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First Properties of R Existence of GLBs

Existence of GLBs

In the axiomatization of R, we assumed the existence of least upper
bounds (completeness axiom).

The existence of greatest lower bounds then follows:

Theorem (Existence of GLBs)

If A is a nonempty subset of R that is bounded below, then A has a
greatest lower bound:

inf A = − sup (−A).

The set −A = {−a : a ∈ A} is nonempty and bounded above. Thus,
it has a least upper bound by the completeness axiom. By a
preceding proposition, −(−A) = A has a greatest lower bound and
inf A = − sup (−A).
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First Properties of R Existence of GLBs

A Useful Corollary

Corollary

inf

{

1

n
: n ∈ P

}

= 0.

Let A = {1
n
: n ∈ P}.

We know that A is bounded below by 0, so A has a greatest lower
bound a and 0 ≤ a.
On the other hand, a ≤ 1

2n , for all positive integers n, so 2a is also a
lower hound for A. It follows that 2a ≤ a, whence, a ≤ 0.

This proves that a = 0.
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First Properties of R Archimedean Property
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First Properties of R Archimedean Property

Archimedean Ordered Fields

In every ordered field, 1 < 2 < 3 < . . ., therefore, 1 > 1
2 > 1

3 > . . ..
For every y > 0, we thus have y > y

2 > y
3 > . . ..

As a result, we are expecting the elements y
n
(n = 1, 2, 3, . . .) to be

“arbitrarily small” in the sense that, for every x > 0, there is an n for
which y

n
is smaller than x .

In actuality, there exist ordered fields in which it can happen that
y
n
≥ x > 0 for all n, i.e., the elements y

n
(n = 1, 2, 3, . . .) are

“buffered away from 0” by the element x .

The property at the heart of such considerations is the following:

Definition (Archimedean Ordered Field)

An ordered field is said to be Archimedean if, for each pair of elements
x , y with x > 0, there exists a positive integer n such that nx > y . (If x is
thought of as a “unit of measurement”, then each element y can be
surpassed by a sufficiently large multiple of the unit of measurement.)
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First Properties of R Archimedean Property

R is Archimedean

Theorem

The field R of real numbers is Archimedean.

Let x and y be real numbers, with x > 0.

If y < 0, then 1x > y .
Assuming y > 0, we seek a positive integer n, such that 1

n
< x

y
. The

alternative is that 0 < x
y
≤ 1

n
, for every positive integer n. This is

contrary to inf { 1
n
: n ∈ P} = 0.

Example: The field Q(t) of rational forms over Q is not Archimedean.

In fact, the completeness property implies the Archimedean property,
but the converse statement fails:
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First Properties of R Archimedean Property

Q is Archimedean but Not Complete

Theorem

The field Q of rational numbers is Archimedean but not complete.

The Archimedean property for Q is an immediate consequence of the
preceding theorem (since Q is a subfield of R).

We have to exhibit a nonempty subset A of Q that is bounded above
but has no least upper bound in Q. The core of the proof is the fact
that 2 is not the square of a rational number. Let

A = {r ∈ Q : r > 0 and r2 < 2}.
Since 1 ∈ A, A 6= ∅. If r ∈ Q and r ≥ 2 then r2 ≥ 4 > 2, so r 6∈ A,
i.e., r < 2, for all r ∈ A, whence A is bounded above. Now we show
that:

A has no largest element;
There is no smallest element r in Q, with r2 > 2;
We conclude that A has no least upper bound in Q.
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First Properties of R Archimedean Property

A has no Largest Element

We show that A = {r ∈ Q : r > 0 and r2 < 2} has no largest element.

Given any element r of A, we produce a larger element of A. It
suffices to find a positive integer n, such that r + 1

n
∈ A, i.e.,

(r + 1
n
)2 < 2. Expand the square r2 + 2r

n
+ 1

n2
< 2. Multiply both

sides by n > 0: nr2 + 2r + 1
n
< 2n. Rearrange: 2r + 1

n
< n(2− r2).

