
Introduction to Quantum Computing

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 500

George Voutsadakis (LSSU) Quantum Computing July 2024 1 / 46

Outline

1 Shor’s Algorithm
Classical Reduction of Factoring to Period-Finding
Shor’s Factoring Algorithm
Example Illustrating Shor’s Algorithm
The Efficiency of Shor’s Algorithm
Omitting the Internal Measurement
Generalizations

George Voutsadakis (LSSU) Quantum Computing July 2024 2 / 46

Shor’s Algorithm Classical Reduction of Factoring to Period-Finding

Subsection 1

Classical Reduction of Factoring to Period-Finding

George Voutsadakis (LSSU) Quantum Computing July 2024 3 / 46

Shor’s Algorithm Classical Reduction of Factoring to Period-Finding

Order of an Integer

The order of an integer a modulo M is the smallest integer r > 0 such
that

ar = 1 mod M.

If no such integer exists, the order is said to be infinite.

Two integers are relatively prime if they share no prime factors.

As long as a and M are relatively prime, the order of a is finite.

George Voutsadakis (LSSU) Quantum Computing July 2024 4 / 46

Shor’s Algorithm Classical Reduction of Factoring to Period-Finding

Order and Period

For a relatively prime to M, consider the function

f (k) = ak mod M.

Note that, for a relatively prime to M,

ak = ak+r mod M if and only if ar = 1 mod M.

So the order r of a modulo M is the period of f .

George Voutsadakis (LSSU) Quantum Computing July 2024 5 / 46

Shor’s Algorithm Classical Reduction of Factoring to Period-Finding

Reducing Factoring to Finding the Period

Suppose ar = 1 mod M and r is even.

Then we can write

(ar/2 + 1)(ar/2 − 1) = 0 mod M.

Suppose, further, that neither ar/2 + 1 nor ar/2 − 1 is a multiple of M.

Then both
ar/2 + 1 and ar/2 − 1

have nontrivial common factors with M.

Thus, if r is even, ar/2 + 1 and ar/2 − 1 are likely to have a nontrivial
common factor with M.

George Voutsadakis (LSSU) Quantum Computing July 2024 6 / 46

Shor’s Algorithm Classical Reduction of Factoring to Period-Finding

Factoring Strategy

This property suggests a strategy for factoring M:

Randomly choose an integer a;
Determine the period r of f (k) = ak mod M ;
If r is even, use the Euclidean algorithm to compute efficiently the
greatest common divisor of ar/2 + 1 and M ;
Repeat if necessary.

In this way, factoring M has been converted to the problem of
computing the period of the function

f (k) = ak mod M.

Shor’s quantum algorithm attacks the problem of efficiently finding
the period of a function.

George Voutsadakis (LSSU) Quantum Computing July 2024 7 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Subsection 2

Shor’s Factoring Algorithm

George Voutsadakis (LSSU) Quantum Computing July 2024 8 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Shor’s Factoring Algorithm: An Overview

Quantum computation is required only for parts 2 and 3.

1. Randomly choose an integer a such that 0 < a <M .
Use the Euclidean algorithm to determine whether a and M are
relatively prime.

If not, we have found a factor of M.

Otherwise, apply the rest of the algorithm.

2. Use quantum parallelism to compute f (x) = ax mod M on the
superposition of inputs.
Then apply a quantum Fourier transform to the result.
We will see that it suffices to consider input values x ∈ {0, . . . ,2n − 1},
where n is such that M2 ≤ 2n < 2M2.

3. Measure. With high probability, a value v close to a multiple of 2n

r
will

be obtained.
4. Use classical methods to obtain from v a conjectured period q.
5. When q is even, use the Euclidean algorithm to check efficiently

whether aq/2 + 1 (or aq/2 − 1) has a nontrivial common factor with M .
6. Repeat all steps if necessary.

George Voutsadakis (LSSU) Quantum Computing July 2024 9 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core

We use quantum parallelism to create the superposition

∑
x

∣x , f (x)⟩.
Then Shor’s algorithm applies the quantum Fourier transform.

