP ⊆ BQP: This containment is trivial.

Every exact quantum algorithm has bounded probability of error.

George Voutsadakis (LSSU) Quantum Computing July 2024 101 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BPP ⊆ BQP

BPP ⊆ BQP: Consider a computation performed by a machine M in
BPP.

It can be approximated arbitrarily closely by a machine M̃ that makes
a single equiprobable binary decision at each step.

The decision tree is of polynomial depth.

So a sequence of choices can be encoded by a polynomial size bit
string c .

Construct a deterministic machine M̃d that, when applied to c and x ,
will perform the same computation as M̃ applied to x making the
random choices c .

George Voutsadakis (LSSU) Quantum Computing July 2024 102 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BPP ⊆ BQP (Cont’d)

Construct a polynomial time quantum machine M̃q that can be
applied to the superposition of all possible random choices c applied
to x , ∑c ∣c , x ,0⟩, producing ∑c ∣c , x , M̃d (c , x)⟩.
In effect, M̃q performs all possible computations of M̃ on x in parallel.

The probability of reading an accepting answer from M̃q is the same
as the probability that M̃ would accept x .

It is not known whether BPP ⊆ BQP is a proper inclusion.

In fact, showing BPP ≠ BQP would answer the open question as to
whether BPP = PSpace.

George Voutsadakis (LSSU) Quantum Computing July 2024 103 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace

BQP ⊆ PSpace: Consider a machine in BQP, acting on an input of
size n, that:

Starts from a known state ∣ψ0⟩ = ∣0⟩;
Proceeds for k steps;
Ends with a measurement.

We show that such a machine can be approximated arbitrarily closely,
in the sense of computing any amplitude of the final state to a
specified precision, in polynomial space.

Suppose the state after step i is

∣ψi ⟩ =∑
j

aij ∣j⟩.
Each state ∣ψi ⟩, i ≠ 0, may be a superposition of an exponential (in n)
number of basis vectors.

It is possible, using space polynomial in n, to compute the amplitude
akj of an arbitrary basis vector in the final superposition ∣ψk⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 104 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace (Cont’d)

We may assume each step corresponds to a primitive quantum gate
Ui that operates on at most d ≤ 3 quantum bits.

For these transformations, we show that the amplitude ai+1,j of basis
vector ∣j⟩ in state ∣ψi+1⟩ depends only on the amplitudes ai ,j of the
small number (2d ≤ 8) of basis vectors of the preceding state ∣ψi ⟩ that
differ from ∣j⟩ only in the bits that are being operated on by the gate.

Without loss of generality, assume that U = Ui+1 operates on the last
d quantum bits.

We will use the the shorthand x ○ y to stand for 2dx + y .

Let
uqr = ⟨r ∣U ∣q⟩,

for basis elements ∣r⟩ and ∣q⟩ in the standard basis for a
2d -dimensional space.

George Voutsadakis (LSSU) Quantum Computing July 2024 105 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace (Cont’d)

We have

∣ψi+1⟩ = (I n−d ⊗U)∣ψi ⟩
= ∑j aij(I n−d ⊗U)∣j⟩
= ∑2n−d−1

p=0 ∑2d−1
q=0 ai ,p○q∣p⟩⊗U ∣q⟩

= ∑p∑q ai ,p○q∣p⟩⊗∑2d−1
r=0 uqr ∣r⟩

= ∑p∑r(∑2d−1
q=0 uqrai ,p○q)∣p⟩∣r⟩.

It follows that each amplitude

ai+1,p○r = 2d−1

∑
q=0

uqrai ,p○q

depends only on 2d amplitudes ai ,p○q of the preceding state.

George Voutsadakis (LSSU) Quantum Computing July 2024 106 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace (Cont’d)

By induction, we argue that it requires storage of i2d amplitudes to
compute a single amplitude of state ∣ψi ⟩.
Since we know ∣ψ0⟩, it takes no space to compute the amplitude⟨j ∣ψ0⟩ for any j .

As we have just seen, the amplitude ai+1,j can be computed from 2d

amplitudes of ∣ψi ⟩.
We can do this by computing each of these amplitudes in turn.

This requires:

Storing at most i2d amplitude values;
Storing the resulting 2d amplitudes;
Computing ai+1,j .

Overall, this process requires storage of (i + 1)2d amplitude values.

George Voutsadakis (LSSU) Quantum Computing July 2024 107 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace (Cont’d)

Let M be the maximum precision required at any point in the
computation to obtain the desired precision at the end.

