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First Properties of R Existence of GLBs

Subsection 1

Existence of GLBs
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First Properties of R Existence of GLBs

Existence of GLBs

@ In the axiomatization of IR, we assumed the existence of least upper
bounds (completeness axiom).

o The existence of greatest lower bounds then follows:

Theorem (Existence of GLBs)

If A is a nonempty subset of R that is bounded below, then A has a
greatest lower bound:

inf A= —sup(—A).

o Theset —A={—a:ac A} is nonempty and bounded above. Thus,
it has a least upper bound by the completeness axiom. By a

preceding proposition, —(—A) = A has a greatest lower bound and
inf A= —sup(—A).
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First Properties of R Existence of GLBs

A Useful Corollary

Corollary

inf{l:nelP}zo.
n
oLt A={L:neP}.

o We know that A is bounded below by 0, so A has a greatest lower
bound a and 0 < a.

@ On the other hand, a < % for all positive integers n, so 2a is also a
lower hound for A. It follows that 2a < a, whence, a < 0.

This proves that a = 0.
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First Properties of R Archimedean Property

Subsection 2

Archimedean Property
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First Properties of R | Archimedean Property

Archimedean Ordered Fields

@ In every ordered field, 1 <2 < 3 < ..., therefore, 1 > % > % >
For every y > 0, we thus have y > ¥ > £ > ...

o As a result, we are expecting the elements ¥ (n=1,2,3,...) to be
“arbitrarily small” in the sense that, for every x > 0, there is an n for
which % is smaller than x.

o In actuality, there exist ordered fields in which it can happen that
£ > x>0 forall n, ie., the elements £ (n=1,2,3,...) are
“buffered away from 0" by the element x.

@ The property at the heart of such considerations is the following:

Definition (Archimedean Ordered Field)

An ordered field is said to be Archimedean if, for each pair of elements
x,y with x > 0, there exists a positive integer n such that nx > y. (If x is
thought of as a “unit of measurement”, then each element y can be
surpassed by a sufficiently large multiple of the unit of measurement.)
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First Properties of R Archimedean Property

R is Archimedean

The field R of real numbers is Archimedean.

o Let x and y be real numbers, with x > 0.

o If y <0, then 1x > y.
o Assuming y > 0, we seek a positive integer n, such that % < }5/ The

alternative is that 0 < § < % for every positive integer n. This is
contrary to inf{1: n e P} =0.
o Example: The field Q(t) of rational forms over Q is not Archimedean.

o In fact, the completeness property implies the Archimedean property,
but the converse statement fails:
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First Properties of R | Archimedean Property

Q is Archimedean but Not Complete

The field @ of rational numbers is Archimedean but not complete.

@ The Archimedean property for @ is an immediate consequence of the
preceding theorem (since Q is a subfield of R).
We have to exhibit a nonempty subset A of @ that is bounded above
but has no least upper bound in Q. The core of the proof is the fact
that 2 is not the square of a rational number. Let

A={reQ:r>0and r* <2}

Sincelc A, A#£(. IfreQandr>2then r?>4>2 sordA,
i.e., r <2, for all r € A, whence A is bounded above. Now we show
that:

o A has no largest element;

o There is no smallest element r in Q, with r> > 2;

@ We conclude that A has no least upper bound in Q.
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First Properties of R Archimedean Property

A has no Largest Element

o We show that A= {r € Q: r > 0 and r? < 2} has no largest element.

Given any element r of A, we produce a larger element of A. It
suffices to find a positive integer n, such that r + % EA, e,

(r+ 1)2 < 2. Expand the square o= 2’ + ,112 < 2. Multiply both
sides by n > 0: nr® +2r+21 <2n. Rearrange 2r+1 < n(2-r?).
Since 2 — r? > 0, the Archlmedean property yields a p05|t|ve integer
n, such that n(2—r?) >2r + 1. But2r+1>2r+1, so
n(2—r?)>2r+1 holds.
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First Properties of R Archimedean Property

There is no smallest r in @, with r?> > 2

o There are positive elements r of Q, such that r> > 2 (e.g., r = 2).
We show that there is no smallest such element r.
Given any r € Q, with r > 0 and r? > 2, we shall produce a positive
element of Q, that is smaller than r but whose square is also larger
than 2. It suffices to find a positive integer n such that r — % > 0 and
(r—1)2 > 2, equivalently, nr > 1 and n(r*> —2) > 2r — . Since
r>0and r> — 2 > 0, the Archimedean property yields a positive
integer n such that both nr > 1 and n(r?> — 2) > 2r (choose an n for
each inequality, then take the larger of the two). But 2r > 2r — % o)
the required conditions are verified.
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First Properties of R Archimedean Property

A has no LUB in Q

o We assert that A={reQ:r>0and r? < 2} has no least upper
bound in Q.

