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Grover’s Algorithm and Generalizations Grover’s Algorithm

Subsection 1

Grover’s Algorithm
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Grover’s Algorithm and Generalizations Grover’s Algorithm

The Problem

Grover’s algorithm uses amplitude amplification to search an
unstructured set of N elements.

Suppose the property being searched for is given in terms of a
Boolean function, or predicate,

P ∶ {0, . . . ,N − 1} → {0,1}.
The goal of the problem is to find a solution.

That is, identify an element x , such that

P(x) = 1.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

The Classical Complexity

As in Simon’s problem and the Deutsch-Jozsa problem, the predicate
P is viewed as an oracle or black box.

So our focus is on the query complexity, the number of calls made to
the oracle P .

Given a black box that outputs P(x) upon input of x , the best
classical approaches must, in the single solution case, inspect an
average of N

2 values.

That is, the classical approach requires an average of N
2 evaluations

of the predicate P(x).
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Grover’s Algorithm and Generalizations Grover’s Algorithm

The Quantum Complexity

Suppose, we are given a quantum black box UP that sends

∑
x

cx ∣x⟩∣0⟩ →∑
x

cx ∣x⟩∣P(x)⟩.

Grover’s algorithm finds a solution, in the single solution case, with
only O(√N) calls to UP .

Grover’s algorithm works by iteratively increasing the amplitudes cx of
those values x with P(x) = 1.
As a result, a final measurement will return a value x of interest with
high probability.

For practical applications of Grover’s algorithm, the predicate P :

Must be efficiently computable;
Should lack such structure as allows classical methods to gain
advantage over the quantum algorithm.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Outline

Grover’s algorithm starts with an equal superposition of all N values
of the search space,

∣ψ⟩ = 1√
N
∑
x

∣x⟩.
It repeatedly performs the same sequence of transformations:
1. Apply UP to ∣ψ⟩.
2. Flip the sign of all basis vectors that represent a solution.
3. Perform inversion about the average, a transformation that maps every

amplitude A − δ to A + δ, where A is the average of the amplitudes.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Setup

Without loss of generality, let N = 2n for some integer n.

Let X be the state space generated by {∣0⟩, . . . , ∣N − 1⟩}.
Let UP be a quantum black box that acts as

UP ∶ ∣x ,a⟩ → ∣x ,P(x) ⊕ a⟩,
for all x ∈ X and all single-qubit states ∣a⟩.
Denote the sets of good and bad values, respectively, by

G = {x ∶ P(x)} and B = {x ∶ ¬P(x)}.
Let the number of good states be a small fraction of the total number
of states, written

∣G ∣≪ N.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Setup (Cont’d)

Consider the even superpositions:

Of all good states,

∣ψG ⟩ = 1√∣G ∣ ∑x∈G ∣x⟩;
Of all bad states,

∣ψB⟩ = 1√∣B ∣ ∑x∈B ∣x⟩.
Then ∣ψ⟩ =W ∣0⟩, an equal superposition of all N values, can be
written as a superposition of ∣ψG ⟩ and ∣ψB⟩

∣ψ⟩ = 1√
2n

2n−1∑
x=0

∣x⟩ = g0∣ψG ⟩ + b0∣ψB⟩,

where g0 =√ ∣G ∣
N

and b0 =√ ∣B ∣
N
.

George Voutsadakis (LSSU) Quantum Computing July 2024 9 / 86



Grover’s Algorithm and Generalizations Grover’s Algorithm

Setup (Cont’d)

The core of Grover’s algorithm is the repeated application of a unitary
transformation

Q ∶ gi ∣ψG ⟩ + bi ∣ψB⟩ → gi+1∣ψG ⟩ + bi+1∣ψB⟩
that increases the amplitude gi of good states (and decreases bi ).

This is done until a maximal value is reached.

After applying Q an appropriate number of times j , almost all
amplitude will have shifted to good states, so that ∣bj ∣≪ ∣gj ∣.
At this point, measurement will return an x ∈ G with high probability.

The exact number of times Q needs to be applied is on the order of√
N and depends on both N and ∣G ∣.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Iteration Step: Changing the Sign of the Good Elements

To change the sign in a superposition ∑ cx ∣x⟩ of exactly those ∣x⟩
such that x ∈ G , apply SπG .

A sign change is simply a phase shift by eiπ = −1.
We showed that

UP(∣ψ⟩ ⊗H ∣1⟩) = (SπG ∣ψ⟩) ⊗H ∣1⟩.
Changing the sign of the good elements is accomplished by

UP ∶ (gi ∣ψG ⟩ + bi ∣ψB⟩) ⊗H ∣1⟩ → (−gi ∣ψG ⟩ + bi ∣ψB⟩) ⊗H ∣1⟩.
The number of gates needed to change the sign on the good elements
does not depend on N, but rather on how many gates it takes to
compute UP .
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Iteration Step: Inversion About the Average

Let A be the average of the amplitudes of all basis vectors in the
superposition.

Inversion about the average sends

a∣x⟩ → (2A − a)∣x⟩.
The transformation

N−1
∑
i=0

ai ∣xi ⟩ →
N−1
∑
i=0

(2A − ai)∣xi ⟩

is performed by the unitary matrix

D =
⎛⎜⎜⎜⎝

2
N
− 1 2

N
⋯ 2

N
2
N

2
N
− 1 ⋯ 2

N⋯ ⋯ ⋯ ⋯
2
N

2
N

⋯ 2
N

⎞⎟⎟⎟⎠
.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Iteration Step: Inversion About the Average (Cont’d)

We implement D with O(n) = O(log2 (N)) quantum gates.

Following Grover, we define

D = −WSπ0 W ,

where:

W is the Walsh-Hadamard transform;
Sπ

0 is the phase shift by π of the basis vector ∣0⟩,

Sπ

0 =
⎛⎜⎜⎜⎝
−1 0 ⋯ 0
0 1 0 ⋯
0 ⋯ ⋯ 0
0 ⋯ 0 1

⎞⎟⎟⎟⎠
.

We now show that this D = −WSπ0 W is the one we need.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Iteration Step: Inversion About the Average (Cont’d)

Let

R =
⎛⎜⎜⎜⎝

2 0 ⋯ 0
0 0 0 ⋯
0 ⋯ ⋯ 0
0 ⋯ 0 0

⎞⎟⎟⎟⎠
.

