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Riemann Integral

Fixing Some Notation

The following notations will be fixed:

[a, b] is a closed interval of R, a < b;
f : [a, b] → R is a bounded function;
M = sup f = sup {f (x) : a ≤ x ≤ b};
m = inf f = inf {f (x) : a ≤ x ≤ b}.

To add emphasis to the dependence of M and m on f , we sometimes
write M = M(f ) and m = m(f ).

Further notation is introduced when needed (for subintervals of [a, b],
other functions, etc.).
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Riemann Integral Upper and Lower Integrals

Subsection 1

Upper and Lower Integrals
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Riemann Integral Upper and Lower Integrals

Subdivisions

Definition (Subdivision)

A subdivision σ of [a, b] is a finite list of points, starting at a, increasing
strictly, and ending at b:

σ = {a = a0 < a1 < a2 < · · · < an = b}.

The an, n = 0, 1, 2, . . . , n, are called the points of the subdivision.

The trivial subdivision σ = {a = a0 < a1 = b} is allowed.

The effect of σ (when n > 1) is to break up the interval [a, b] into n

subintervals

[a0, a1], [a1, a2], . . . , [an−1, an].

The length of the ν-th subinterval is denoted eν , eν = aν − aν−1,
ν = 1, . . . , n.

The largest of these lengths is called the norm of the subdivision σ,
written N(σ) = max {eν : ν = 1, . . . , n}.

George Voutsadakis (LSSU) Real Analysis August 2014 5 / 35



Riemann Integral Upper and Lower Integrals

Oscillations

Definition

Let σ = {a = a0 < a1 < a2 < · · · < an = b} be a subdivision of [a, b]. For
ν = 1, . . . , n, we write

Mν = sup {f (x) : aν−1 ≤ x ≤ aν},
mν = inf {f (x) : aν−1 ≤ x ≤ aν}.

Obviously mν ≤ Mν and the difference

ων = Mν −mν ≥ 0

is called the oscillation of f over the subinterval [aν−1, aν ].

To emphasize the dependence of these numbers on f , we write
Mν(f ), mν(f ), ων(f ), respectively.
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Riemann Integral Upper and Lower Integrals

Upper and Lower Sums

Definition (Upper and Lower Sums)

Let σ = {a = a0 < a1 < a2 < · · · < an = b} be a subdivision of [a, b].
The upper sum of f for the subdivision σ is the number

S(σ) =

n
∑

ν=1

Mνeν

and the lower sum of f for σ is the number

s(σ) =

n
∑

ν=1

mνeν .

Again, we write Sf (σ) and sf (σ) to express the dependence of these
numbers on f and σ.

The upper and lower sums
can be interpreted as crude
“rectangular” approximations
to the area under the graph of
f :
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Riemann Integral Upper and Lower Integrals

Boundedness of Upper and Lower Sums

Theorem

If σ is any subdivision of [a, b], then

m(b − a) ≤ s(σ) ≤ S(σ) ≤ M(b − a).

Say σ = {a = a0 < a1 < · · · < an = b}. For ν = 1, . . . , n,

m ≤ mν ≤ Mν ≤ M.

By multiplying all four sides by eν , we get

meν ≤ mνeν ≤ Mνeν ≤ Meν .

Finally, take the sum over ν = 1, . . . , n:

m(b − a) ≤ s(σ) ≤ S(σ) ≤ M(b − a).

It follows that the sets {s(σ) : σ any subdivision of [a, b]} and
{S(σ) : σ any subdivision of [a, b]} are bounded.

George Voutsadakis (LSSU) Real Analysis August 2014 8 / 35



Riemann Integral Upper and Lower Integrals

Lower and Upper Integrals

Definition (Lower and Upper Integrals)

The lower integral of f over [a, b] is defined to be the supremum of the
lower sums, written

∫ b

a

f = sup {s(σ) : σ any subdivision of [a, b]},

and the upper integral is defined to be the infimum of all the upper
sums, written

∫ b

a

f = inf {S(σ) : σ any subdivision of [a, b]}.