Since 2− r2 > 0, the Archimedean property yields a positive integer
n, such that n(2− r2) > 2r + 1. But 2r + 1 > 2r + 1

n
, so

n(2− r2) > 2r + 1
n
holds.
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First Properties of R Archimedean Property

There is no smallest r in Q, with r
2 > 2

There are positive elements r of Q, such that r2 > 2 (e.g., r = 2).
We show that there is no smallest such element r .
Given any r ∈ Q, with r > 0 and r2 > 2, we shall produce a positive
element of Q, that is smaller than r but whose square is also larger
than 2. It suffices to find a positive integer n such that r − 1

n
> 0 and

(r − 1
n
)2 > 2, equivalently, nr > 1 and n(r2 − 2) > 2r − 1

n
. Since

r > 0 and r2 − 2 > 0, the Archimedean property yields a positive
integer n such that both nr > 1 and n(r2 − 2) > 2r (choose an n for
each inequality, then take the larger of the two). But 2r > 2r − 1

n
, so

the required conditions are verified.
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First Properties of R Archimedean Property

A has no LUB in Q

We assert that A = {r ∈ Q : r > 0 and r2 < 2} has no least upper
bound in Q.

Assume to the contrary that A has a least upper bound t in Q. We
know that t2 6= 2 (2 is not the square of a rational number) and
t > 0 (because 1 ∈ A). Let us show that each of the possibilities
t2 < 2 and t2 > 2 leads to a contradiction.

If t2 < 2, then t ∈ A. But then t would be the largest element of A,
contrary to our earlier observation that no such element exists.
If t2 > 2, then, as observed above, there exists a rational number s,
such that 0 < s < t and s2 > 2. Since t is supposedly the least upper
bound of A and s is smaller than t, s cannot be an upper bound for A.
This means that there exists an element r of A with s < r . But then
s2 < r2 < 2, contrary to s2 > 2.
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First Properties of R Bracket Function

Subsection 3

Bracket Function

George Voutsadakis (LSSU) Real Analysis August 2014 13 / 40



First Properties of R Bracket Function

Uniqueness of Bracket

A useful application of the Archimedean property is that every real
number can be sandwiched between a pair of successive integers:

Theorem

For each real number x , there exists a unique integer n such that
n ≤ x < n + 1.

Uniqueness: The claim is that a real number x cannot belong to the
interval [n, n + 1) for two distinct values of n.
If m and n are distinct integers, say m < n, then n−m is an integer
and is > 0. Therefore n −m ≥ 1. Thus, m + 1 ≤ n and it follows
that the intervals [m,m + 1) and [n, n + 1) can have no element x in
common.
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First Properties of R Bracket Function

Existence of Bracket

Existence: Let x ∈ R. By the Archimedean property, there exists a
positive integer j such that j · 1 > −x , that is, j + x > 0. It will
suffice to find an integer k such that j + x ∈ [k , k + 1): This would
imply that x ∈ [k − j , k − j + 1). Changing notation, we can suppose
that x > 0. Let S = {k ∈ P : k · 1 > x}.

By the Archimedean property, S is nonempty;
So S has a smallest element m by the “well-ordering principle”.

Since m ∈ S , we have m > x .
If m = 1, then 0 < x < 1 and the assertion is proved with n = 0.
If m > 1, then m − 1 is a positive integer smaller than m, so it cannot
belong to S . This means that m − 1 ≤ x . Thus, x ∈ [m − 1,m) and
n = m− 1 is the required integer.

Definition (Bracket Function)

The integer n is denoted [x ] and the function R → Z defined by x 7→ [x ]
is called the bracket function (or the greatest integer function, since
[x ] is the largest integer that is ≤ x).
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First Properties of R Density of the Rationals

Subsection 4

Density of the Rationals

George Voutsadakis (LSSU) Real Analysis August 2014 16 / 40



First Properties of R Density of the Rationals

Density of Rationals

Between any two reals, there is a rational:

Theorem (Density of Rationals)

If x and y are real numbers such that x < y , then there exists a rational
number r , such that x < r < y .

Since y − x > 0, by the Archimedean property, there exists a positive
integer n such that n(y − x) > 1, i.e., 1

n
< y − x . Think of 1

n
as a

“unit of measurement”, small enough for the task at hand. We find a
multiple of 1

n
that lands between x and y .