We have Sπ0 = I −R .

So we get
−WSπ0W =W (R − I)W =WRW − I .

Bur Rij = 0, for i ≠ 0 or j ≠ 0.
Thus,

(WRW )ij =Wi0R00W0j = 2

N
.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Iteration Step: Inversion About the Average (Cont’d)

We got

−WSπ0W and (WRW )ij = 2

N
.

So we obtain
−WSπ0 W =WRW − I = D.

We finally put together:

Inversion about the average;
Changing the sign of the good elements.

This yields the iteration transformation

Q = −WSπ0 WSπG .
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Intuition

We examine the result of multiple application of the iteration step Q.

The goal is to determine the optimal number of times to apply Q.

We show that:

Q is a fixed rotation;
The amplitude gi of good states varies periodically with the number of
iterations.

To find a solution with high probability, the number of iterations i
must be chosen carefully.

To determine the correct number of iterations to use, we describe the
result of applying Q in terms of recurrence relations on gi and bi .

George Voutsadakis (LSSU) Quantum Computing July 2024 16 / 86



Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Formalism

The iteration step Q = DSπG transforms

gi ∣ψG ⟩ + bi ∣ψB⟩ → gi+1∣ψG ⟩ + bi+1∣ψB⟩.
First,

SπG ∶ gi ∣ψG ⟩ + bi ∣ψB⟩ → −gi ∣ψG ⟩ + bi ∣ψB⟩.
To compute the average amplitude, Ai , note that:

The term −gi ∣ψG ⟩ contributes ∣G ∣ amplitudes −gi√
∣G ∣ ;

The term bi ∣ψB⟩ contributes ∣B ∣ amplitudes bi√
∣B ∣ .

Thus, altogether

Ai =
√∣B ∣bi −

√∣G ∣gi
N

.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Inversion About the Average

Next, we turn to inversion about the average transforms,

D ∶ −gi ∣ψG ⟩ + bi ∣ψB⟩

→ ∑x∈G
⎛
⎝2Ai + gi√∣G ∣

⎞
⎠ ∣x⟩ + ∑x∈B

⎛
⎝2Ai − bi√∣B ∣

⎞
⎠ ∣x⟩

= (2Ai

√∣G ∣ + gi)∣ψG ⟩ + (2Ai

√∣B ∣ − bi)∣ψB⟩
= gi+1∣ψG ⟩ + bi+1∣ψB⟩,

where
gi+1 = 2Ai

√∣G ∣ + gi ,

bi+1 = 2Ai

√∣B ∣ − bi .

George Voutsadakis (LSSU) Quantum Computing July 2024 18 / 86



Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Solving the Recurrence Relations

Let t denote the probability that a random value in {0, . . . ,N − 1}
satisfies P .

Then we have

t = ∣G ∣
N

and 1 − t = ∣B ∣
N
.

Now we get

Ai

√∣G ∣ = √
∣B ∣∣G ∣bi−∣G ∣gi

N
=√t(1 − t)bi − tgi ;

Ai

√∣B ∣ = ∣B ∣bi−
√
∣B ∣∣G ∣gi

N
= (1 − t)bi −

√
t(1 − t)gi .

So, for the recurrence relations, we have:

gi+1 = 2Ai

√∣G ∣ + gi

= 2(√t(1 − t)bi − tgi) + gi

= (1 − 2t)gi + 2
√
t(1 − t)bi .
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Solving the Recurrences (Cont’d)

Similarly,

bi+1 = 2Ai

√∣B ∣ − bi

= 2((1 − t)bi −
√
t(1 − t)gi) − bi

= (1 − 2t)bi − 2
√
t(1 − t)gi .

We also have
g0 =√t and b0 =√1 − t.

We can verify that

gi = sin ((2i + 1)θ), bi = cos ((2i + 1)θ)

is a solution to these equations with sin θ =√t =√ ∣G ∣
N
.
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Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Computing the Optimum

We are now ready to compute the optimum number of iterations of Q.

We wish to find an element with the desired property P .

This calls for maximizing the probability of measuring a good state.

So we wish to choose i , such that

sin ((2i + 1)θ) ≈ 1 or (2i + 1)θ ≈ π
2
.

For ∣G ∣≪ N, the angle θ becomes very small.

So
√
∣G ∣
N
= sin θ ≈ θ.

Thus, gi will be maximal for

(2i + 1)
√
∣G ∣
N
≈ π

2 ⇒ 2i + 1 ≈ π
2

√
N
∣G ∣

⇒ i ≈ π
4

√
N
∣G ∣ − 1

2

⇒ i ≈ π
4

√
N
∣G ∣ .

George Voutsadakis (LSSU) Quantum Computing July 2024 21 / 86



Grover’s Algorithm and Generalizations Grover’s Algorithm

Number of Iterations: Computing the Optimum (Cont’d)

Additional iteration will reduce the success probability.

This situation is in contrast to many classical algorithms in which the
greater the number of iterations the better the results.

Using the equations for gi and bi :

For t = 1
4
, the optimum number of iterations is 1.

Indeed, we have

sin θ = √t = 1
2

⇒ θ = π

6
;

gi = sin ((2i + 1)π6 ) ⇒ i = 1.
For t = 1

2
, no amount of iteration will improve the situation.

Indeed, we have

sin θ = √t = √2
2

⇒ θ = π

4
;

gi = sin ((2i + 1)π4 ) ⇒ i = 0.
George Voutsadakis (LSSU) Quantum Computing July 2024 22 / 86



Grover’s Algorithm and Generalizations Grover’s Algorithm

Revisiting the Geometric Interpretation

Every step of the iteration process has been written as a linear
combination of ∣ψG ⟩ and ∣ψB⟩ with real coefficients.

So Grover’s algorithm can be viewed as acting in the real
two-dimensional subspace spanned by ∣ψG ⟩ and ∣ψB⟩.
The algorithm simply shifts amplitude from ∣ψB⟩ to ∣ψG ⟩.
This picture leads to an elegant geometric interpretation of Grover’s
algorithm to be discussed shortly.

First, we describe a generalization of Grover’s algorithm, amplitude

amplification, to which this geometric picture also applies.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Subsection 2

Amplitude Amplification
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Grover’s Algorithm and Generalizations Amplitude Amplification

Generalizing Amplitude Amplification

The first step of Grover’s algorithm applies the iteration operator

Q = −WSπ0WSπG

to the initial state W ∣0⟩.
W can be viewed as a trivial algorithm mapping ∣0⟩ to all possible
values.