Example: Consider

f (x) =

{

1, if x is rational in [a, b]
0, if x is irrational in [a, b]

For this function, every lower sum is 0 and every upper sum is b − a.
Thus,

∫ b

a
f = 0 and

∫ b

a
f = b − a.
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Riemann Integral Upper and Lower Integrals

Convergence and Divergence

For the upper integral:

For each subdivision σ, we take a supremum (actually, one for each
term of S(σ)),
then we take the infimum of the S(σ) over all possible subdivisions σ,

a process analogous to the limit superior of a bounded sequence.

Similarly, the definition of lower integral is analogous to the limit
inferior of a bounded sequence (inf followed by sup).

The preceding example represents a sort of “divergence”.

Just as the “nice” bounded sequences are the convergent ones (those
for which lim inf = lim sup), the “nice”’ bounded functions should, by
analogy, be those for which the lower integral is equal to the upper
integral.
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Riemann Integral Upper and Lower Integrals

Bounds

Necessarily, for every subdivision σ, we have

s(σ) ≤

∫ b

a

f and

∫ b

a

f ≤ S(σ).

Theorem

For every bounded function f : [a, b] → R,

m(b − a) ≤

∫ b

a

f ≤ M(b − a) and m(b − a) ≤

∫ b

a

f ≤ M(b − a),

where m = inf f and M = sup f .
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Riemann Integral Upper and Lower Integrals

Refinements

Upper and lower sums are in a sense approximations to the upper and
lower integrals. The way to improve the approximation is to make the
subdivision “finer”:

Definition (Refinement)

Let σ and τ be subdivisions of [a, b]. We say that τ refines σ (or that τ is
a refinement of σ), written τ ≻ σ or σ ≺ τ , if every point of σ is also a
point of τ . Thus, if

σ = {a = a0 < a1 < · · · < an = b}
τ = {a = b0 < b1 < · · · < bm = b},

then τ ≻ σ means that each aν is equal to some bµ, i.e., as sets,
{a0, a1, . . . , an} ⊆ {b0, b1, . . . , bm}.

Remarks: Note σ ≻ σ; if ρ ≻ τ and τ ≻ σ then ρ ≻ σ. If τ ≻ σ and
σ ≻ τ , then σ and τ are the same subdivision and we write σ = τ .

Also note that if τ ≻ σ, then, obviously, N(τ) ≤ N(σ).
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Riemann Integral Upper and Lower Integrals

Effect of Refinements on Sums

The effect of refinement on upper and lower sums is described in the
following:

Lemma

If τ ≻ σ, then S(τ) ≤ S(σ) and s(τ) ≥ s(σ).

The lemma asserts that refinement can only decrease (or leave fixed)
an upper sum and can only increase (or leave fixed) a lower sum.

If τ = σ, there is nothing to prove. Otherwise, if τ has r ≥ 1 points
not in σ, we can start at σ and arrive at τ in r steps by inserting one
of these points at a time, say σ = σ0 ≺ σ1 ≺ · · · ≺ σr = τ , where σk
is obtained from σk−1 by inserting one new point. We need only show
that S(σk) ≤ S(σk−1) and s(σk) ≥ s(σk−1), i.e., it suffices to
consider the case that τ is obtained from σ by adding only one new
point c .
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Riemann Integral Upper and Lower Integrals

Effect of Refinements on Sums (Cont’d)

Suppose σ = {a = a0 < a1 < · · · < an = b}. Say c belongs to the
µ-th subinterval, aµ−1 < c < aµ. Then,
τ = {a = a0 < a1 < · · · < aµ−1 < c < aµ < aµ+1 < · · · < an = b}.
The terms of S(τ) are the same as those of S(σ) except that the µ-th
term of S(σ) is replaced by two terms of S(τ). Thus, in calculating
S(σ)− S(τ) all of the action is in the µ-th term of S(σ). By replacing
f by its restriction to [aµ−1, aµ], we are reduced to the case where
σ = {a < b}, τ = {a < c < b}. Writing M = sup f as before, and

M ′ = sup {f (x) : a ≤ x ≤ c}, M ′′ = sup {f (x) : c ≤ x ≤ b},

we obtain S(σ) = M(b − a) and S(τ) = M ′(c − a) +M ′′(b − c).
Obviously M ′ ≤ M and M ′′ ≤ M. Therefore,
S(τ) ≤ M(c − a) +M(b − c) = M(b − a) = S(σ), whence
S(τ) ≤ S(σ).

