EXAM 2: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the vertex, the opening direction, the x - and y-intercepts and sketch the graph of $f(x)=-\frac{1}{2} x^{2}+x+\frac{3}{2}$.

Solution:

The vertex has x-coordinate

$$
x=-\frac{b}{2 a}=-\frac{1}{2 \cdot\left(-\frac{1}{2}\right)}=1
$$

and y-coordinate $f(1)=-\frac{1}{2}+1+\frac{3}{2}=2$. Hence, it is the point $(1,2)$.
The parabola opens down, since $a=-\frac{1}{2}<0$.
The y-intercept is found by setting $x=0$. We have then $y=\frac{3}{2}$. Thus $\left(0, \frac{3}{2}\right)$ is the y-intercept. The x-intercepts are found by setting $y=0$ and solving $-\frac{1}{2} x^{2}+x+\frac{3}{2}=0$. Use the quadratic

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm 2}{-1}=-1 \text { or } 3 .
$$

Thus, the x-intercepts are the points $(-1,0)$ and $(3,0)$.
The graph follows

Problem 2 Find the equation of the parabola that has vertex $V=(-2,1)$ and goes through the point $(1,3)$.

Solution:

Since the vertex is at $V=(-2,1)$, we have equation

$$
f(x)=a(x+2)^{2}+1 .
$$

But the parabola goes through $(1,3)$, whence

$$
3=a(1+2)^{2}+1, \quad \text { i.e., } \quad 3=9 a+1,
$$

which yields $a=\frac{2}{9}$. Thus, the equation of the parabola is

$$
f(x)=\frac{2}{9}(x+2)^{2}+1 .
$$

Problem 3 The supply and the demand of a specific item are modelled by $p=\frac{1}{2} q^{2}+q+\frac{1}{2}$ and $p=-\frac{1}{2} q^{2}-q+\frac{7}{2}$, respectively, where p denotes price and q number of items. Find the equilibrium price and the equilibrium supply.

Solution:

To find the equilibrium supply set the two price functions equal:

$$
\frac{1}{2} q^{2}+q+\frac{1}{2}=-\frac{1}{2} q^{2}-q+\frac{7}{2} .
$$

This gives $q^{2}+2 q-3=0$. This quadratic factors as $(q+3)(q-1)=0$. Hence $q=-3$ or $q=1$. Since supply has to be positive, we get $q=1$. The equilibrium price is then $p=\frac{1}{2}+1+\frac{1}{2}=2$.

Problem 4 Find the vertical and the horizontal asymptotes and the x - and y-intercepts of the function $f(x)=-\frac{2 x-3}{5 x+6}$ and roughly sketch its graph.

Solution:

The vertical asymptote is $x=-\frac{6}{5}$. The horizontal asymptote is given by $y=-\frac{2}{5}$. The y-intercept is obtained by setting $x=0$. We get $y=\frac{1}{2}$. Thus, it is the point $\left(0, \frac{1}{2}\right)$. The x-intercept is found by setting $y=0$. This gives $x=\frac{3}{2}$. The graph follows

Problem 5 Solve the exponential equation $4^{x^{2}+2}=64^{x}$.

Solution:

We have by transforming both sides to base 2: $\left(2^{2}\right)^{x^{2}+2}=\left(2^{6}\right)^{x}$, i.e., $2^{2\left(x^{2}+2\right)}=2^{6 x}$. Hence $2\left(x^{2}+2\right)=6 x$, whence $x^{2}+2=3 x$ and, therefore, $x^{2}-3 x+2=0$. This factors as $(x-2)(x-1)=0$. Therefore, we obtain the two solutions $x=1$ or $x=2$.

Problem 6 Solve the logarithmic equation $\log _{2} x-\log _{2}(x-1)=3$.

Solution:

We have $\log _{2} x-\log _{2}(x-1)=3$ implies $\log _{2} \frac{x}{x-1}=3$, whence $\frac{x}{x-1}=2^{3}$, i.e., $\frac{x}{x-1}=8$. Multiply both sides by $x-1$ to get $x=8(x-1)$. This gives $x=8 x-8$, whence $7 x=8$, i.e., $x=\frac{8}{7}$. Check to see that this is an accepted solution.