So it maps ∣0⟩ to a solution with probability ∣G ∣
N
.

Suppose we have an algorithm U, such that U ∣0⟩ gives an initial
solution with a higher probability.

We show that the previous analysis generalizes to any algorithm U,
such that U ∣0⟩ has some amplitude in the good states.

Amplitude amplification generalizes Grover’s algorithm by replacing
the iteration operator Q = −WSπ0WSπG with

Q = −USπ0U−1SπG .
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Grover’s Algorithm and Generalizations Amplitude Amplification

Normalized Projections

Let G be the subspace spanned by {∣x⟩ ∶ x ∈ G}.
Let B be the subspace spanned by {∣x⟩ ∶ x ∉ G}.
Let PG and PB be the associated projection operators.

Let ∣ψG ⟩ be the normalized projection of ∣ψ⟩ onto the good subspace,

∣ψG ⟩ = 1

g0
PG ∣ψ⟩, g0 = ∣PG ∣ψ⟩∣

Let ∣ψB⟩ be the normalized projection of ∣ψ⟩ onto the bad subspace,

∣ψB⟩ = 1

b0
PB∣ψ⟩, b0 = ∣PB ∣ψ⟩∣.

Let ∣ψ⟩ = U ∣0⟩ be written as

∣ψ⟩ = g0∣ψG ⟩ + b0∣ψB⟩.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Measurement and Probabilities

For U =W , we take ∣ψG ⟩, ∣ψB⟩, g0 and b0 are as before.

Here g0 and b0 are not determined by the number of solutions, but
rather by the properties of U relative to the good states.

The states ∣ψG ⟩ and ∣ψB⟩ need not be equal superpositions of the
good and bad states respectively, but g0 and b0 are still real.

Again, we let
t = g2

0 , with 1 − t = b20,
where t should be thought of as the probability that measurement of
the superposition U ∣0⟩ yields a state that satisfies predicate P .

The operator U can be viewed as a reversible algorithm that maps ∣0⟩
to a set of solutions in G with a probability t = ∣g0∣2.
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Grover’s Algorithm and Generalizations Amplitude Amplification

The Effect of Applying Q

To understand the effect of Q = −USπ0U−1SπG , recall that Sπ0 ∣ϕ⟩ can
be written as

Sπ0 ∣ϕ⟩ = ∣ϕ⟩ − 2⟨0∣ϕ⟩∣0⟩.
For an arbitrary state ∣ψ⟩,

USπ0U
−1∣ψ⟩ = U(U−1∣ψ⟩ − 2⟨0∣U−1∣ψ⟩∣0⟩)

= ∣ψ⟩ − 2⟨0∣U−1∣ψ⟩U ∣0⟩
= ∣ψ⟩ − 2⟨ψ∣U ∣0⟩U ∣0⟩.
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Grover’s Algorithm and Generalizations Amplitude Amplification

The Effect of Applying Q (Cont’d)

We got
USπ0 U

−1∣ψ⟩ = ∣ψ⟩ − 2⟨ψ∣U ∣0⟩U ∣0⟩.
Now recall that

SπG ∣ψG ⟩ = −∣ψG ⟩ and SπG ∣ψB⟩ = ∣ψB⟩.
So we get

Q ∣ψG ⟩ = −USπ0U
−1SπG ∣ψG ⟩= USπ0 U

−1∣ψG ⟩= ∣ψG ⟩ − 2g0U ∣0⟩= ∣ψG ⟩ − 2g0g0∣ψG ⟩ − 2g0b0∣ψB⟩= (1 − 2t)∣ψG ⟩ − 2
√
t(1 − t)∣ψB⟩.
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Grover’s Algorithm and Generalizations Amplitude Amplification

The Effect of Applying Q (Cont’d)

Similarly, we have

Q ∣ψB⟩ = −USπ0U
−1SπG ∣ψB⟩= −USπ0U
−1∣ψB⟩= − ∣ψB⟩ + 2⟨ψB ∣U ∣0⟩U ∣0⟩= − ∣ψB⟩ + 2b0U ∣0⟩= − ∣ψB⟩ + 2b0g0∣ψG ⟩ + 2b0b0∣ψB⟩= − ∣ψB⟩ + 2(1 − t)g0

b0
∣ψG ⟩ + 2(1 − t)∣ψB⟩

= (1 − 2t)∣ψB⟩ + 2
√
t(1 − t)∣ψG ⟩.
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Grover’s Algorithm and Generalizations Amplitude Amplification

The Effect of Applying Q (Cont’d)

We obtained

Q ∣ψG ⟩ = (1 − 2t)∣ψG ⟩ − 2
√
t(1 − t)∣ψB⟩;

Q ∣ψB⟩ = (1 − 2t)∣ψB⟩ + 2
√
t(1 − t)∣ψG ⟩.

An arbitrary real superposition of ∣ψG ⟩ and ∣ψB⟩ is transformed by Q

as follows:

Q(gi ∣ψG ⟩ + bi ∣ψB⟩) = (gi (1 − 2t) + 2bi
√
t(1 − t))∣ψG ⟩

+(bi(1 − 2t) − 2gi
√
t(1 − t))∣ψB ⟩.

This leads to the same recurrence relation as in the previous section,

gi+1 = (1 − 2t)gi + 2
√
t(1 − t)bi ;

bi+1 = (1 − 2t)bi − 2
√
t(1 − t)gi .

It has the solution

gi = sin ((2i + 1)θ), bi = cos ((2i + 1)θ), sin θ = √t = g0.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Number of Iterations

Thus, for small g0, the amplitude gi will be maximal after

i ≈ π
4

1

g0

iterations.

If the algorithm U succeeds with probability t, then simple classical
repetition of U requires an average of 1

t
iterations to find a solution.

Amplitude amplification speeds up this process so that it takes only

O (√1
t
) tries to find a solution.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Comments

If U has no amplitude in the good states, g0 will be zero and
amplitude amplification will have no effect.

Recall that no amount of iteration in Grover’s algorithm improves the
probability if t = 1

2 .

Similarly, if g0 is large, amplitude amplification cannot improve the
situation.