A similar argument shows that s(τ) ≥ s(σ).
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Riemann Integral Upper and Lower Integrals

Any Lower Sum Dominated by Any Upper Sum

We have already seen that, for any subdivision σ of [a, b]

m(b − a) ≤ s(σ) ≤ S(σ) ≤ M(b − a).

In fact, even more is true:

Lemma

If σ and τ are any two subdivisions of [a, b], then s(σ) < S(τ).

Let ρ be a subdivision, such that ρ ≻ σ and ρ ≻ τ . Such a ρ is called
a common refinement of σ and τ and may be constructed, e.g., by
taking together all of the points of σ and τ . By previous results,

s(σ) ≤ s(ρ) ≤ S(ρ) ≤ S(τ).
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Riemann Integral Upper and Lower Integrals

Lower Integral Dominated by Upper Integral

Theorem (lim inf ≤ lim sup)

For every bounded function f : [a, b] → R,
∫ b

a

f ≤

∫ b

a

f .

Fix a subdivision τ . By the lemma, for every subdivision σ,
s(σ) ≤ S(τ). Thus, by the definition of lower integral (as the least

upper bound of the set of all lower sums),
∫ b

a
f ≤ S(τ). Letting τ

vary, the previous inequality holding for all τ implies
∫ b

a
f ≤

∫ b

a
f , by

the definition of the upper integral (as the greatest lower bound of
the set of all upper sums).
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Riemann Integral First Properties of Upper and Lower Integrals

Subsection 2

First Properties of Upper and Lower Integrals
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Riemann Integral First Properties of Upper and Lower Integrals

Lower in Terms of Upper Integrals

The following theorem reduces the study of lower integrals to that of
upper integrals:

Theorem

For every bounded function f : [a, b] → R,
∫ b

a

f = −

∫ b

a

(−f ).

Let σ be any subdivision of [a, b]. With Aν = {f (x) : aν−1 ≤ x ≤ aν},
we have sup (−Aν) = −(inf Aν). Therefore, Mν(−f ) = −mν(f ), for
ν = 1, . . . , n, whence S−f (σ) = −sf (σ). Writing

B = {sf (σ) : σ any subdivision of [a, b]},
we have

−B = {S−f (σ) : σ any subdivision of [a, b]}.

Thus,
∫ b

a
f = supB = − inf (−B) = −

∫ b

a
(−f ).

George Voutsadakis (LSSU) Real Analysis August 2014 18 / 35



Riemann Integral First Properties of Upper and Lower Integrals

Notation for Restrctions

Definition (Notation for Restrictions)

If a ≤ c < d ≤ b, the definitions for f can be applied to the restriction
f ↾[c,d] of f to [c , d ], i.e., to the function x 7→ f (x), c ≤ x ≤ d . Instead of
the cumbersome notations

∫ d

c

f ↾[c,d] and

∫ d

c

f ↾[c,d],

we write simply ∫ d

c

f and

∫ d

c

f .

It is also convenient to define
∫ c

c

f =

∫ c

c

f = 0,

for any c ∈ [a, b].
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Riemann Integral First Properties of Upper and Lower Integrals

Additivity of Upper and Lower Integrals

We show that the upper and lower integral is (for a fixed function f )
an additive function of the endpoints of integration:

Theorem

If a ≤ c ≤ b, then

(i)

∫ b

a

f =

∫ c

a

f +

∫ b

c

f ; (ii)

∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

Both equations are trivial when c = a or c = b. Suppose a < c < b.
It suffices to prove (i). Writing L for the left side and R for the right
side, we show that L ≤ R and L ≥ R .