The values f (x) = ax mod M can be computed efficiently classically.
By previous results, the transformation

Uf ∶ ∣x⟩∣0⟩ → ∣x⟩∣f (x)⟩
has an efficient implementation.
We use quantum parallelism with Uf to obtain the superposition

1√
2n

2n−1∑
x=0
∣x⟩∣f (x)⟩.

The analysis simplifies slightly if we now measure the second register.

We will see how the measurement can be omitted without affecting
the efficiency or the result of the algorithm.

George Voutsadakis (LSSU) Quantum Computing July 2024 10 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core (Cont’d)

Suppose we measure the second register randomly.

Let u be the value returned for f (x).
Then the state becomes

C∑
x

g(x)∣x⟩∣u⟩,
where

g(x) = { 1, if f (x) = u
0, otherwise

and C is the appropriate scale factor.

Here, the value of u is of no interest.

Moreover, the second register is no longer entangled with the first.

So the second register can be ignored.

George Voutsadakis (LSSU) Quantum Computing July 2024 11 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core (Cont’d)

The function
f (x) = ax mod M

has the property that f (x) = f (y) if and only if x and y differ by a
multiple of the period.

So the values of x that remain in the sum, i.e., those with g(x) ≠ 0,
differ from each other by multiples of the period.

Thus, the function g has the same period as the function f .

George Voutsadakis (LSSU) Quantum Computing July 2024 12 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core (Cont’d)

If we could somehow obtain the value of two successive terms in the
sum, we would have the period.

Unfortunately, the laws of quantum physics permit only one
measurement from which we can obtain only one random value of x .

Repeating the process does not help because we would be unlikely to
measure the same value u of f (x).
So the two values of x obtained from two runs would have no relation
to each other.

George Voutsadakis (LSSU) Quantum Computing July 2024 13 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core (Cont’d)

Apply the quantum Fourier transform to the first register of this state
produces

UF (C∑
x

g(x)∣x⟩) = C ′∑
c

G(c)∣c⟩,
where

G(c) = ∑
x

g(x) exp (2πicx

2n
).

George Voutsadakis (LSSU) Quantum Computing July 2024 14 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

The Quantum Core (Cont’d)

A previous analysis tells us that when the period r of the function
g(x) is a power of two, G(c) = 0 except when c is a multiple of 2n

r
.

When the period r does not divide 2n, the transform approximates
the exact case.

So most of the amplitude is attached to integers close to multiples of
2n

r
.

For this reason, measurement yields, with high probability, a value v

close to a multiple of 2n

r
.

The quantum core of the algorithm has now been completed.

The next section examines the classical use of v to obtain a good
guess for the period.

George Voutsadakis (LSSU) Quantum Computing July 2024 15 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Classical Extraction of the Period

We sketch a purely classical algorithm for extracting the period from
the measured value v obtained from the quantum core of Shor’s
algorithm.

When the period r happens to be a power of 2, the quantum Fourier
transform gives exact multiples of 2n

r
.

This makes the period easy to extract.

In this case, the measured value v is equal to j 2
n

r
for some j .

Most of the time j and r will be relatively prime.

We reduce the fraction v
2n to its lowest terms.

This yields a fraction j
r
whose denominator is the period r .

The rest of this section explains how to obtain a good guess for r
when it is not a power of 2.

George Voutsadakis (LSSU) Quantum Computing July 2024 16 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Classical Extraction of the Period (Cont’d)

In general the quantum Fourier transform gives only approximate
multiples of the scaled frequency.

This complicates the extraction of the period from the measurement.

When the period is not a power of 2, a good guess for the period can
be obtained from the continued fraction expansion of v

2n .

Shor shows that, with high probability, v is within 1
2 of some multiple

of 2n

r
, say j 2

n

r
.

Recall that n was chosen to satisfy M2 ≤ 2n < 2M2.

Consider the high-probability case in which ∣v − j 2n
r
∣ < 1

2 , for some j .

The left inequality M2 ≤ 2n implies that

∣ v
2n
− j

r
∣ < 1

2 ⋅ 2n
≤ 1

2M2
.