For this reason, amplitude amplification applied to an algorithm U

that is the result of amplitude amplification does not improve the
results.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry of Amplitude Amplification

Let ∣ψG ⟩, ∣ψB⟩ and Q = −USπ0U−1SπG be as defined before.

We show that the entire discussion of amplitude amplification, and
Grover’s algorithm in particular, reduces to a simple geometric
argument about rotations in the two-dimensional real subspace
generated by {∣ψG ⟩, ∣ψB ⟩}.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (Cont’d)

By the definition of ∣ψG ⟩ and ∣ψB⟩, the initial state

U ∣0⟩ = g0∣ψG ⟩ + b0∣ψB⟩
has real amplitudes g0 and b0.

So it is in the two-dimensional real plane spanned by {∣ψG ⟩, ∣ψB ⟩}.
The smaller the success probability t, the closer U ∣0⟩ is to ∣ψB⟩.
Let β be the angle between U ∣0⟩ and ∣ψG ⟩.
The angle β depends only on the
probability t = g2

0 that the initial state
U ∣0⟩, if measured, gives a solution

cos (β) = ⟨ψG ∣U ∣0⟩ = g0.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (The Goal)

The rest of this section explains how each iteration of Grover’s
algorithm rotates the state by a fixed angle in the direction of the
desired state.

To maximize the amplitude in the good states, we iterate until the
state is close to ∣ψG ⟩.
From the simple geometry of the situation, we can determine:

The optimal number of iterations;
The probability that the run succeeds.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (Reflection)

Amplitude amplification, and Grover’s algorithm as the special case
when U =W , consists of repeated applications of

Q = −USπ0U−1SπG .
Recall that the transformation SπG can be viewed as a reflection about
the hyperplane perpendicular to ∣ψG ⟩.
In the plane spanned by {∣ψG ⟩, ∣ψB ⟩}, this
hyperplane reduces to the one-dimensional
space spanned by ∣ψB⟩.
In the figure SπG maps an arbitrary state∣ψ0⟩ in the {∣ψG ⟩, ∣ψB ⟩} subspace to

∣ψ1⟩ = SπG ∣ψ0⟩.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (Another Reflection)

Similarly, the transformation Sπ0 is a reflection about the hyperplane
orthogonal to ∣0⟩.
Since USπ0U

−1 differs from Sπ0 by a change of basis, it is a reflection
about the hyperplane orthogonal to U ∣0⟩.
The effect of this transformation on ∣ψ1⟩ is shown below:
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (The Negative Sign)

The final negative sign reverses the direction of the state vector.

Strictly speaking, this negative sign is
unnecessary, since it does nothing to
the quantum state.

It is a global phase change, so it is
physically irrelevant.

However, since we are drawing our pictures in the plane, not in
projective space, the negative sign makes it easier to see what is
going on.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (Rotation)

The concatenation of two reflections is a rotation of twice the angle
between the axes of the two reflections.

The two axes of reflection in this case are perpendicular to U ∣0⟩ and∣ψG ⟩ respectively.
So the angle between the axes of reflection is −β where cosβ = g0.
The two reflections perform a rotation by −2β.
The final negation amounts to a rotation by π.

Thus, each step Q performs a rotation by π − 2β.
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Grover’s Algorithm and Generalizations Amplitude Amplification

Geometry (Conclusion)

Each step Q performs a rotation by π − 2β.

Let θ = π
2 − β, the angle between U ∣0⟩ and ∣ψB⟩.

So sin θ = g0.
Each iteration of Q rotates the state by 2θ.

So the angle after i steps is (2i + 1)θ.
As before, the amplitude in the good states after i steps is given by

gi = sin ((2i + 1)θ).
We solve for the optimal number of iterations just as we did before.
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Subsection 3

Optimality of Grover’s Algorithm
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Optimality

Even before Grover discovered his algorithm, researchers had proved a
lower bound on the query complexity of any possible quantum
algorithm for exhaustive search.

It turns out that no quantum algorithm can use fewer than Ω(√N)
calls to the predicate UP .

Thus, Grover’s algorithm is optimal.

George Voutsadakis (LSSU) Quantum Computing July 2024 43 / 86



Grover’s Algorithm and Generalizations Optimality of Grover’s Algorithm

Speedup

The exponential size of the quantum state space gives naive hope
that quantum computers could provide an exponential speedup for all
computations.

A less naive guess would be that quantum computers can provide
exponential speedup for any computation that:

Can be parallelized;
Requires only a single answer output.

The optimality of Grover’s algorithm shows that even that hope is too
optimistic.

Exhaustive search is easily parallelized and requires a single answer.

But quantum computers can provide only a relatively small speedup.
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Role of Sπx

We showed how Sπx can be computed from UP .

We use Sπx as the interface to the oracle.

We do not lose any generality in doing so.

The process of computing Sπ

x from UP is reversible;
So any algorithm using Sπ

x could be rewritten in terms of UP and vice
versa.

The oracle UP provides us with the only way to access any
information about the element x we are searching for.
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Role of Sπx (Cont’d)

It follows that an arbitrary quantum search algorithm can be viewed
as an algorithm that alternates between:

Unitary transformations independent of x ;
Calls to Sπ

x .

That is, any quantum search algorithm can be written as

∣ψx
k ⟩ = UkS

π
x Uk−1S

π
x ⋯U1S

π
x U0∣0⟩,

where the Ui are unitary transformations that do not depend on x .

The argument does not change if we allow the use of additional
qubits.

We simply use I ⊗ Sπx instead of Sπx .

Moreover, as N is now larger, the algorithm will be less efficient.
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Independence from x

It is important to recognize that the algorithm must work no matter
which x is the solution.

For any particular x , there are transformations that find x very quickly.
We want an algorithm that finds x quickly no matter what x is.

Any search algorithm worth the name must return x with reasonable
probability, for all possible values of x .

We consider only quantum search algorithms that return x with at
least probability p = 1

2 .

It is easy for the reader to check that any value 0 < p < 1 results in a
O(√N) bound, just with a different constant.

We will show that if the state ∣ψx
k ⟩, obtained after k steps of the form

UiS
π
x , satisfies ∣⟨x ∣ψx

k ⟩∣2 ≥ 1
2 , for all x , then k must be Ω(√N).
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Intuition Behind the Proof

We require hat the algorithm work for any x .

