EXAM 1: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the slope of the line with equation 5x + 3y = 21.

Solution:

The secret is to solve for y and determine the coefficient of x in the slope-intercept form y = ax + b. We have 5x + 3y = 21 implies 3y = 21 - 5x, whence $y = -\frac{5}{3}x + 7$. Hence, the slope is $m = -\frac{5}{3}$.

Problem 2 Find the equation of the line that is perpendicular to the line y = 7x + 2002and passes through the point $(1, \frac{6}{7})$.

Solution:

The given line has slope 7. Therefore the slope m of the unknown line is such that 7m = -1. Thus $m = -\frac{1}{7}$. Applying now the point-slope form, we get $y - \frac{6}{7} = -\frac{1}{7}(x-1)$, whence $y = -\frac{1}{7}x + 1$.

Problem 3 The cost C in terms of the number of items x produced is given by C(x) = 3x + 10 and the revenue by R(x) = 5x. Find the revenue, when the company breaks even.

Solution:

When the company breaks even C(x) = R(x), whence 3x + 10 = 5x, i.e., 2x = 10 and, therefore x = 5. The break-even revenue is, thus, R(5) = 25.

Problem 4 The supply S of an item in terms of the price p is given by $S(p) = -p^2 + 300$ and the demand D by D(p) = 20p. Determine the equilibrium price and the equilibrium supply.

Solution:

At equilibrium S(p) = D(p). Hence $-p^2 + 300 = 20p$, whence $p^2 + 20p - 300 = 0$. Use the quadratic formula to compute

$$p_{1,2} = \frac{-20 \pm \sqrt{(20^2 - 4 \cdot 1 \cdot (-300))}}{2 \cdot 1} = \frac{-20 \pm 40}{2} = -10 \pm 20.$$

Since p is the price we have p = 10. Thus, the equilibrium supply is S(10) = -100 + 300 = 200.

Problem 5 Solve the inequality $|x-5| - 2 \le 6$.

Solution:

 $|x-5|-2 \le 6$ implies $|x-5| \le 8$ which gives $-8 \le x-5 \le 8$, whence $-3 \le x \le 13$.

Problem 6 Find the domain of $f(x) = \sqrt{\frac{x+2}{x-5}}$.

Solution:

We must have first $x - 5 \neq 0$, i.e., $x \neq 5$. Next, we also need $\frac{x+2}{x-5} \geq 0$, whence $(x + 2)(x-5) \geq 0$. x + 2 = 0 gives x = -2 and x - 5 = 0 gives x = 5. Now create the sign table to conclude that $x \leq -2$ or $x \geq 5$. Because of the previous restriction that $x \neq 5$, we finally get

$$x \leq -2$$
 or $x > 5$.