Let m = [nx ]. Then m ≤ nx < m + 1. Hence m
n
≤ x and

x < m+1
n

= m
n
+ 1

n
≤ x + 1

n
< x + (y − x) = y , so r = m+1

n
meets

the requirements of the theorem.
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First Properties of R Density of the Rationals

Irrational Numbers

The conclusion of the theorem is expressed by saying that the rational
field Q is everywhere dense in R.

There are “lots” of rational numbers, but are there any real numbers
that are not rational?

The answer is yes: The set A = {r ∈ Q : r > 0 and r2 < 2} is
nonempty and bounded above, so it has a least upper bound u in R

by completeness. If u were rational, then it would be a least upper
bound for A in the ordered field Q, contrary to what we proved.

Definition (Irrational Numbers)

A real number that is not rational is called an irrational number. Thus,
the irrational numbers are the elements of the difference set
R−Q = {x ∈ R : x 6∈ Q}.
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First Properties of R Monotone Sequences

Subsection 5

Monotone Sequences
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First Properties of R Monotone Sequences

Sequences

Definition (Sequence)

If X is a set and if, for each positive integer n, an element xn of X is
given, we say that we have a sequence of elements of X , or “a sequence
in X”, whose n-th term is xn.

Various notations are used to indicate sequences, for example

(xn), (xn)n∈P, (xn)n≥1, (xn)n=1,2,3,....

Informally, a sequence of elements of a set is an unending list
x1, x2, x3, . . . of (not necessarily distinct) elements of the set.

Formally, it is a function f : P → X , where we write xn instead of
f (n) for the element of X corresponding to the positive integer n.

Another notation that stresses the functional aspect of a sequence:
n 7→ xn, n ∈ P.

In the notation (xn), the integers n are called the indices.

Sometimes index sets other than P are appropriate, as, for example,
(an)n∈N for the coefficients of a power series

∑∞
n=0 anx

n.
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First Properties of R Monotone Sequences

Increasing and Decreasing Sequences

Definition (Increasing/Decreasing Sequence)

A sequence (an) in R is said to be:

increasing if a1 ≤ a2 ≤ a3 ≤ · · ·, i.e., if an ≤ an+1, for all n ∈ P;

strictly increasing if an < an+1, for all n;

decreasing if a1 ≥ a2 ≥ a3 ≥ · · ·;
strictly decreasing if an > an+1, for all n.

A sequence that is either increasing or decreasing is said to be
monotone; more precisely, one speaks of sequences that are
“monotone increasing” or “monotone decreasing”.

If (an) is an increasing sequence, we write an ↑, and if it is a
decreasing sequence we write an ↓ (no special notation is offered for
“strictly monotone” sequences.)
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First Properties of R Monotone Sequences

Suprema and Infima of Monotone Sequences

Definition (Supremun and Infimum of Monotone Sequences)

If (an) is an increasing sequence in R, such that A = {an : n ∈ P} is
bounded above, and if a = supA, then we write an ↑ a.

Similarly, an ↓ a means that (an) is a decreasing sequence, the set
A = {an : n ∈ P} is bounded below, and a = inf A.

Example: 1
n
↓ 0:

The sequence ( 1
n
) is decreasing;

inf { 1
n
: n ∈ P} = 0.

Example: If 0 < c < 1, then the sequence of powers (cn) is strictly
decreasing and cn ↓ 0:

(cn) is strictly decreasing since 0 < c < 1 implies 0 < c2 < c implies
0 < c3 < c2 etc.
Let a = inf {cn : n ∈ P}. We know that a ≥ 0 and cn ↓ a. Now
a ≤ cn+1 implies a

c
≤ cn, for all n. It follows that a

c
≤ a, whence

a(1− c) ≤ 0 and, therefore, a ≤ 0, which gives a = 0.
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First Properties of R Monotone Sequences

Properties of Infima and Suprema of Monotone Sequences

Theorem

If an ↑ a and bn ↑ b, then:

(i) an + bn ↑ a + b;

(ii) −an ↓ −a;

(iii) an + c ↑ a + c , for every real number c .