Assume to the contrary that A has a least upper bound t in Q. We
know that t? # 2 (2 is not the square of a rational number) and

t > 0 (because 1 € A). Let us show that each of the possibilities
t?> < 2 and t? > 2 leads to a contradiction.

o If t? < 2, then t € A. But then t would be the largest element of A,
contrary to our earlier observation that no such element exists.

o If t2 > 2, then, as observed above, there exists a rational number s,
such that 0 < s < t and s? > 2. Since t is supposedly the least upper
bound of A and s is smaller than ¢, s cannot be an upper bound for A.
This means that there exists an element r of A with s < r. But then
s? < r? < 2, contrary to s > 2.
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First Properties of R Bracket Function

Subsection 3

Bracket Function
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First Properties of R Bracket Function

Uniqueness of Bracket

o A useful application of the Archimedean property is that every real
number can be sandwiched between a pair of successive integers:

Theorem
For each real number x, there exists a unique integer n such that
n<x<n+1.

@ Uniqueness: The claim is that a real number x cannot belong to the
interval [n, n+ 1) for two distinct values of n.
If m and n are distinct integers, say m < n, then n — m is an integer
and is > 0. Therefore n— m > 1. Thus, m+ 1 < n and it follows
that the intervals [m, m + 1) and [n, n + 1) can have no element x in
common.
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First Properties of R Bracket Function

Existence of Bracket

o Existence: Let x € R. By the Archimedean property, there exists a
positive integer j such that j -1 > —x, thatis, j + x > 0. It will
suffice to find an integer k such that j + x € [k, k + 1): This would
imply that x € [k —j, k — j + 1). Changing notation, we can suppose
that x > 0. Let S={keP:k-1> x}.

o By the Archimedean property, S is nonempty;
o So S has a smallest element m by the “well-ordering principle”.
Since m € S, we have m > x.
o If m=1, then 0 < x < 1 and the assertion is proved with n = 0.
o If m>1, then m — 1 is a positive integer smaller than m, so it cannot
belong to S. This means that m — 1 < x. Thus, x € [m — 1, m) and
n= m — 1 is the required integer.

Definition (Bracket Function)

The integer n is denoted [x] and the function R — Z defined by x — [x]
is called the bracket function (or the greatest integer function, since
[x] is the largest integer that is < x).
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First Properties of R Density of the Rationals

Subsection 4

Density of the Rationals
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First Properties of R Density of the Rationals

Density of Rationals

o Between any two reals, there is a rational:

Theorem (Density of Rationals)

If x and y are real numbers such that x < y, then there exists a rational
number r, such that x < r < y.

—1n —— 1In —
m/n X (m+1)/n y

o Since y — x > 0, by the Archimedean property, there exists a positive
integer n such that n(y — x) > 1, i.e., % < y — x. Think of % asa
“unit of measurement”, small enough for the task at hand. We find a

multiple of % that lands between x and y.

Let m = [nx]. Then m < nx < m+ 1. Hence 7 < x and

x<mH —my Loyt loxt(y—x)=y, sor="t meets
the requirements of the theorem.
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First Properties of R Density of the Rationals

Irrational Numbers

@ The conclusion of the theorem is expressed by saying that the rational
field @ is everywhere dense in R.

@ There are “lots” of rational numbers, but are there any real numbers
that are not rational?

The answer is yes: Theset A= {rc Q:r>0and r> <2} is
nonempty and bounded above, so it has a least upper bound v in R
by completeness. If u were rational, then it would be a least upper
bound for A in the ordered field @, contrary to what we proved.

Definition (Irrational Numbers)

A real number that is not rational is called an irrational number. Thus,
the irrational numbers are the elements of the difference set

R-Q={xeR:x&Q}.
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First Properties of R Monotone Sequences

Subsection 5

Monotone Sequences
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First Properties of R Monotone Sequences

Sequences

Definition (Sequence)

If X is a set and if, for each positive integer n, an element x, of X is
given, we say that we have a sequence of elements of X, or “a sequence
in X", whose n-th term is x,.