So, if the oracle interface is Sπx , then the result of applying

UkS
π
x Uk−1S

π
x⋯U1S

π
x U0∣0⟩

must be a state ∣ψx
k ⟩ sufficiently close to ∣x⟩ so that x will be

obtained upon measurement with high probability.

Note that two elements of the standard basis ∣x⟩ and ∣y⟩ cannot be
closer than a certain constant.

So the final states of the algorithm for different Sπx and Sπy must be
sufficiently far apart.

George Voutsadakis (LSSU) Quantum Computing July 2024 48 / 86



Grover’s Algorithm and Generalizations Optimality of Grover’s Algorithm

Intuition Behind the Proof (Cont’d)

Now the Ui are all the same.

It follows that any difference in the result arises from calls to Sπx .

The algorithms all start with the same state U0∣0⟩.
We want to obtain a bound on k , the number of calls to the oracle
interface Sπx .

For this we need to bound from above the amount each step increases
the distance between ∣ψx

i ⟩ and ∣ψy
i
⟩.
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Intuition Behind the Proof (Cont’d)

In other words, we want to bound from above the amount this
distance can increase by:

Applying UiS
π

x to ∣ψx
i−1⟩;

Applying UiS
π

y to ∣ψy
i−1⟩.

Let ∣ψi⟩ be the state obtained by applying U0 up through Ui without
any intervening calls to Sπx .

To obtain the bound, we compare both ∣ψx
i ⟩ and ∣ψy

i
⟩ with ∣ψi ⟩.

We first give the details of how to use inequalities based on these
ideas to prove that Ω(√N) calls to the oracle are required.

Then we give detailed proofs of each of the inequalities.
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Phase-Adjustment

The proof considers the relation between three classes of quantum
states:

The desired result ∣x⟩;
The state of the computation ∣ψx

k ⟩ after k steps;
The state ∣ψk⟩ = UkUk−1⋯U1U0∣0⟩ obtained by performing the
sequence of transformations Ui without consulting the oracle.

The analysis simplifies if we sometimes consider, instead of ∣x⟩, a
phase-adjusted version of ∣x⟩,

∣x ′k⟩ = ei θxk ∣x⟩, ei θ
x
k = ⟨x ∣ψx

k ⟩∣⟨x ∣ψx
k
⟩∣ .
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Phase-Adjustment (Cont’d)

ei θ
x
k is chosen so that ⟨x ′k ∣ψx

k ⟩ is positive real for all k .

Indeed, we have

⟨x ′k ∣ψx
k ⟩ = e−i θ

x
k ⟨x ∣ψx

k ⟩
= ⟨x ∣ψx

k
⟩

∣⟨x ∣ψx
k
⟩∣⟨x ∣ψx

k ⟩
= ∣⟨x ∣ψx

k
⟩∣2

∣⟨x ∣ψx
k
⟩∣= ∣⟨x ∣ψx
k ⟩∣ ≥ 0.

∣x ′k⟩ differs from ∣x⟩ only in a phase.

So we have ∣⟨x ∣ψx
k ⟩∣2 ≥ 1

2 ⇒ ∣⟨x ′k ∣ψx
k ⟩∣2 ≥ 1

2

⇒ ⟨x ′k ∣ψx
k ⟩ ≥ 1√

2
.
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Distances Between States

We consider the distances between certain pairs of these states:

dkx = ∣∣ψx
k ⟩ − ∣ψk⟩∣, akx = ∣∣ψx

k ⟩ − ∣x ′k⟩∣, ckx = ∣∣x ′k⟩ − ∣ψk⟩∣.
We establish bounds involving the average of these distances squared,

Dk = 1

N
∑
x

d2
kx , Ak = 1

N
∑
x

a2kx , Ck = 1

N
∑
x

c2kx .

The reason for considering the sum, or equivalently the average, is
that the algorithm must efficiently find x for all possible x .

The proof relies on three inequalities involving Dk , Ak , and Ck .

Before proving the inequalities, we describe them and show how they
imply a lower bound on the number of calls to the oracle.
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The Three Inequalities

The first inequality bounds from above Ak , the average squared
distance between the state ∣ψx

k ⟩ obtained after k steps, and ∣x ′k⟩.
We will show that in order to obtain a success probability of∣⟨x ∣ψx

k ⟩∣2 ≥ 1
2 , we must have Ak ≤ 2 −√2.

The second inequality bounds from below Ck , the sum of the squared
distances between the vector ∣ψk⟩ and all basis vectors ∣j⟩.
We see that, as long as N ≥ 4, Ck ≥ 1.

The third inequality bounds the growth of Dk , the average squared
distance between ∣ψx

k ⟩ and ∣ψk⟩ as k increases, Dk ≤ 4k2

N
.

The three quantities dkx , akx and ckx are related as follows:

dkx = ∣∣ψx
k ⟩ − ∣ψk⟩∣ = ∣∣ψx

k ⟩ − ei θ
k
x ∣x⟩ + ei θ

k
x ∣x⟩ − ∣ψk⟩∣ ≥ akx − ckx .
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Averages and Number of Iterations

Using the Cauchy-Schwarz inequality, we obtain

Dk = 1
N ∑x d

2
kx≥ 1

N
(∑x a

2
kx − 2∑x akxckx +∑x c

2
kx)

≥ 1
N ∑x a

2
kx − 2

N

√(∑x a
2
kx
)(∑x c

2
kx
) + 1

N ∑x c
2
kx≥ Ak − 2

√
AkCk +Ck .

We make use of this inequality, together with

Ak ≤ 2 −√2, Ck ≥ 1, Dk ≤ 4k2

N
.

We bound 4k2

N
from below by a constant.
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Averages and Number of Iterations (Cont’d)

We use
Dk ≥ Ak − 2

√
AkCk +Ck

together with Ak ≤ 2 −√2, Ck ≥ 1 (for N ≥ 4) and Dk ≤ 4k2

N
.

We obtain

4k2

N
≥ Dk

≥ Ak − 2
√
AkCk + Ck= (√Ck −√Ak)2

≥ (1 −√2 −√2)2. (1 ≥ 2 −√2 ≥ Ak)

Thus, for N ≥ 4, and taking q = 1 −√2 −√2, at least
k ≥ q

2

√
N

iterations are required for success probability ∣⟨x ∣ψx
k ⟩∣2 ≥ 1

2 , for all x .
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The Inequality for Ak

By assumption, ∣⟨ψx
k ∣x⟩∣2 ≥ 1

2 .