The total accumulated error is no larger than the sum of the errors of
individual steps.

Thus, the number M grows only linearly in the number of steps.

Any one amplitude value can be stored in space M.

The amplitude of any basis vector of the final superposition, after k
steps, can be computed in k2dM space.

By assumption, k is polynomial in n.
d is a constant no more than 3.
M only grows linearly with k .

So it takes only polynomial space to compute a single amplitude of
the final state ∣ψk⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 108 / 130

Introduction to Quantum Algorithms Machine Models and Complexity Classes

BQP ⊆ PSpace (Cont’d)

To simulate the algorithm, choose a basis vector ∣j⟩ randomly.

Alternatively, they could be taken in a specified order.

Calculate the amplitude akj .

Generate a random number between 0 and 1.

Check whether it is less than ∣akj ∣.
If it is, return ∣j⟩.
Otherwise:

Free all the space;
Choose another basis vector;
Repeat the process.

Repeat as often as necessary until a basis vector is returned (time is
not an issue!).

In his way, any computation in BQP can be simulated classically in
polynomial space.

George Voutsadakis (LSSU) Quantum Computing July 2024 109 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Subsection 8

Quantum Fourier Transformations

George Voutsadakis (LSSU) Quantum Computing July 2024 110 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Discrete Fourier Transform

The discrete Fourier transform (DFT) operates on a discrete
complex-valued function to produce another discrete complex-valued
function.

Consider a function

a ∶ [0, . . . ,N − 1]→ C.

The discrete Fourier transform produces a function

A ∶ [0, . . . ,N − 1]→ C,

defined by

A(x) = 1√
N

N−1

∑
k=0

a(k) exp (2πi kx
N
).

George Voutsadakis (LSSU) Quantum Computing July 2024 111 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Fourier Coefficients

The discrete Fourier transform can be viewed as a linear
transformation, taking column vector (a(0), . . . ,a(N − 1))T to(A(0), . . . ,A(N − 1))T , with matrix representation F having entries

Fxk = 1√
N

exp(2πi kx
N
), x ,k = 0, . . . ,N − 1.

The values A(0), . . . ,A(N − 1) are called the Fourier coefficients of
the function a.

George Voutsadakis (LSSU) Quantum Computing July 2024 112 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Example

Let a ∶ [0, . . . ,N − 1]→ C be the periodic function

a(x) = exp(−2πi ux
N
),

for some frequency u evenly dividing N.

We assume that the function is not constant, that is 0 < u < N.

The Fourier coefficients for this function are

A(x) = 1√
N
∑N−1

k=0 a(k) exp (2πi kx
N
)

= 1√
N
∑N−1

k=0 exp (−2πi uk
N
) exp (2πi kx

N
)

= 1√
N
∑N−1

k=0 exp (2πi k(x−u)
N
).

Sums of the form ∑N−1
k=0 exp (2πik r

N
) vanish unless r = 0 mod N.

Since u < N, A(x) = 0 unless x − u = 0.
Thus, only A(u) will be non-zero.

George Voutsadakis (LSSU) Quantum Computing July 2024 113 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Behavior of the Discrete Fourier Transform

Any periodic complex-valued function a with period r and frequency
u = N

r
can be approximated, using its Fourier series, as the sum of

exponential functions whose frequencies are multiples of u.

Since the Fourier transform is linear, the Fourier coefficients A(x) of
any periodic function will be the sum of the Fourier coefficients of the
component functions.

If r divides N evenly, the Fourier coefficients A(x) will be non-zero
only for those x that are multiples of u = N

r
.

If r does not divide N evenly, the result only approximates this
behavior, with the highest values at the integers closest to multiples
of u = N

r
and low values at integers far from these multiples.

George Voutsadakis (LSSU) Quantum Computing July 2024 114 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient implementation of
the discrete Fourier transform (DFT) when N is a power of two:
N = 2n.
The key to the implementation is that F (n) can be recursively
decomposed in terms of Fourier transforms for lower powers of 2.

Let ω(n) be the N-th root of unity, ω(n) = exp (2πiN).
The entries of the N ×N matrix F (n) for the N = 2n dimensional
Fourier transform are simply

F
(n)
ij
= ωij

(n),

where we index the entries of all N ×N matrices by i ∈ {0, . . . ,N − 1}
and j ∈ {0, . . . ,N − 1}.