George Voutsadakis (LSSU) Quantum Computing July 2024 17 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Classical Extraction of the Period (Cont’d)

In general, the difference between two distinct fractions p
q
and p′

q′
with

denominators less than M is bounded,

∣p
q
−
p′

q′
∣ = ∣pq′ − p′q

qq′
∣ > 1

M2
.

Thus, there is at most one fraction p
q
with denominator q <M such

that ∣ v2n − p
q
∣ < 1

M2 .

So, when v is within 1
2 of j 2

n

r
, this fraction will be j

r
.

The fraction p
q
can be computed using a continued fraction expansion.

We take the denominator q of the obtained fraction as our guess for
the period.

This guess will be correct whenever j and r are relatively prime.

George Voutsadakis (LSSU) Quantum Computing July 2024 18 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Review of the Continued Fraction Expansion

The unique fraction with denominator less than M that is within 1
M2

of v
2n can be obtained efficiently from the continued fraction

expansion of v
2n .

Let [x] be the greatest integer less than x .

Define the following sequences:

a0 = [v2n] , ǫ0 = v
2n − a0;

ai = [1
ǫi−1
] , ǫi = 1

ǫi−1
− ai .

Moreover,

p0 = a0, p1 = a1a0 + 1, pi = aipi−1 + pi−2;
q0 = 1, q1 = a1, qi = aiqi−1 + qi−2.

The recurrences compute the first fraction pi
qi
, with qi <M ≤ qi+1.

George Voutsadakis (LSSU) Quantum Computing July 2024 19 / 46

Shor’s Algorithm Shor’s Factoring Algorithm

Example

Assume M = 21, n = 9, v = 427.
We work with

a0 = [v2n] , ǫ0 = v
2n − a0;

ai = [1
ǫi−1
] , ǫi = 1

ǫi−1
− ai ;

p0 = a0, p1 = a1a0 + 1, pi = aipi−1 + pi−2;
q0 = 1, q1 = a1, qi = aiqi−1 + qi−2.

We obtain:
i ai pi qi ǫi
0 0 0 1 427

512
1 1 1 1 85

427
2 5 5 6 2

85
3 42 211 253 1

2

George Voutsadakis (LSSU) Quantum Computing July 2024 20 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

Subsection 3

Example Illustrating Shor’s Algorithm

George Voutsadakis (LSSU) Quantum Computing July 2024 21 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

The Problem

We illustrate the operation of Shor’s algorithm as it attempts to
factor the integer M = 21.
We compute

M2 = 441 ≤ 29 < 882 = 2M2.

So we take n = 9.
As ⌈logM⌉ = m = 5, the second register requires five qubits.

Thus, the state

1√
29

29−1∑
x=0
∣x⟩∣f (x)⟩

is a 14-qubit state, with:

Nine qubits in the first register;
Five qubits in the second register.

George Voutsadakis (LSSU) Quantum Computing July 2024 22 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

Measurement

Suppose the randomly chosen integer is a = 11 < 21 =M.

a and M are relatively prime.

We measure the second register of the superposition of equation

1√
29

29−1∑
x=0
∣x⟩∣f (x)⟩.

Suppose the measurement produces u = 8.
The state of the first register after this measurement is shown in the
figure on the next slide.

George Voutsadakis (LSSU) Quantum Computing July 2024 23 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

State of First Register After Measurement

The state of the first register after the measurement u = 8.

The probabilities for measuring x when measuring the state is
C ∑x∈X ∣x ,8⟩, where X = {x ∣11x mod 21 = 8}.
The figure shows the periodicity of f .

George Voutsadakis (LSSU) Quantum Computing July 2024 24 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

Fourier Transform

The next figure shows the result of applying the quantum Fourier
transform to this state.

It is the graph of the FFT of the function of the preceding figure.

In this particular example, the period of f does not divide 2n.

So the probability distribution has some spread around multiples of 2n

r

instead of having a single spike at each of these values.

George Voutsadakis (LSSU) Quantum Computing July 2024 25 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

The Output

Suppose that measurement of the state returns v = 427.
Since v and 2n are relative prime, we use the continued fraction
expansion to obtain a guess q for the period.