(i) It is clear that (an + bn) is an increasing sequence. Moreover, it is
bounded above by a+ b. To show that a+ b is the least upper bound,
suppose an + bn ≤ c , for all n. We have to show that a + b ≤ c , i.e.,
a ≤ c − b. Given any index m, it is enough to show that am ≤ c − b,
i.e., b ≤ c − am. Thus, given any index n, we need only show that
bn < c − am, i.e, am + bn ≤ c . Indeed, if p is the larger of m and n

then am + bn ≤ ap + bp ≤ c , by the assumed monotonicity.

(ii) This follows from inf {−an} = − sup {an}.
(iii) This is a special case of (i), with bn = c , for all n.
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First Properties of R Theorem on Nested Intervals

Subsection 6

Theorem on Nested Intervals
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First Properties of R Theorem on Nested Intervals

Nested Intervals

A sequence of intervals (In) of R is said to be nested if
I1 ⊇ I2 ⊇ I3 ⊇ · · ·. As the intervals “shrink” with increasing n, there
is no assurance that there is any point that belongs to every In.

Example: If In = (0, 1
n
], then there is no point belonging to all In.

However, if the intervals are closed, we can be sure that there is at
least one survivor:

Theorem (Sequence of Nested Closed Intervals)

If (In) is a nested sequence of closed intervals, then the intersection of the
In is nonempty. More precisely, if In = [an, bn], where an ≤ bn and
I1 ⊇ l2 ⊇ I3 ⊇ · · ·, and if a = sup {an : n ∈ P}, b = inf {bn : n ∈ P}, then
a ≤ b and

⋂∞
n=1[an, bn] = [a, b].
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First Properties of R Theorem on Nested Intervals

Proof of the Theorem

The notation
⋂∞

n=1[an, bn] means the intersection
⋂S of the set S of

all the intervals [an, bn].

From [an+1, bn+1] ⊆ [an, bn] we see that it follows that the sequence
(an) is increasing and bounded above (for example by b1). On the
other had, (bn) is decreasing and bounded below (for example by a1).
If a and b are defined as in the statement of the theorem, we have
an ↑ a and bn ↓ b. By the preceding theorem (and its “dual”) we have
−bn ↑ −b, so an + (−bn) ↑ a + (−b). Therefore, bn − an ↓ b − a.
Since bn − an ≥ 0, for all n, it follows that b − a ≥ 0. Then
an ≤ a ≤ b ≤ bn, whence [a, b] ⊆ [an, bn], for all n, and, therefore,
[a, b] ⊆ ⋂∞

n=1[an, bn].
Conversely, if x belongs to every [an, bn] then an ≤ x ≤ bn, for all n,
and, therefore, a ≤ x ≤ b showing that

⋂∞
n=1[an, bn] ⊆ [a, b].
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First Properties of R Theorem on Nested Intervals

Theorem on Nested Intervals

The following corollary is known as the Theorem on Nested

Intervals:

Corollary (Theorem on Nested Intervals)

Suppose In = [an, bn], where an ≤ bn and I1 ⊇ l2 ⊇ I3 ⊇ · · ·. Suppose,
also, that inf (bn − an) = 0. Then

⋂∞
n=1[an, bn] = {c}, where c = a = b,

with a = sup {an : n ∈ P}, b = inf {bn : n ∈ P}.

As shown in the proof of the theorem, bn − an ↓ b− a. By hypothesis,
bn − an ↓ 0, so b = a and

⋂∞
n=1[an, bn] = [a, a] = {a}.

A surprising corollary is a nonconstructive proof of the existence of
irrational numbers.
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First Properties of R Dedekind Cut Property

Subsection 7

Dedekind Cut Property
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First Properties of R Dedekind Cut Property

Dedekind Cuts

Definition (Dedekind Cut)

A cut (or Dedekind cut) of the real field R is a pair (A,B) of nonempty
subsets of R, such that (a) every real number belongs to either A or B and
(b) a < b, for all a ∈ A and b ∈ B . In symbols, A 6= ∅, B 6= ∅, R = A ∪B ,
a < b, a ∈ A, b ∈ B . (It follows from the latter property that A ∩ B = ∅.)