George Voutsadakis (LSSU) Quantum Computing July 2024 115 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Fast Fourier Transform (Cont’d)

Let F (k) be the 2k × 2k matrix for the 2k -dimensional Fourier
transform.

Let I(k) be the 2k × 2k identity matrix.

Let D(k) be the 2k × 2k diagonal matrix with elements

ω0
(k+1), . . . , ω

2k−1
(k+1).

Let R(k) be the permutation that maps the vector entries at index 2i
to position i and at index 2i + 1 to position i + 2k−1.

The entries of the 2k × 2k matrix for R(k) are given by

R
(k)
ij
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if 2i = j ,
1, if 2(i − 2k−1) + 1 = j ,
0, otherwise.

George Voutsadakis (LSSU) Quantum Computing July 2024 116 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Fast Fourier Transform (Cont’d)

One may verify that

F (k) = 1√
2
(I (k−1) D(k−1)

I (k−1) −D(k−1)
)(F (k−1) 0

0 F (k−1)
)R(k).

There exists an implementation of the fast Fourier transform, based
on this recursive decomposition, that uses only O(nN) steps.

George Voutsadakis (LSSU) Quantum Computing July 2024 117 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

The Quantum Fourier Transform

The quantum Fourier transform (QFT) is a variant of the discrete
Fourier transform, which, like the fast Fourier transform (FFT),
assumes that N = 2n.
The amplitudes ax of any quantum state ∑x ax ∣x⟩ can be viewed as a
function of x , which we will denote by a(x).
The quantum Fourier transform operates on a quantum state by
sending

∑
x

a(x)∣x⟩ →∑
x

A(x)∣x⟩,
where:

A(x) are the Fourier coefficients of the discrete Fourier transform of
a(x);
x ranges over the integers between 0 and N − 1.

If the state were measured in the standard basis right after the
Fourier transform was performed, the probability that the resulting
state would be ∣x⟩ would be ∣A(x)∣2.

George Voutsadakis (LSSU) Quantum Computing July 2024 118 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

The Quantum Fourier Transform versus Uf

The quantum Fourier transform generalizes from a classical
complex-valued function in quite a different way from how Uf

generalizes a binary classical function f .

Here, there is no need for an additional output register.

Instead, the output of the classical function is placed in the complex
amplitudes of the final superposition state.

George Voutsadakis (LSSU) Quantum Computing July 2024 119 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Properties of the QFT

Suppose a state has amplitudes given by a periodic function a(x) = ax
with period r , where r is a power of 2.

Then the quantum Fourier transform ∑x A(x)∣x⟩ of a would have
A(x) zero, except when x is a multiple of N

r
.

Suppose the state was measured in the standard basis at this point.

The result would be one of the basis vectors ∣x⟩ with label a multiple
of N

r
, say ∣j N

r
⟩.

The quantum Fourier transform behaves in only approximately this
way when the period is not a power of 2 (does not divide N = 2n).

States labeled with integers near multiples of N
r
would be measured

with high probability.
The larger the power of 2 used as a base for the transform, the closer
the approximation.

George Voutsadakis (LSSU) Quantum Computing July 2024 120 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Time Complexity of QFT

The implementation of the quantum Fourier transform is based on
that of the fast Fourier transform.

However, the quantum Fourier transform can be implemented
exponentially faster.

It needs only O(n2) operations.
In contrast, as was mentioned, the fast Fourier transform needs
O(nN) operations.

George Voutsadakis (LSSU) Quantum Computing July 2024 121 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

A Quantum Circuit for Fast Fourier Transform

We show how to implement efficiently the quantum Fourier transform

U
(n)
F

for N = 2n, defined by

U
(n)
F
∶ ∣k⟩→ 1√

N

N−1

∑
x=0

exp(2πikx
N
)∣x⟩.

The quantum Fourier transform for N = 2 is the familiar Hadamard
transformation:

U
(1)
F
∶ ∣0⟩ → 1√

2
∑1

x=0 e
0∣x⟩ = 1√

2
(∣0⟩ + ∣1⟩),

∣1⟩ → 1√
2
∑1

x=0 e
πi x ∣x⟩ = 1√

2
(∣0⟩ − ∣1⟩).

George Voutsadakis (LSSU) Quantum Computing July 2024 122 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

A Quantum Circuit for Fast Fourier Transform (Cont’d)

We can compute U
(n)
F

, using the recursive decomposition,

U
(k+1)
F

= 1√
2
(I (k) D(k)

I (k) −D(k)
)⎛⎝

U
(k)
F

0

0 U
(k)
F

⎞
⎠R(k+1).