@ Various notations are used to indicate sequences, for example
(Xn)a (Xn)nG]Pa (Xn)nzla (Xn)n:1,2,3,...-

@ Informally, a sequence of elements of a set is an unending list
X1,X2,X3, ... of (not necessarily distinct) elements of the set.

o Formally, it is a function f : IP — X, where we write x, instead of
f(n) for the element of X corresponding to the positive integer n.

@ Another notation that stresses the functional aspect of a sequence:
n— x, né&€lP.

@ In the notation (x,), the integers n are called the indices.

@ Sometimes index sets other than IP are appropriate, as, for example,
(an)nem for the coefficients of a power series »_° ) apx".
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First Properties of R Monotone Sequences

Increasing and Decreasing Sequences

Definition (Increasing/Decreasing Sequence)

A sequence (a,) in R is said to be:
@ increasing if a1 < ay < a3 < --- ie, if a, < apyq, for all n € P;
@ strictly increasing if a, < an+1, for all n;
o decreasing if a1 > a > a3 > - ;

o strictly decreasing if a, > a,11, for all n.

o A sequence that is either increasing or decreasing is said to be
monotone; more precisely, one speaks of sequences that are
“monotone increasing” or “monotone decreasing”.

o If (an) is an increasing sequence, we write a, T, and if it is a
decreasing sequence we write a, | (no special notation is offered for
“strictly monotone” sequences.)
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First Properties of R Monotone Sequences

Suprema and Infima of Monotone Sequences

Definition (Supremun and Infimum of Monotone Sequences)

o If (an) is an increasing sequence in R, such that A= {a,: n€ P} is
bounded above, and if a = sup A, then we write a, 1 a.

o Similarly, a, | a means that (a,) is a decreasing sequence, the set
A ={a,: n e P} is bounded below, and a = inf A.

@ Example: %LO:
o The sequence (1) is decreasing;
o inf{l:neP}=0.
o Example: If 0 < ¢ < 1, then the sequence of powers (c") is strictly
decreasing and c¢” | 0:
o (c") is strictly decreasing since 0 < ¢ < 1 implies 0 < ¢ < ¢ implies
0 < c3 < c?etc.
o Let a=inf{c": neP}. We know that a > 0 and ¢" | a. Now
a < "t implies g < ¢", for all n. It follows that % < a, whence
a(1 — ¢) <0 and, therefore, a < 0, which gives a = 0.
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First Properties of R Monotone Sequences

Properties of Infima and Suprema of Monotone Sequences

Theorem
If a, T a and b, 1 b, then:

(i) an+ by T a+ b;
(i) —and —a;

(1) an+cTa+c, for every real number c.

(1) It is clear that (a, + by) is an increasing sequence. Moreover, it is
bounded above by a+ b. To show that a+ b is the least upper bound,
suppose a, + b, < ¢, for all n. We have to show that a+ b < ¢, i.e.,
a < c — b. Given any index m, it is enough to show that a,, < ¢ — b,
i.e., b < c— ap. Thus, given any index n, we need only show that
b, < ¢ — am, i.e, am + b, < c. Indeed, if p is the larger of m and n
then a,, + b, < ap + by, < ¢, by the assumed monotonicity.

(ii) This follows from inf {—a,} = —sup{an}.

(ii1) This is a special case of (i), with b, = ¢, for all n.
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First Properties of R Theorem on Nested Intervals

Subsection 6

Theorem on Nested Intervals
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First Properties of R Theorem on Nested Intervals

Nested Intervals

o A sequence of intervals (/,) of R is said to be nested if
hDh 2Dl 2D---. As the intervals “shrink” with increasing n, there
is no assurance that there is any point that belongs to every /,.

o Example: If I, = (0, %] then there is no point belonging to all /,.

@ However, if the intervals are closed, we can be sure that there is at
least one survivor:

Theorem (Sequence of Nested Closed Intervals)

If (I,) is a nested sequence of closed intervals, then the intersection of the
I, is nonempty. More precisely, if I, = [ap, bs], where a, < b, and
h2o2h2h2O--- andif a=sup{a,: ne€ P}, b=inf{b,: nec P} then
a < band ()2 [an, bn] = [a, b].
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First Properties of R | Theorem on Nested Intervals

Proof of the Theorem

@ The notation ()72 ;[an, bn] means the intersection (]S of the set S of
all the intervals [ap, by].