The following table shows a trace of the continued fraction algorithm:

i ai pi qi ǫi
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

The algorithm terminates with 6 = q2 <M ≤ q3.

George Voutsadakis (LSSU) Quantum Computing July 2024 26 / 46

Shor’s Algorithm Example Illustrating Shor’s Algorithm

The Period and the Factors

We came up with q = 6 as our guess for the period of f .

Now 6 is even.

So the following are likely to have a common factor with M:

a6/2 − 1 = 113 − 1 = 1330;
a6/2 + 1 = 113 + 1 = 1332.

In this particular example,

gcd(21,1330) = 7 and gcd(21,1332) = 3.

George Voutsadakis (LSSU) Quantum Computing July 2024 27 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Subsection 4

The Efficiency of Shor’s Algorithm

George Voutsadakis (LSSU) Quantum Computing July 2024 28 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Number of Steps

We consider the efficiency of Shor’s algorithm, examining:

The efficiency of each part in terms of the number of gates or classical
steps needed to implement the part;
The expected number of times the algorithm would need to be
repeated.

The Euclidean algorithm on integers x > y needs at most O(log x)
steps.

So both Parts 1 and 5 require O(logM) = O(m) steps.
The continued fraction algorithm used in Part 4 is related to the
Euclidean algorithm and also requires O(m) steps.
Part 3 is a measurement of m qubits.

In addition, as we will see, it can be omitted altogether.

George Voutsadakis (LSSU) Quantum Computing July 2024 29 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Number of Steps (Cont’d)

Part 2 consists of the computation of Uf and the computation of the
quantum Fourier transform.

We showed that the quantum Fourier transform on m qubits requires
O(m) steps.
The algorithm for modular exponentiation requires O(n3) steps could
be used to implement Uf .

The transformation Uf can be implemented more efficiently using an
algorithm for modular exponentiation, described by Shor, that is
based on the most efficient classical method known, and runs in
O(n2 log n log log n) time and O(n log n log log n) space.
These results show that the overall runtime of a single iteration of
Shor’s algorithm is dominated by the computation of Uf .

Moreover, the overall time complexity for a single iteration of the
algorithm is O(n2 log n log log n).

George Voutsadakis (LSSU) Quantum Computing July 2024 30 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Number of Repetitions

To show that Shor’s algorithm is efficient, we also need to show that
the parts do not need to be repeated too many times.

Four things can go wrong:

The period of f (x) = ax mod M could be odd.
Part 4 could yield M as M ’s factor.
The value v obtained in Part 3 might not be close enough to a multiple
of 2n

r
.

A multiple j 2
n

r
of 2n

r
is obtained from v , but j and r could have a

common factor, in which case the denominator q is actually a factor of
the period, not the period itself.

George Voutsadakis (LSSU) Quantum Computing July 2024 31 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Number of Repetitions (Cont’d)

The first two problems appear in the classical reduction.

Standard classical arguments bound the probabilities as at most 1
2 .

For the case in which the period r divides 2n, problem 3 does not
arise.

Shor shows that, in the general case, v is within 1
2 of a multiple of 2n

r

with high probability.

As for Problem 4, when r divides 2n, it is not hard to see that every
outcome v = j 2n

r
is equally likely.

After the quantum Fourier transform the state is C ′∑2n−1
c=0 G(c)∣c⟩,

where

G(c) = ∑
x∈Xu

exp(2πi
cx

2n
) = 2n/r∑

y=0
exp(2πi

cry

2n
)

where Xu = {x ∶ f (x) = u}.
George Voutsadakis (LSSU) Quantum Computing July 2024 32 / 46

Shor’s Algorithm The Efficiency of Shor’s Algorithm

Number of Repetitions (Cont’d)

As we saw, the final sum is 1 when c is a multiple of 2n

r
, and 0

otherwise.

Thus, in this case, any j ∈ {0, . . . , r − 1} is equally likely.

From j , we obtain the period r exactly when r and j are relatively
prime, gcd(r , j) = 1.
The number of positive integers less than r that are relatively prime
to r is given by the famous Euler φ function, which is known to
satisfy φ(r) ≥ δ

log log r for some constant δ.