All of the component matrices are unitary (the multiplicative factor in
front goes with the first matrix).

It remains to be shown how these components can be efficiently
realized on a quantum computer.

George Voutsadakis (LSSU) Quantum Computing July 2024 123 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (R(k+1))

1. We can write the rotation R(k+1) as

R(k+1) = 2k−1

∑
i=0
∣i⟩⟨2i ∣ + ∣i + 2k⟩⟨2i + 1∣.

It can be accomplished by a simple permutation of the k + 1 qubits.

Qubit 0 becomes qubit k ;
Qubits 1 through k become qubits 0 through k − 1.

This permutation can be implemented using k − 1 swap operations.

George Voutsadakis (LSSU) Quantum Computing July 2024 124 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (I ⊗U
(k)
F)

2. Consider, next, the transformation

⎛
⎝

U
(k)
F

0

0 U
(k)
F

⎞
⎠ = I ⊗U

(k)
F
.

It can be implemented by recursively applying the quantum Fourier
transform to qubits 0 through k .

George Voutsadakis (LSSU) Quantum Computing July 2024 125 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (D(k))
3. For k ≥ 1, the 2k × 2k -diagonal matrix of phase shifts D(k) can be

recursively decomposed as

D(k) = D(k−1) ⊗ (1 0
0 ω(k+1)

) .
We recursively decomposing D(k) in this way.

Then D(k) can be implemented by applying

(1 0
0 ω(i+1)

)
to qubit i , for 1 ≤ i ≤ k .
Thus altogether D(k−1) can be implemented using k single-qubit
gates.

George Voutsadakis (LSSU) Quantum Computing July 2024 126 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (Final Transformation)

4. Given the implementation of D(k), consider, finally,

1√
2
(I (k) D(k)

I (k) −D(k)
) .

This can also be implemented with only k gates.

We have

1√
2
(I (k) D(k)

I (k) −D(k)
) = 1√

2
(∣0⟩ + ∣1⟩)⟨0∣ ⊗ I (k)

+ 1√
2
(∣0⟩ − ∣1⟩)⟨1∣ ⊗D(k)

= (H ∣0⟩⟨0∣) ⊗ I (k) + (H ∣1⟩⟨1∣) ⊗D(k)

= (H ⊗ I (k))(∣0⟩⟨0∣ ⊗ I (k) + ∣1⟩⟨1∣ ⊗D(k)).

George Voutsadakis (LSSU) Quantum Computing July 2024 127 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (Cont’d)

Consider the transformation

(∣0⟩⟨0∣ ⊗ I (k) + ∣1⟩⟨1∣ ⊗D(k)).
It applies D(k) to bits 0 through k − 1, if bit k is one.

That is, it applies D(k) to the low-order bits controlled by the
high-order bit.

This controlled version of D(k) can be implemented as a sequence of
k two-qubit controlled gates.

Those apply each of the single-qubit operations making up D(k) to
bit i controlled by bit k .

George Voutsadakis (LSSU) Quantum Computing July 2024 128 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

Quantum Implementation (Summary)

D(k) and R(k) can be implemented with O(k) operations.
So the kth step in the recursion adds O(k) steps to the

implementation of U
(n)
F

.

Overall, U
(n)
F

takes O(n2) gates to implement.

This is exponentially faster than the O(n2n) steps required for
classical fast Fourier transform.

Circuit for the implementation of the quantum Fourier transform:

George Voutsadakis (LSSU) Quantum Computing July 2024 129 / 130

Introduction to Quantum Algorithms Quantum Fourier Transformations

The Recursive Program

A recursive program for the implementation is as follows.

define QFT ∣x[1]⟩ = H ∣x⟩
QFT ∣x[n]⟩ =

Swap ∣x0⟩∣x1 . . . xn−1⟩
QFT ∣x0 . . . xn−2⟩∣xn−1⟩ control D(n−1)∣x0 . . . xn−2⟩
H ∣xn−1⟩.

George Voutsadakis (LSSU) Quantum Computing July 2024 130 / 130

	Outline
	Introduction to Quantum Algorithms
	Computing with Superpositions
	Notions of Complexity
	A Simple Quantum Algorithm
	Quantum Subroutines
	A Few Simple Quantum Algorithms
	Comments on Quantum Parallelism
	Machine Models and Complexity Classes
	Quantum Fourier Transformations