L ≤ R : Let σ1 be any subdivision of [a, c], σ2 any subdivision of [c , b],
and write σ = σ1 ⊕ σ2 for the subdivision of [a, b] obtained by joining
σ1 and σ2 at their common point c . Then S(σ) = S(σ1) + S(σ2). (the
upper sum on the left pertains to f , those on the right pertain to the
restrictions of f to [a, c] and [c , b]).
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Riemann Integral First Properties of Upper and Lower Integrals

Additivity of Upper and Lower Integrals (Cont’d)

We continue with the proof of (i):

Showing that L ≤ R , we have S(σ) = S(σ1) + S(σ2). Thus,
∫ b

a
f ≤ S(σ) = S(σ1) + S(σ2). So

∫ b

a
f − S(σ1) ≤ S(σ2). Varying σ2

over all possible subdivisions of [c , b], it follows that
∫ b

a
f − S(σ1) ≤

∫ b

c
f . Thus,

∫ b

a
f −

∫ b

c
f ≤ S(σ1). Since this holds for

all σ1, we get
∫ b

a
f −

∫ b

c
f ≤

∫ c

a
f .

L ≥ R : Let σ be any subdivision of [a, b]. Let τ be a subdivision of
[a, b], such that τ ≻ σ and τ includes the point c (for example, let τ
be the result of inserting c into σ if it is not already there). Since c is
a point of τ , as in the first part of the proof we can write τ = τ1 ⊕ τ2,
with τ1 a subdivision of [a, c] and τ2 a subdivision of [c , b]. Then

S(σ) ≥ S(τ) = S(τ1) + S(τ2) ≥
∫ c

a
f +

∫ b

c
f . Thus, S(σ) ≥ R , for

every subdivision σ of [a, b], whence L ≥ R .
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Riemann Integral Indefinite Upper and Lower Integrals

Subsection 3

Indefinite Upper and Lower Integrals
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Riemann Integral Indefinite Upper and Lower Integrals

Indefinite Integrals

Definition (Indefinite Integrals)

For the given bounded function f : [a, b] → R, we define functions
F : [a, b] → R and H : [a, b] → R by the formulas

F (x) =

∫ x

a

f , H(x) =

∫ x

a

f , a ≤ x ≤ b.

We may also consider variable lower endpoints of integration, leading to a
function G complementary to F , and a function K complementary to H.
The function F is called the indefinite upper integral of f . H is called
the indefinite lower integral of f .

By a previously adopted convention, F (a) = H(a) = 0.

Moreover, we know that H(x) ≤ F (x), for all x ∈ [a, b].

We show that the functions F and H have nice properties even if
nothing is assumed about the given bounded function f .

Moreover, every nice property of f (like continuity) yields an even
nicer property of F (like differentiability).
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Riemann Integral Indefinite Upper and Lower Integrals

Lipschitz Continuity of the Indefinite Integrals

Theorem

Let k = max {|m|, |M|}, where m = inf f and M = sup f . Then

|F (x)− F (y)| ≤ k |x − y |, |H(x) − H(y)| ≤ k |x − y |,

for all x , y ∈ [a, b]. In particular, F and H are continuous on [a, b].

We can suppose x < y . By the additivity property,
∫ y

a
f =

∫ x

a
f +

∫ y

x
f . Thus,

∫ y

x
f = F (y)− F (x). If m′ and M ′ are

the infimum and supremum of f on the interval [x , y ], we have
m ≤ m′ ≤ M ′ ≤ M. This yields
m(y − x) ≤ m′(y − x) ≤

∫ y

x
f ≤ M ′(y − x) ≤ M(y − x). Therefore,

m(y − x) ≤ F (y)− F (x) ≤ M(y − x). Since |m| ≤ k and |M| ≤ k ,
−k(y − x) ≤ F (y)− F (x) ≤ k(y − x), whence
|F (y)− F (x)| ≤ k(y − x) = k |y − x |.

The proof for H is similar.
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Riemann Integral Indefinite Upper and Lower Integrals

Monotonicity of Indefinite Integrals

Theorem (Monotonicity of Indefinite Integrals)

If f ≥ 0, then F and H are increasing functions.

If f ≥ 0, then m ≥ 0, whence the upper and lower integrals of a
nonnegative function are nonnegative. If a ≤ c < d ≤ b, then
F (d) = F (c) +

∫ d

c
f ≥ F (c). Hence F is increasing.

A similar reasoning applies to H.
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Riemann Integral Indefinite Upper and Lower Integrals

Right Differentiability of Indefinite Integrals

Theorem (Right Differentiability of Indefinite Integrals)

If a ≤ c < b and f is right continuous at c , then F and H are right
differentiable at c and F ′

r (c) = H ′

r (c) = f (c).