Examples: If γ ∈ R and

A = {x ∈ R : x ≤ γ}, B = {x ∈ R : x > γ},
then (A,B) is a cut of R. Note that A has a largest element but B
has no smallest.

The pair
A = {x ∈ R : x < γ}, B = {x ∈ R : x ≥ γ}

also defines a cut of R. Here, B has a smallest element but A has no
largest.
The key fact about cuts of R is that there are no other examples.
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First Properties of R Dedekind Cut Property

Uniqueness of γ

Theorem

If (A,B) is a cut of R, then there exists a unique real number γ, such that
either

(i) A = {x ∈ R : x ≤ γ} and B = {x ∈ R : x > γ}, or
(ii) A = {x ∈ R : x < γ} and B = {x ∈ R : x ≥ γ}.

Uniqueness: The number γ is uniquely determined by the property of
being either the largest element of A or the smallest element of B ,
according as case (i) or case (ii) holds.
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First Properties of R Dedekind Cut Property

Existence of γ

Existence: Note that A is bounded above (by any element of B) and
B is bounded below (by any element of A). Let α = supA, β = inf B .
If a ∈ A, then a < b, for all b ∈ B , whence a ≤ β. Since a ∈ A is
arbitrary, α ≤ β. In fact α = β, for if α < β, then any number in the
gap between α and β would be too large to belong to A and too
small to belong to B , which would contradict R = A ∪ B . Write γ for
the common value of α and β. By assumption, γ must belong to
either A or B .

(i) Case 1: γ ∈ A. We have A ⊆ {x ∈ R : x ≤ γ}, B ⊆ {x ∈ R : x > γ}:
The first inclusion follows from γ = supA. The second inclusion
follows from γ = inf B and the fact that γ ∈ B is ruled out by γ ∈ A.
These imply that both inclusions are actually equalities: if x ≤ γ then
necessarily x ∈ A. The alternative x ∈ B is unacceptable because it
would imply x > γ.

(ii) Case 2: γ ∈ B. In this case, a similar argument shows that the other
pair of formulas hold.
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First Properties of R Square Roots
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First Properties of R Square Roots

Uniqueness of Square Roots

Theorem

Every positive real number has a unique positive square root. That is, if
c ∈ R, c > 0, then there exists a unique x ∈ R, x > 0, such that x2 = c .

Uniqueness: If x and y are positive real numbers such that
x2 = c = y2, then 0 = x2 − y2 = (x + y)(x − y) and x + y > 0,
whence x − y = 0, i.e., x = y .
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First Properties of R Square Roots

Existence of Square Roots

Existence: Given c ∈ R, c > 0, the strategy is to construct a cut
(A,B) of R for which the γ of the preceding theorem satisfies γ2 = c .

Let
A = {x ∈ R : x ≤ 0} ∪ {x ∈ R : x > 0 and x2 < c},

B = {x ∈ R : x > 0 and x2 ≥ c}.
Then A 6= ∅, B 6= ∅ (c + 1 ∈ B) and A ∪ B = R. Moreover, if a ∈ A
and b ∈ B , then a < b:

If a ≤ 0, this is trivial.
If a > 0, then a2 < c ≤ b2 implies a < b.

In summary, (A,B) is a cut of R. Let γ be the real number that
defines the cut.
Note that A contains numbers > 0:

If c > 1 then 1
2 ∈ A (because 1

4 < 1 ≤ c).
If 0 < c < 1, then c ∈ A (because c2 < c).

It follows that γ > 0.
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First Properties of R Square Roots

Existence (Cont’d)

Next, we assert that γ ∈ B . By the arguments in the preceding
section, we need only show that A has no largest element.
Assuming a ∈ A, we find a larger element of A.

If a ≤ 0, then any positive element of A will do.
Suppose a > 0. We know that a2 < c . It will suffice to find a positive
integer n, such that (a+ 1

n
)2 < c . The existence of such an n is due to

the Archimedean Property applied to n(c − a2) > 2a+ 1 ≥ 2a+ 1
n
.

We now know that A = {x ∈ R : x < γ}, B = {x ∈ R : x ≥ γ}.
Since γ ∈ B , we have γ2 ≥ c . It remains only to show that γ2 ≤ c ,
i.e., γ2 − c ≤ 0.
By the Archimedean property, choose a positive integer N such that
Nγ > 1. For every integer n ≥ N, we have 1

n
≤ 1

N
< γ, so γ − 1

n
> 0.

