EXAM 1: SOLUTIONS - MATH 111
 INSTRUCTOR: George Voutsadakis

Problem 1 Find the slope of the line with equation $5 x+3 y=21$.

Solution:

The secret is to solve for y and determine the coefficient of x in the slope-intercept form $y=a x+b$. We have $5 x+3 y=21$ implies $3 y=21-5 x$, whence $y=-\frac{5}{3} x+7$. Hence, the slope is $m=-\frac{5}{3}$.

Problem 2 Find the equation of the line that is perpendicular to the line $y=7 x+2002$ and passes through the point $\left(1, \frac{6}{7}\right)$.

Solution:

The given line has slope 7 . Therefore the slope m of the unknown line is such that $7 m=-1$. Thus $m=-\frac{1}{7}$. Applying now the point-slope form, we get $y-\frac{6}{7}=-\frac{1}{7}(x-1)$, whence $y=-\frac{1}{7} x+1$.

Problem 3 The cost C in terms of the number of items x produced is given by $C(x)=$ $3 x+10$ and the revenue by $R(x)=5 x$. Find the revenue, when the company breaks even.

Solution:

When the company breaks even $C(x)=R(x)$, whence $3 x+10=5 x$, i.e., $2 x=10$ and, therefore $x=5$. The break-even revenue is, thus, $R(5)=25$.

Problem 4 The supply S of an item in terms of the price p is given by $S(p)=-p^{2}+300$ and the demand D by $D(p)=20 p$. Determine the equilibrium price and the equilibrium supply.

Solution:

At equilibrium $S(p)=D(p)$. Hence $-p^{2}+300=20 p$, whence $p^{2}+20 p-300=0$. Use the quadratic formula to compute

$$
p_{1,2}=\frac{-20 \pm \sqrt{\left(20^{2}-4 \cdot 1 \cdot(-300)\right.}}{2 \cdot 1}=\frac{-20 \pm 40}{2}=-10 \pm 20 .
$$

Since p is the price we have $p=10$. Thus, the equilibrium supply is $S(10)=-100+300=$ 200.

Problem 5 Solve the inequality $|x-5|-2 \leq 6$.

Solution:

$|x-5|-2 \leq 6$ implies $|x-5| \leq 8$ which gives $-8 \leq x-5 \leq 8$, whence $-3 \leq x \leq 13$.
Problem 6 Find the domain of $f(x)=\sqrt{\frac{x+2}{x-5}}$.

Solution:

We must have first $x-5 \neq 0$, i.e., $x \neq 5$. Next, we also need $\frac{x+2}{x-5} \geq 0$, whence $(x+$ $2)(x-5) \geq 0 . x+2=0$ gives $x=-2$ and $x-5=0$ gives $x=5$. Now create the sign table to conclude that $x \leq-2$ or $x \geq 5$. Because of the previous restriction that $x \neq 5$, we finally get

$$
x \leq-2 \quad \text { or } \quad x>5
$$