We give the proof for F ; the proof for H is similar. Let ǫ > 0. We

seek δ > 0, c + δ < b, with c < x < c + δ ⇒
∣

∣

∣

F (x)−F (c)
x−c

− f (c)
∣

∣

∣
≤ ǫ.

Since f is right continuous at c , there exists a δ > 0, with c + δ < b,
such that c ≤ t ≤ c + δ ⇒ |f (t)− f (c)| ≤ ǫ. Consider c < x < c + δ:

For t ∈ [c , x ], |f (t)− f (c)| ≤ ǫ, whence f (c)− ǫ ≤ f (t) ≤ f (c) + ǫ.
If mx and Mx are the infimum and supremum of f on [c , x ], then
f (c)− ǫ ≤ mx ≤ Mx ≤ f (c) + ǫ. Therefore,

[f (c)−ǫ](x−c) ≤ mx(x−c) ≤
∫ x

c
f ≤ Mx(x−c) ≤ [f (c)+ǫ](x−c).

Finally, we get [f (c)− ǫ](x − c) ≤ F (x) − F (c) ≤ [f (c) + ǫ](x − c).
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Riemann Integral Indefinite Upper and Lower Integrals

Differentiability of Indefinite Integrals

Theorem (Left Differentiability of Indefinite Integrals)

If a < c ≤ b and f is left continuous at c , then F and H are left
differentiable at c and F ′

ℓ(c) = H ′

ℓ(c) = f (c).

The easiest strategy is to modify the preceding proof: Replace
c < x < c + δ by c − δ < x < c , [c , x ] by [x , c], etc.
An alternative strategy is to apply the “right” version to the function
g : [−b,−a] → R defined by g(y) = f (−y), which is right continuous
at −c when f is left continuous at c . The relations among the
indefinite integrals of f and g are easy to verify, but cumbersome.

Corollary

If a < c < b and f is continuous at c , then F and H are differentiable at c
and F ′(c) = H ′(c) = f (c).

By assumption, f is both left and right continuous at c , whence
F ′

ℓ(c) = f (c) = F ′

r (c) and H ′

ℓ(c) = f (c) = H ′

r (c). F and H are
differentiable at c , with F ′(c) = f (c) and H ′(c) = f (c).
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Riemann Integral Indefinite Upper and Lower Integrals

Indefinite Integrals in Terms of Lower Points

We look at the upper and lower integrals as functions of the lower
endpoint of integration:

Definition (Indefinite Integrals Revisited)

For the given bounded function f : [a, b] → R, we define functions
G : [a, b] → R and K : [a, b] → R by the formulas

G (x) =

∫ b

x

f , K (x) =

∫ b

x

f , a ≤ x ≤ b.

Remarks: We have F (x)+G (x) =
∫ b

a
f and H(x) +K (x) =

∫ b

a
f , for

a ≤ x ≤ b. Thus, G is in a sense complementary to F , and K to H.

This is the key to deducing the properties of G from those of F , and
the properties of K from those of H: E.g., since F and H are
continuous, so are G and K .
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Riemann Integral Indefinite Upper and Lower Integrals

Differentiability of G and K

Theorem (Right Differentiability of G and K )

If a ≤ c < b and f is right continuous at c , then G and K are right
differentiable at c and G ′

r (c) = K ′

r (c) = −f (c).

This is immediate from right differentiability of F and H and the
preceding complementarity formulas.

Theorem (Left Differentiability of G and K )

If a < c ≤ b and f is left continuous at c , then G and K are left
differentiable at c and G ′

ℓ(c) = K ′

ℓ(c) = −f (c).

Corollary (Differentiability of G and K )

If a < c < b and f is continuous at c , then G and K are differentiable at
c and G ′(c) = K ′(c) = −f (c).
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Riemann Integral Riemann Integrable Functions

Subsection 4

Riemann Integrable Functions
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Riemann Integral Riemann Integrable Functions

Riemann Integrability

Definition (Riemann Integral)

A bounded function f : [a, b] → R is said to be Riemann-integrable

(briefly, integrable) if ∫ b

a

f =

∫ b

a

f .