By the choice of phase ei θ
x
k relating ∣x⟩ and ∣x ′k⟩, ⟨ψx

k ∣x ′k⟩ ≥ 1√
2
.

So
a2kx = ∣∣ψx

k ⟩ − ∣x ′k⟩∣2= ∣∣ψx
k ⟩∣2 − 2⟨x ′k ∣ψx

k ⟩ + ∣∣x ′k⟩∣2
≤ 2 −√2.

From this it follows that

Ak = 1

N
∑
x

a2kx ≤ 2 −√2.
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The Inequality for Ck

The terms c2kx can be bounded as follows:

c2kx = ∣∣x ′k⟩ − ∣ψk⟩∣2
= ∣ei θxk ∣x⟩ − ∣ψk⟩∣2
= ∣∣ψk⟩∣2 − ei θ

x
k ⟨ψk ∣x⟩ − ei θ

x
k ⟨ψk ∣x⟩ + ∣∣x⟩∣2

= 2 − 2Re(ei θxk ⟨ψk ∣x⟩)≥ 2 − 2∣⟨x ∣ψk ⟩∣.
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The Inequality for Ck (Cont’d)

We can now bound the average of these terms:

Ck = 1
N ∑x c

2
kx≥ 2 − 2

N ∑x ∣⟨x ∣ψk⟩∣≥ 2 − 2√
N

√∑x ∣x ∣ψk⟩∣2 (Cauchy-Schwarz)

= 2 − 2√
N
.

(∣ψk⟩ a unit vector and {∣x⟩} a basis)

Thus, Ck ≥ 1, as long as N ≥ 4.
Note that this argument made no assumption about ∣ψk⟩.
So this bound holds for any quantum state ∣ψ⟩,

1

N
∑
x

∣∣x⟩ − ∣ψ⟩∣2 ≥ 2 − 2√
N
.
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The Inequality for Dk

First, we bound how much the distance between ∣ψx
k ⟩ and ∣ψk⟩ can

increase each step.

Consider the following relation between dkx and dk+1,x ,

dk+1,x = ∣∣ψx
k+1⟩ − ∣ψk+1⟩∣= ∣Uk+1Sπx ∣ψx

k ⟩ −Uk+1∣ψk⟩∣= ∣Sπx ∣ψx
k ⟩ − ∣ψk⟩∣= ∣Sπx (∣ψx
k ⟩ − ∣ψk⟩) + (Sπx − I)∣ψk⟩∣

≤ ∣Sπx (∣ψx
k ⟩ − ∣ψk⟩)∣ + ∣(Sπx − I)∣ψk ⟩∣= dkx + 2∣⟨x ∣ψk ⟩∣.

This inequality shows that with each step the distance between ∣ψx
k ⟩

and ∣ψk⟩ can increase by at most 2∣⟨x ∣ψk ⟩∣.
Using this bound, we prove by induction that Dk = 1

N ∑x d
2
kx ≤ 4k2

N
.
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The Inequality for Dk (Cont’d)

Base Case: Let k = 0.
Then, for all x , ∣ψx

0 ⟩ = U0∣0⟩ = ∣ψ0⟩.
So d0x = 0. Therefore, D0 = 0.
Induction Step:

Dk+1 = 1
N ∑x d

2
k+1,x

≤ 1
N ∑x(dkx + 2∣⟨x ∣ψk ⟩∣)2= 1
N ∑x d

2
kx + 4

N ∑x ∣⟨x ∣ψk⟩∣2 + 4
N ∑x dkx ∣⟨x ∣ψk ⟩∣= Dk + 4

N
+ 4

N ∑x dkx ∣⟨x ∣ψk ⟩∣.
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The Inequality for Dk (Cont’d)

We obtained

Dk+1 ≤ Dk + 4

N
+ 4

N
∑
x

dkx ∣⟨x ∣ψk ⟩∣.
The Cauchy-Schwarz inequality gives

1
N ∑x dkx ∣⟨x ∣ψk ⟩∣ ≤ 1

N

√(∑x d
2
kx
)(∑x ∣⟨x ∣ψk⟩∣2)

= √
Dk

N
.

By the induction assumption Dk ≤ 4k2

N
.

So we have

Dk+1 ≤ Dk + 4

N
+ 4

√
Dk

N
≤ 4(k + 1)2

N
.
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Subsection 4

Derandomization and Amplitude Amplification
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Suggested Approached for Derandomization

Unlike Shor’s algorithm, Grover’s algorithm is not inherently
probabilistic.

With a little cleverness, Grover’s algorithm can be modified in such a
way that:

It is guaranteed to find a solution;
It still preserves the quadratic speedup.

More generally, amplitude amplification can be derandomized.

Brassard, Høyer and Tapp suggest two approaches:

In the first, each iteration rotates by an angle that is slightly smaller
than the one used previously;
The second changes only the last step to a smaller rotation.
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Approach 1: Modifying Each Step (Idea)

Suppose the angle θ in Grover’s algorithm (or amplitude
amplification) happened to be such that π

4θ − 1
2 is an integer.

In this case, after i = π
4θ − 1

2 iterations, the amplitude gi would be 1.

Accordingly, the algorithm would output a solution with certainty.

Recall that θ satisfies sin θ = √t = g0.
We hope to derandomize amplitude amplification for algorithm U

with success probability g0.

We modify U to obtain an algorithm U ′ with success probability
g ′0 < g0 such that, for θ′ satisfying sin θ′ = g ′0, the quantity

π

4θ′
− 1

2

is an integer.

George Voutsadakis (LSSU) Quantum Computing July 2024 65 / 86



Grover’s Algorithm and Generalizations Derandomization and Amplitude Amplification

Approach 1: Modifying Each Step

Intuitively, it seems as though it should not be hard to modify an
algorithm U so that it is less successful.

We must make sure that we can compute U ′ efficiently from U.

The trick is to allow the use of an additional qubit b.

We assume given an algorithm U with success probability g0 acting
on an n-qubit register ∣s⟩.
Let B be the single-qubit transformation

B =
¿ÁÁÀ1 − g ′0

g0
∣0⟩ +

¿ÁÁÀg ′0
g0
∣1⟩.