Since γ − 1
n
belongs to A, it follows that (γ − 1

n
)2 < c , whence

γ2 − c < 2γ
n
− 1

n2
< 2γ

n
. Thus, γ

2−c
2γ < 1

n
, for all n ≥ N, and a fortiori

also for 1 ≤ n < N. Consequently, γ
2−c
2γ ≤ inf {1

n
: n ∈ P} = 0. Since

2γ > 0, we conclude that γ2 − c ≤ 0.
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First Properties of R Square Roots

Definition of Square Root

Definition (Square Root)

If c ∈ R, c > 0, then the unique x ∈ R, x > 0, such that x2 = c is called
the square root of c and is denoted

√
c . We also define

√
0 = 0.

It follows by the theorem that every nonnegative real number has a
unique nonnegative square root.
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First Properties of R Absolute Value

Subsection 9

Absolute Value
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First Properties of R Absolute Value

Absolute Value and Basic Properties

Definition (Absolute Value)

The absolute value of a real number a is the nonnegative real number |a|
defined as follows:

|a| =
{

a, if a ≥ 0
−a, if a ≤ 0

Theorem (Properties of the Absolute Value)

For real numbers a, b, c , x ,

(1) |a| ≥ 0.

(2) |a|2 = a2.

(3) Properties (1) and (2) characterize
|a|: if x ≥ 0 and x2 = a2, then
x = |a|.

(4) |a| = 0 ⇔ a = 0; |a| > 0 ⇔ a 6= 0.

(5) |a| = |b| ⇔ a2 = b2 ⇔ a = ±b.

(6) | − a| = |a|.
(7) |ab| = |a||b|.
(8) −|a| ≤ a ≤ |a|.
(9) |x | ≤ c ⇔ −c ≤ x ≤ c .

(10) |a + b| ≤ |a|+ |b|.
(11) ||a| − |b|| ≤ |a − b|.
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First Properties of R Absolute Value

Proof of the Absolute Value Properties

(1) |a| ≥ 0, (2) |a|2 = a2 and (4) |a| = 0 iff a = 0 and |a| > 0 iff
a 6= 0 are obvious from the definition of absolute value.

(3) If x ≥ 0 and x2 = a2, that is, x2 = |a|2, then x = |a|, by a previous
theorem.
(5) and (6) follow easily from (1)-(3).

(7) If x = |a||b|, then x2 = |a|2|b|2 = a2b2 = (ab)2, whence x = |ab|, by
(3).

(8) If a ≥ 0, then −|a| = −a ≤ 0 ≤ a = |a|. If a ≤ 0, then
−|a| = −(−a) = a ≤ 0 ≤ |a|.

(9) If −c ≤ x ≤ c , then both −x ≤ c and x ≤ c . But |x | is either x or
−x , so |x | ≤ c . Conversely, if |x | ≤ c , then −c ≤ −|x | ≤ x ≤ |x | ≤ c .

(10) Addition of the inequalities −|a| ≤ a ≤ |a|, −|b| ≤ b ≤ |b| yields
−(|a|+ |b|) ≤ a + b ≤ |a|+ |b|. So |a + b| ≤ |a|+ |b| by (9).

(11) Let x = |a| − |b|. Then |a| = |(a − b) + b| ≤ |a − b|+ |b|, whence
x ≤ |a − b|. Interchanging a and b, we have −x ≤ |b − a| = |a − b|,
and, hence, |x | ≤ |a − b|.
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First Properties of R Absolute Value

Distance Between Real Numbers

|a| may be interpreted as the distance from the origin to the point a.

Example: | ± 5| = 5 means that either of the points labeled 5 and −5
has distance 5 from the origin.

Definition (Distance)

For real numbers a, b the distance from a to b is defined to be |a − b|.
We also write d(a, b) = |a − b|. The function d : R×R → R defined by
this formula is called the distance function on R.

Example: If a = −2 and b = 5, then |a − b| = | − 2− 5| = 7.
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