(The analogous concept for bounded sequences (lim inf = lim sup) is

convergence!) We write simply

∫ b

a

f or (especially when f (x) is replaced

by a formula for it)

∫ b

a

f (x)dx for the common value of the lower and

upper integral, and call it the integral (or Riemann integral) of f .

Remark: If f is Riemann-integrable, then so is −f , and
∫ b

a

(−f ) = −

∫ b

a

f .
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Riemann Integral Riemann Integrable Functions

Monotonicity and Riemann Integrability

If f (x) =

{

1, if x is rational
0, if x is irrational

, then f is not Riemann-integrable.

Theorem

If f is monotone, then it is Riemann-integrable.

We can suppose that f is increasing. For every subdivision σ of [a, b],

we have s(σ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ S(σ). To show that the lower integral

is equal to the upper integral, we need only show that S(σ)− s(σ)
can be made as small as we like (by choosing σ appropriately). Say
σ = {a = a0 < a1 < · · · < an = b}. Since f is increasing, we have
mν = f (aν−1), Mν = f (aν). Thus, s(σ) =

∑n
ν=1 f (aν−1)eν and

S(σ) =
∑n

ν=1 f (aν)eν . So S(σ)− s(σ) =
∑n

ν=1[f (aν)− f (aν−1)]eν .
Now assume that the points of σ are equally spaced, so that
eν = 1

n
(b − a). The sum, then, “telescopes”:

S(σ)−s(σ) = 1
n
(b−a)

∑n
ν=1[f (aν)−f (aν−1)] =

1
n
(b−a)[f (b)−f (a)],

which can be made arbitrarily small by taking n sufficiently large.
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Riemann Integral Riemann Integrable Functions

Continuity and Riemann Integrability

Theorem

If f is continuous on [a, b] then f is Riemann integrable.

Let F =
∫ x

a
f and H =

∫ x

a
f be the indefinite upper integral and

indefinite lower integral. We know that F (a) = H(a) = 0. We must
show that F (b) = H(b).

We know F and H are continuous on [a, b]. Also, F and H are
differentiable on (a, b) with F ′(x) = f (x) = H ′(x), for all x ∈ (a, b).
Thus, F − H is continuous on [a, b], differentiable on (a, b), and
(F − H)′(x) = 0, for all x ∈ (a, b). Therefore, F − H is constant by a
corollary of the Mean Value Theorem. Since (F − H)(a) = 0, also
(F − H)(b) = 0. Thus, F (b) = H(b), as we wished to show.
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Riemann Integral Riemann Integrable Functions

The Fundamental Theorem of Calculus

Theorem (The Fundamental Theorem of Calculus)

If f : [a, b] → R is continuous, then:

(1) f is Riemann-integrable on [a, b];
(2) There exists a continuous function F : [a, b] → R, differentiable on

(a, b), such that F ′(x) = f (x), for all x ∈ (a, b);

(3) For any F satisfying (2), F (x) = F (a) +
∫ x

a
f , for all x ∈ [a, b].

Moreover, F is right differentiable at a, left differentiable at b, and
F ′

r (a) = f (a), F ′

ℓ(b) = f (b).

Part (1) is the conclusion of the preceding theorem. F (x) =
∫ x

a
f has

the properties in (2) and (3). Suppose that J : [a, b] → R is also a
continuous function having derivative f (x) at every x ∈ (a, b). By the
argument used in the preceding theorem, J − F is constant, say
J(x) = F (x) + C , for all x ∈ [a, b]. Then J(x)− J(a) = F (x)− F (a)
=

∫ x

a
f , for all x ∈ [a, b]. Finally, J has the one-sided derivatives f (a)

and f (b) at the endpoints since F does.
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Corollary

If f : [a, b] → R is continuous and F : [a, b] → R is a continuous function,
differentiable on (a, b), such that F ′(x) = f (x), for all x ∈ (a, b), then

∫ b

a

f = F (b)− F (a).

Corollary

If f : [a, b] → R is continuous, f ≥ 0 on [a, b], and

∫ b

a

f = 0, then f ≡ 0.

If F =

∫ x

a

f , then F is increasing and F (b)− F (a) =

∫ b

a

f = 0.

Therefore, F is constant. Then f = F ′ = 0 on (a, b), whence f = 0
on [a, b] by continuity.
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