o From [ap+1, bnt1] C [an, bs] we see that it follows that the sequence
(ap) is increasing and bounded above (for example by b;). On the
other had, (b,,) is decreasing and bounded below (for example by a;).
If a and b are defined as in the statement of the theorem, we have
an T aand b, | b. By the preceding theorem (and its “dual”) we have
—b, 1 —b, so a,+ (—bp) T a+ (—b). Therefore, b, — a, | b— a.
Since b, — a, > 0, for all n, it follows that b — a > 0. Then
an < a< b < by, whence [a, b] C [an, by, for all n, and, therefore,

(2, 6] € (2 [an: bal.
Conversely, if x belongs to every [a,, b,] then a, < x < by, for all n,
and, therefore, a < x < b showing that (72 [an, bn] C [a, b].
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First Properties of R Theorem on Nested Intervals

Theorem on Nested Intervals

o The following corollary is known as the Theorem on Nested
Intervals:

Corollary (Theorem on Nested Intervals)
Suppose I, = [an, bp], where a, < b, and 1 D /h D /3 D ---. Suppose,

also, that inf (b, — a,) = 0. Then (72 ;[an, bn] = {c}, where c = a = b,
with a =sup{a, : n€ P}, b=inf{b,: n € P}.

@ As shown in the proof of the theorem, b, — a, | b — a. By hypothesis,
bn —an 10, s0 b=aand (),2[an, by] = [a,a] = {a}.

@ A surprising corollary is a nonconstructive proof of the existence of
irrational numbers.
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First Properties of R Dedekind Cut Property

Subsection 7

Dedekind Cut Property

George Voutsadakis (LSSU) Real Analysis August 2014 28 / 40



First Properties of R Dedekind Cut Property

Dedekind Cuts

Definition (Dedekind Cut)

A cut (or Dedekind cut) of the real field R is a pair (A, B) of nonempty
subsets of R, such that (a) every real number belongs to either A or B and
(b) a< b, forallae Aand be B. Insymbols, A% (), B£(), R=AUB,
a<b,ac A be B. (It follows from the latter property that AN B = ().)

@ Examples: If v € R and
A={xeR:x<~v}, B={xeR:x>n~}

then (A, B) is a cut of R. Note that A has a largest element but B
has no smallest.
The pair
A={xeR:x<v}, B={xeR:x>~}
also defines a cut of R. Here, B has a smallest element but A has no
largest.
o The key fact about cuts of R is that there are no other examples.
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First Properties of R Dedekind Cut Property

Uniqueness of ~

Theorem

If (A, B) is a cut of R, then there exists a unique real number ~y, such that
either

() A={xeR:x<q}and B={x€eR:x >~} or
(I A={xeR:x<~v}and B={x e R: x>~}

@ Uniqueness: The number ~ is uniquely determined by the property of
being either the largest element of A or the smallest element of B,
according as case (i) or case (ii) holds.
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First Properties of R Dedekind Cut Property

Existence of ~

o Existence: Note that A is bounded above (by any element of B) and
B is bounded below (by any element of A). Let & =sup A, 5 = inf B.
If a€ A, then a < b, for all b € B, whence a < 5. Sincea€ A is
arbitrary, a < 3. In fact a = 3, for if @ < 3, then any number in the
gap between « and 3 would be too large to belong to A and too
small to belong to B, which would contradict R = AU B. Write ~ for
the common value of @ and 5. By assumption, v must belong to
either A or B.

(i) Case 1: ye A Wehave AC{xeR:x<~}, BC{xeR:x>v}h
The first inclusion follows from v = sup A. The second inclusion
follows from v = inf B and the fact that v € B is ruled out by v € A.
These imply that both inclusions are actually equalities: if x < then
necessarily x € A. The alternative x € B is unacceptable because it
would imply x > 7.

(i) Case 2: v € B. In this case, a similar argument shows that the other
pair of formulas hold.
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Subsection 8

Square Roots
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First Properties of R Square Roots

Uniqueness of Square Roots

Every positive real number has a unique positive square root. That is, if
c € R,c > 0, then there exists a unique x € R, x > 0, such that x* = c.

o Uniqueness: If x and y are positive real numbers such that
x>=c=y? then0=x%—y? = (x+y)(x —y) and x +y > 0,

whence x —y =0, i.e,, x =y.
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First Properties of R Square Roots

Existence of Square Roots

@ Existence: Given ¢ € R, ¢ > 0, the strategy is to construct a cut
(A, B) of R for which the v of the preceding theorem satisfies 72 = c.
Let
A={xc€R:x<0}U{x€R:x>0and x> < c},
B={xeR:x>0andx*> c}.