Thus we need to repeat the parts only O(log log r) times in order to
achieve a high probability of success.

The argument for the general case, in which r does not divide 2n, is
more involved but yields the same result.

George Voutsadakis (LSSU) Quantum Computing July 2024 33 / 46

Shor’s Algorithm Omitting the Internal Measurement

Subsection 5

Omitting the Internal Measurement

George Voutsadakis (LSSU) Quantum Computing July 2024 34 / 46

Shor’s Algorithm Omitting the Internal Measurement

Intuition

In Part 3 of Shor’s algorithm, to obtain u one measures the second
register of the state in

1√
2n

2n−1∑
x=0
∣x⟩∣f (x)⟩.

This step can be skipped entirely.

We describe the intuition for why this measurement can be omitted.

Suppose the measurement is omitted.

Then the state consists of a superposition of several periodic
functions.

Each function corresponds to a value of f (x).
All of these functions have the same period.

George Voutsadakis (LSSU) Quantum Computing July 2024 35 / 46

Shor’s Algorithm Omitting the Internal Measurement

Intuition (Cont’d)

Quantum transformations are linear.

So applying the quantum Fourier transformation leads to a
superposition of the Fourier transforms of these functions.

Each of the functions corresponds to a different value u of the second
register.

So the different functions remain distinct parts of the superposition
and do not interfere with each other.

Measuring the first register gives a value from one of these Fourier
transforms.

As before, this will be close to j 2
n

r
for some j .

So it can be used to obtain the period in the same way as before.

George Voutsadakis (LSSU) Quantum Computing July 2024 36 / 46

Shor’s Algorithm Omitting the Internal Measurement

Formalism

Let Xu = {x ∶ f (x) = u}.
Let R be the range of f (x).
Finally, let gu be the family of functions indexed by u, such that

gu(x) = { 1, if f (x) = u
0, otherwise.

Using this notation, the state can be written as

1√
2n
∑2n−1

x=0 ∣x⟩∣f (x)⟩ = 1√
2n
∑u∈R ∑x∈Xu

∣x⟩∣u⟩
= 1√

2n
∑u∈R (∑2n−1

x=0 gu(x)∣x⟩) ∣u⟩.
The amplitudes in states with different u in the second register can
never interfere (add or cancel) with each other.

George Voutsadakis (LSSU) Quantum Computing July 2024 37 / 46

Shor’s Algorithm Omitting the Internal Measurement

Formalism (Cont’d)

The result of applying the transform UF ⊗ I to the preceding state
can be written

UF ⊗ I (1√
2n
∑u∈R (∑2n−1

x=0 gu(x)∣x⟩) ∣u⟩)
= 1√

2n
∑u∈R(UF ∑x gu(x)∣x⟩)∣u⟩

= C ′∑u∈R(∑2n−1
c=0 Gu(c)∣c⟩)∣u⟩,

where Gu(c) is the discrete Fourier transform of gu(x).
This results is a superposition of the possible states of equation
UF (C ∑x g(x)∣x⟩) = C ′∑c G(c)∣c⟩ over all possible u.

Now the gu all have the same period.

So measuring the first part of this state returns a c close to a multiple
of 2n

r
.

This has the same effect as when the second register was measured.

George Voutsadakis (LSSU) Quantum Computing July 2024 38 / 46

Shor’s Algorithm Generalizations

Subsection 6

Generalizations

George Voutsadakis (LSSU) Quantum Computing July 2024 39 / 46

Shor’s Algorithm Generalizations

The Discrete Logarithm

Let Z∗p be the group of integers {1, . . . ,p − 1} under multiplication
modulo p.

Let b be a generator for this group (any b relatively prime to p − 1
will do).

The discrete logarithm of y ∈ Z∗p with respect to base b is the
element x ∈ Z∗p , such that

bx = y mod p.

George Voutsadakis (LSSU) Quantum Computing July 2024 40 / 46

Shor’s Algorithm Generalizations

The Discrete Logarithm Problem

Discrete Logarithm Problem: Given a prime p, a base b ∈ Z∗p, and
an arbitrary element y ∈ Z∗p , find an x ∈ Z∗p , such that

bx = y mod p.