We define U ′ to be the transformation

U ⊗B

on an (n + 1)-qubit register ∣s⟩∣b⟩.
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Approach 1: Modifying Each Step (Cont’d)

Let G ′ be the set of basis states ∣x⟩⊗ ∣b⟩, with ∣x⟩ ∈ G , ∣b⟩ = ∣1⟩.
It may be checked that the initial success probability

∣PG ′U
′∣0⟩∣ = g ′0.

Perform amplitude amplification on an (n + 1)-qubit state, with:
U ′ for U ;
Sπ

G ′ for S
π

G ;
Iteration operator Q′ = −U ′Sπ

0 (U ′)−1Sπ

G ′ .

It succeeds with certainty after i = π
4θ′ − 1

2 steps.

This modified algorithm obtains a solution with certainty, using

O(√1
t
) calls to the oracle, at the cost of a single additional qubit.
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Approach 2: Modifying Only the Last Step

This approach results in a solution in O(√1
t
) time with certainty

without the need for an additional qubit.

The idea is to modify SπG and Sπ0 in the last step so that exactly the
desired final state is obtained.

We begin by analyzing general properties of transformations of the
form

Q(φ, τ) = −USφ0U−1SτG ,
where φ and τ are arbitrary angles and

S
φ
X
∣x⟩ = { eiφ∣x⟩, if ∣x⟩ ∈ X ,∣x⟩, if ∣x⟩ ∉ X .

We have showed how to implement Sφ
X
efficiently.
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Approach 2: An Equation

First, we show that, for any quantum state ∣v⟩,
US

φ
0U
−1∣v⟩ = ∣v⟩ − (1 − eiφ)⟨v ∣U ∣0⟩U ∣0⟩.

Write

∣v⟩ = N−1
∑
i=1
⟨v ∣U ∣i⟩U ∣i⟩ + ⟨v ∣U ∣0⟩U ∣0⟩.

Then

US
φ
0U
−1∣v⟩ = US

φ
0 (∑N−1

i=1 ⟨v ∣U ∣i⟩∣i⟩ + ⟨v ∣U ∣0⟩∣0⟩)
= U (∑N−1

i=1 ⟨v ∣U ∣i⟩∣i⟩ + ⟨v ∣Ueiφ∣0⟩∣0⟩)
= ∑N−1

i=1 ⟨v ∣U ∣i⟩U ∣i⟩ + ei φ⟨v ∣U ∣0⟩U ∣0⟩
= ∣v⟩ − (1 − eiφ)⟨v ∣U ∣0⟩U ∣0⟩.
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Approach 2: An Equation (Cont’d)

Using this result, we now can see the effect of

Q(φ, τ) = USφ0U−1SτG
on any superposition ∣v⟩ = g ∣vG ⟩ + b∣vB⟩ in the subspace spanned by∣vG ⟩ and ∣vB⟩.
We have

Q(φ, τ)∣v⟩ = g(−ei τ ∣vG ⟩ + eiφ(1 − ei φ)⟨vG ∣U ∣0⟩U ∣0⟩)
+b(−∣vB⟩ + (1 − ei φ)⟨vB ∣U ∣0⟩U ∣0⟩).

After s = ⌊ π4θ − 1
2⌋ iterations of amplitude amplification, we have the

state ∣ψs⟩ = sin ((2s + 1)θ)∣ψG ⟩ + cos ((2s + 1)θ)∣ψB⟩,
where sin θ = √t = g0.
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Approach 2: An Equation (Cont’d)

Applying Q(φ, τ) to the state ∣ψG ⟩, we obtain

Q(φ, τ)∣ψG ⟩ = −US
φ
0U
−1SτG ∣ψG ⟩

= −US
φ
0U
−1(ei τ ∣ψG ⟩)

= − ei τ ∣ψG ⟩ + (1 − eiφ)⟨ei τψG ∣U ∣0⟩U ∣0⟩
= − ei τ ∣ψG ⟩ + ei τ(1 − ei φ)⟨ψG ∣g0ψG + b0ψB⟩(g0ψG + b0ψB)
= ei τ ((1 − ei φ)g2

0 − 1)∣ψG ⟩
+ ei τ(1 − eiφ)g0b0∣ψB⟩).

Similarly, applying Q(φ, τ) to the state ∣ψB⟩, we obtain

Q(φ, τ)∣ψB ⟩ = (1 − eiφ)b0g0∣ψG ⟩ + ((1 − eiφ)b20 − 1)∣ψB⟩).
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Approach 2: An Equation (Cont’d)

So Q(φ, τ)∣ψ⟩ = g(φ, τ)∣ψG ⟩ + b(φ, τ)∣ψB ⟩, where
g(φ, τ) = sin ((2s + 1)θ)ei τ((1 − eiφ)g2

0 − 1)
+ cos ((2s + 1)θ)(1 − ei φ)b0g0

b(φ, τ) = sin ((2s + 1)θ)ei τ(1 − eiφ)g0b0
+ cos ((2s + 1)θ)((1 − eiφ)b20 − 1).

Our aim now is to show that there exist φ and τ such that if

Q(φ, τ) = USφ0U−1SτG
is applied as a final step, a solution is obtained with certainty.
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Approach 2: An Equation (Cont’d)

To show that φ and τ can be chosen so that Q(φ, τ)∣ψ⟩ has all of its
amplitude in the good states, we want b(φ, τ) = 0.
That is, we need

(sin ((2s + 1)θ)ei τ (1 − eiφ)g0b0)
+ cos ((2s + 1)θ)((1 − ei φ)b20 − 1) = 0.

Equivalently, since b0 = √1 − g2
0 ,

ei τ(1 − eiφ)g0√1 − g2
0 sin ((2s + 1)θ)= (1 − (1 − ei φ)(1 − g2

0 ) cos ((2s + 1)θ).
The right-hand side equals (g2

0 (1 − eiφ) + ei φ) cos ((2s + 1)θ).
So we want φ and τ to satisfy

cot ((2s + 1)θ) = ei τ(1 − ei φ)g0√1 − g2
0

g2
0 (1 − eiφ) + ei φ

.
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Approach 2: An Equation (Cont’d)

Once φ is chosen, we choose τ to make the right-hand side real.

To find φ, compute the magnitude squared of the right-hand side of
the preceding equation

g2
0 b

2
0(2 − 2cosφ)

g4
0 (2 − 2cosφ) − g2

0 (2 − 2cosφ) + 1
.

