EXAM 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Linda owes $\$ 10,000$ to a furniture store. She has agreed to pay the amount in 6 months at an interest rate of 10%. 3 months before the loan is due, the store needs $\$ 12,000$ to pay a wholesaler's bill. The bank agrees to discount the note at a rate of 12%. How much of the $\$ 12,000$ owed will be taken care of?

Solution:

Linda's note will be worth $A=10000(1+0.1 \cdot 0.5)=10500$ in 6 months. When the store asks the bank for a discount loan, the amount of the loan will A at 12% for only 3 months. Hence the proceeds are

$$
P=A(1-0.12 \cdot 0.25)=10500(1-0.03)=10500 \cdot 0.97
$$

This is the amount that will be taken care of.
Problem 2 George deposits $\$ 5,000$ at the beginning of each semiannual period for 5 years in an account paying 10\% compounded semiannually. After this period, he leaves the money alone with no further deposits for an additional 5 years. Find the final amount in the account at the end of the entire 10 year period.

Solution:

In the first 5 years, the amount in the annuity will be

$$
A=5000\left[\frac{(1+0.05)^{11}-1}{0.05}-1\right]
$$

Hence, the amount after another 5 years with semiannual compounding but without any more deposits will be

$$
B=5000\left[\frac{(1+0.05)^{11}-1}{0.05}-1\right](1+0.05)^{10}
$$

Problem 3 Solve the following system by substitution $\left\{\begin{aligned} 2 x+y & =-1 \\ -5 x+2 y & =16\end{aligned}\right\}$

Solution:

The first equation gives $y=-2 x-1$. Substituting this value for y in the second equation, we obtain $-5 x+2(-2 x-1)=16$, whence $-5 x-4 x-2=16$, i.e., $-9 x=18$ which gives $x=-2$. Back substituting into the equation for y, we get $y=3$. Thus the solution of the given system is $(x, y)=(-2,3)$.

Problem 4 Solve the following system by the Gauss-Jordan method

$$
\left\{\begin{array}{rrr}
x+y+z= & -1 \\
-x+3 y-z= & 1 \\
2 x+y-2 z= & 6
\end{array}\right\} .
$$

Solution:

Take the augmented matrix and perform row operations:

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrr|r}
1 & 1 & 1 & -1 \\
-1 & 3 & -1 & 1 \\
2 & 1 & -2 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & -1 \\
0 & 4 & 0 & 0 \\
0 & -1 & -4 & 8
\end{array}\right]}
\end{array}\right]\left[\begin{array}{rrr|r}
1 & 1 & 1 & -1 \\
0 & 1 & 0 & 0 \\
0 & -1 & -4 & 8
\end{array}\right] \longrightarrow
$$

Hence $(x, y, z)=(1,0,-2)$.
Problem 5 Let $X=\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]$. Solve the matrix equation $X^{2}=2 X+\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$.
Solution:
We have $X^{2}=2 X+\left[\begin{array}{rr}-1 & 0 \\ 0 & 3\end{array}\right]$ implies

$$
\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right] \cdot\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]=2\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]+\left[\begin{array}{rr}
-1 & 0 \\
0 & 3
\end{array}\right] .
$$

After performing the matrix operations this becomes

$$
\left[\begin{array}{rr}
x^{2} & 0 \\
0 & y^{2}
\end{array}\right]=\left[\begin{array}{rr}
2 x-1 & 0 \\
0 & 2 y+3
\end{array}\right] .
$$

Hence, $x^{2}=2 x-1$ and $y^{2}=2 y+3$. The first gives $x^{2}-2 x+1=0$ and the second $y^{2}-2 y-3=0$. Hence $(x-1)^{2}=0$ and $(y+1)(y-3)=0$. Therefore $x=1$ and $y=-1$ or $y=3$. Thus, there are two matrix solutions for X. The first is the matrix $X=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ and the second the matrix $X=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$.

Problem 6 Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 2 & 1 & 1\end{array}\right]$.

Solution:

We have

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
2 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 3 & -2 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 3 & -2 & -1 & 1
\end{array}\right] \longrightarrow} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] \longrightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -\frac{2}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right] .}
\end{aligned}
$$

Thus

$$
A^{-1}=\left[\begin{array}{rrr}
\frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\
0 & 1 & 0 \\
-\frac{2}{3} & -\frac{1}{3} & \frac{1}{3}
\end{array}\right]
$$