For large p, this problem is computationally difficult to solve.

The Discrete Logarithm Problem can be generalized to arbitrary finite
cyclic groups G .

However, for some large G , it is is not difficult to solve classically.

The Discrete Logarithm Problem is a special case of the Abelian
Hidden Subgroup Problem.

George Voutsadakis (LSSU) Quantum Computing July 2024 41 / 46

Shor’s Algorithm Generalizations

Hidden Subgroup Problems

The Hidden Subgroup Problem: Let G be a group.

Suppose a subgroup H < G is implicitly defined by a function f on G

in that f is constant and distinct on every coset of H.

Find a set of generators for H.

The aim is to find a polylogarithmic algorithm that computes a set of
generators for H in O((log ∣G ∣)k) steps, for some k .

The difficulty of the problem depends not only on G and f but also
on what is meant by given a group G .

George Voutsadakis (LSSU) Quantum Computing July 2024 42 / 46

Shor’s Algorithm Generalizations

Hidden Subgroup Problems (Cont’d)

Some useful properties may be expensive to compute from certain
descriptions of a group and immediate from others.

For example, computing the size of a group from certain types of
descriptions, such as a defining set of generators and relations, is
known to be computationally hard.

Also, we can hope to find a solution in poly-log time only if f itself is
computable in poly-log time.

The general hidden subgroup problem remains unsolved.

However, a polylogarithmic bounded probability quantum algorithm
for the general case of finite Abelian groups, specified in terms of

their cyclic decomposition, exists.

George Voutsadakis (LSSU) Quantum Computing July 2024 43 / 46

Shor’s Algorithm Generalizations

Finite Abelian Hidden Subgroup Problem

Finite Abelian Hidden Subgroup Problem: Let G be a finite
Abelian group, with cyclic decomposition G = Zn0 ×⋯×ZnL .

Suppose G contains a subgroup H < G that is implicitly defined by a
function f on G in that f is constant and distinct on every coset of H.

Find a set of generators for H.

Example (Period-finding as a Hidden Subgroup Problem):

Period-finding can be rephrased as a hidden subgroup problem.

Let f be a periodic function on ZN , with period r that divides N.

The subgroup H < ZN generated by r is the hidden subgroup.

Suppose a generator h for H has been found.

Then the period r can be found by taking the greatest common
divisor of h and N,

r = gcd(h,N).
George Voutsadakis (LSSU) Quantum Computing July 2024 44 / 46

Shor’s Algorithm Generalizations

The Discrete Logarithm as a Hidden Subgroup Problem

In addition to Period-finding, both Simon’s Problem and the Discrete
Logarithm Problem are instances of the finite Abelian Hidden
Subgroup Problem.

Example (The Discrete Logarithm as a Hidden Subgroup

Problem):

Recall the Discrete Logarithm Problem.

Given the group G = Z∗p , where p is prime, a base b ∈ G , and an
arbitrary element y ∈ G , find an x ∈ G such that

bx = y mod p.

Consider f ∶ G ×G → G , where

f (g ,h) = b−gyh.

George Voutsadakis (LSSU) Quantum Computing July 2024 45 / 46

Shor’s Algorithm Generalizations

The Discrete Logarithm as a Hidden Subgroup (Cont’d)

Let f ∶ G ×G → G , where

f (g ,h) = b−gyh.
Let the hidden subgroup H of G ×G be the set of elements satisfying

f (g ,h) = 1.
It consists of tuples of the form (mx ,m).
From any generator of H, the element (x ,1) can be computed.

Thus, solving this Hidden Subgroup Problem yields x .

So we obtain a solution to the Discrete Logarithm Problem.

George Voutsadakis (LSSU) Quantum Computing July 2024 46 / 46

	Outline
	Shor's Algorithm
	Classical Reduction of Factoring to Period-Finding
	Shor's Factoring Algorithm
	Example Illustrating Shor's Algorithm
	The Efficiency of Shor's Algorithm
	Omitting the Internal Measurement
	Generalizations