Then A#0, B#0 (c+1€ B)and AUB =R. Moreover, if a € A
and b € B, then a < b:

o If a <0, this is trivial.

o If a> 0, then a® < ¢ < b? implies a < b.
In summary, (A, B) is a cut of R. Let v be the real number that
defines the cut.
Note that A contains numbers > 0:

o If ¢ >1then 3 € A (because : <1 <c).

o If0 < c<1,then c € A (because ¢ < c).
It follows that v > 0.
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First Properties of R | Square Roots

Existence (Cont'd)

o Next, we assert that v € B. By the arguments in the preceding
section, we need only show that A has no largest element.
Assuming a € A, we find a larger element of A.

o If a <0, then any positive element of A will do.

o Suppose a > 0. We know that a? < c. It will suffice to find a positive
integer n, such that (a + %)2 < c. The existence of such an n is due to
the Archimedean Property applied to n(c — a?) >2a+1>2a+ %

We now know that A={x e R: x<~}, B={xeR: x>~}
Since v € B, we have v2 > c. It remains only to show that 4% < c,
i.e., 72 —c<0.

By the Archimedean property, choose a positive integer N such that
N~ > 1. For every integer n > N, we have % < % <7, SO 7y — % > 0.
Since v — % belongs to A, it follows that (v — %)2 < ¢, whence

2 _ 2y _ 1 2% g
V<=5 <5 Thus, >

C

< % for all n > N, and a fortiori

722;C <inf{l:neP}=0. Since

2y > 0, we conclude that 42 — ¢ < 0.

also for 1 < n < N. Consequently,
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First Properties of R Square Roots

Definition of Square Root

Definition (Square Root)

If c € R,c > 0, then the unique x € R, x > 0, such that x> = c is called
the square root of ¢ and is denoted /c. We also define v/0 = 0.

@ It follows by the theorem that every nonnegative real number has a
unique nonnegative square root.

George Voutsadakis (LSSU) Real Analysis August 2014 36 / 40



First Properties of R Absolute Value

Subsection 9

Absolute Value
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First Properties of R | Absolute Value

Absolute Value and Basic Properties

Definition (Absolute Value)

The absolute value of a real number a is the nonnegative real number |3
defined as follows: " { 5 a0

—a, ifa<o

Theorem (Properties of the Absolute Value)

For real numbers a, b, c, x,

(1) lal = 0. (6)

(2) laf? = & (7)

(3) Properties (1) and (2) characterize  (8) —|a] < a < |a|.
|a|: if x > 0 and x? = a2, then (9)
x = |al. 10)

(4) |laj]=0<a=0;]a| >0« a#0. )

(5) |a| = |b| & a°> = b® & a = +b.
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First Properties of R | Absolute Value

Proof of the Absolute Value Properties

o (1) |a| >0, (2) |a|> = 3% and (4) |a| = 0 iff a= 0 and |a| > O iff
a # 0 are obvious from the definition of absolute value.
(3) If x > 0and x> = 22, that is, x? = |a|?, then x = |a|, by a previous
theorem.
o (5) and (6) follow easily from (1)-(3).
(7) If x = |a||b|, then x? = |a|?|b|?> = a?b? = (ab)?, whence x = |ab]|, by
(3).
(8) If a>0, then —|a| = —a <0< a=|a|]. If a<0, then
—la| = —(-a)=a<0<]a|.
(9) If —c < x < ¢, then both —x < ¢ and x < c. But |x| is either x or
—x, so |x| < c. Conversely, if |x| < ¢, then —c < —|x| < x < |x| < c.
(10) Addition of the inequalities —|a| < a < |a|, —|b| < b < |b| yields
—(lal +1b]) < a+ b < a[ +[b|. So |a+ b[ < a| +|b| by (9).
(11) Let x = |a| — |b|. Then |a| = |(a — b) + b| < |a — b| + |b|, whence
x < |a — b|. Interchanging a and b, we have —x < |b— a| = |a — b|,
and, hence, |x| < |a— b|.
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First Properties of R Absolute Value

Distance Between Real Numbers

o |a| may be interpreted as the distance from the origin to the point a.
o Example: | £ 5| =5 means that either of the points labeled 5 and —5
has distance 5 from the origin.

w
>

Definition (Distance)

For real numbers a, b the distance from a to b is defined to be |a — b.
We also write d(a, b) = |a — b|. The function d : R x R — R defined by

this formula is called the distance function on R.

o Example: If a=—2and b=5, then |a—b|=|—-2—-5|=7.
2 5
_’_JH‘f_ﬁ
-2 0 5
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