The maximum value of the magnitude squared, obtained when
cosφ = −1, is

4g2
0 b

2
0

4g4
0 − 4g2

0 + 1
= 4g2

0 b
2
0(2g2

0 − 1)2 .
So the maximum magnitude is

2g0b0
2g2

0 − 1
= 2g0b0
g2
0 − b20

= tan (2θ),
where sin θ = √t = g0 as before.
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Approach 2: An Equation (Cont’d)

We conclude that φ and τ can be chosen to make the right-hand side
of the any real number between [0, tan (2θ)].
By the geometric interpretation, after s = ⌊ π4θ − 1

2⌋ iterations, the state
has been rotated to within 2θ of the desired state.

We have shown that φ and τ can be chosen so that applying s

iterations of Q, followed by one application of Q(φ, τ), yields a
solution with certainty.
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Subsection 5

Unknown Number of Solutions
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The Case of Unknown t

Grover’s algorithm requires that we know the relative number of

solutions t = ∣G ∣
N

in order to determine how many times we should
apply the transformation Q.

More generally, amplitude amplification requires as input the success
probability t = ∣g0∣2 of U ∣0⟩.
We now sketch two approaches to handling cases in which we do not
know t.

The first approach repeats Grover’s algorithm multiple times, choosing
a random number of iterations of Q in each run.
It succeeds in finding a solution with high probability.
The second approach, called quantum counting, uses the quantum
Fourier transform to estimate t.

Both approaches require O(√N) calls to UP .
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Varying the Number of Iterations

Consider Grover’s algorithm applied to a problem with tN solutions in
a space of cardinality N.

When t is unknown, a simple strategy is to repeatedly execute
Grover’s algorithm with a number of iteration steps picked randomly
between 0 and π

4

√
N .

For large values of t, this simple approach is clearly not optimal.

Nevertheless, as we show, this simple strategy succeeds with at most
O(√N) calls to UP regardless of the value of t.

Previous results imply that the average probability of success for a run
with i iterations of Q, where i is randomly chosen between 0 and r , is
given by

Pr(i < r) = 1

r

r−1
∑
i=0

sin2 ((2i + 1)θ),
where sin θ =√t as before.
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Varying the Number of Iterations (Cont’d)

A plot of the average success probability for different values of r is
shown below.

The graph will be identical for all values of t as long as t ≪ 1.

For comparison, the graph of the success probability after exactly r

iteration steps of Grover’s algorithm is also given.
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Varying the Number of Iterations (Cont’d)

It is easy to see from the graph that there is a constant c , such that

Pr(i < r) > c , for all r ≥ π
4

√
1
t
.

Suppose 1
t
≤ N, guaranteeing at least one solution.

Then, if we choose r = π
4

√
N , then

Pr (i < π
4

√
N) ≥ c .

Thus, a single run of the algorithm, where the number of iterations of
Q is chosen randomly between 0 and π

4

√
N , finds the solution with

probability at least c .

The expected number of calls to the oracle during such a run is
therefore O(√N).
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Varying the Number of Iterations (Cont’d)

Take any probability c ′ > c .
Then, there is a constant K , such that if Grover’s algorithm is run K

times, with the number of iterations for each run chosen as above,
then a solution will be found with probability c ′.

Thus, for any c ′, the total number of times Q is applied is O(√N).
Consequently, for any c ′, the total number of calls to the oracle is
O(√N).
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Quantum Counting

Quantum counting takes a more quantum approach:

Create a superposition of results for different numbers of applications
of Q;
Then use the quantum Fourier transform on that superposition to
obtain a good estimate for the relative number of solutions t.

The same strategy can be used for the amplitude amplification
algorithm to estimate the success probability t of U ∣0⟩.
This approach also has query complexity O(√N).
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Quantum Counting (Cont’d)

Let U and Q be as defined in the amplitude amplification algorithm.

Define a transformation RepeatQ, with input ∣k⟩ and ∣ψ⟩, that
performs k iterations of Q on ∣ψ⟩:

RepeatQ ∶ ∣k⟩⊗ ∣ψ⟩ → ∣k⟩⊗Qk ∣ψ⟩.
This transformation is more powerful than the classical ability to
repeat Q because RepeatQ can be applied to a superposition.

We apply RepeatQ to a superposition of all k <M = 2m tensored
with the state U ∣0⟩ to obtain

1√
M

M−1
∑
k=0
∣k⟩⊗U ∣0⟩→ 1√

M

M−1
∑
k=0
∣k⟩⊗ (gk ∣ψG ⟩ + bk ∣ψB⟩),

where we ignore for the moment how M was chosen.
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Quantum Counting (Cont’d)

A measurement of the right register in the standard basis produces a
state ∣x⟩ that is one of the following:

A good state (orthogonal to ∣ψB ⟩);
A bad state (orthogonal to ∣ψG ⟩).

Thus, the state of the left register collapses to either of:

∣ψ⟩ = C M−1
∑
k=0

bk ∣k⟩ or ∣ψ⟩′ = C ′M−1∑
k=0

gk ∣k⟩.
Let us suppose the former state ∣ψ⟩ is obtained.
A similar reasoning applies for the latter case.

Since, by a previous section, bk = cos ((2k + 1)θ), we get

∣ψ⟩ = C M−1
∑
k=0

cos ((2k + 1)θ)∣k⟩.
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Quantum Counting (Cont’d)

Apply the quantum Fourier transform to this state to obtain

F ∶ C
M−1
∑
k=0

bk ∣k⟩→ M−1
∑
j=0

Bj ∣j⟩.
We explained that, for a cosine function of period π

θ
, most of the

amplitude is in those Bj that are close the single value Mθ
π
.

If we measure the state now, from the measured value ∣j⟩ we obtain,
with high probability, a good approximation of θ by taking θ = πj

M
.

Thus, with high probability, the value t =√sin θ is a good
approximation for:

The ratio of solutions in the case of Grover’s algorithm;
The success probability of U ∣0⟩ in the case of amplitude amplification.
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Quantum Counting (Cont’d)

There is, of course, one issue remaining.

We do not know a priori a proper value for M.

This problem can be addressed by repeating the algorithm for
increasing M until a meaningful value for j is read.

We know that θ = j

M
π.

So, for a given θ:

We will likely read an integer value j ∼ θM
π
;

j will be measured as 0 with high probability when M is chosen too
small for the given problem.
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