HOMEWORK 1: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Sketch the graph of y = x + 1.

Solution:

Problem 2 Find the x- and y-intercepts of the graph in 1.

Solution:

For the x-intercept, set y = 0. Then x + 1 = 0, whence x = -1. For the y-intercept, set x = 0. Then y = 1.

Problem 3 Sketch the graph of y = -2x - 1.

Solution:

Problem 4 Find the x- and y-intercepts of the graph in 3.

Solution:

For the x-intercept, set y = 0. Then -2x - 1 = 0, whence $x = -\frac{1}{2}$. For the y-intercept, set x = 0. Then y = -1.

Problem 5 The slope of the line passing through the origin and the point (3, 1) is

(a)
$$-\frac{1}{3}$$
 (b) 3 (c) $-\frac{1}{2}$ (d) $\frac{1}{3}$

Solution:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 0}{3 - 0} = \frac{1}{3}.$$

So (d) is the correct answer.

Problem 6 The equation of the line having slope m = 2 and y-intercept b = 1 is

(a)
$$y = -2x + 1$$
 (b) $y = x + 2$ (c) $y = 2x + 1$ (d) $y = \frac{1}{2}x - 1$

Solution:

Use the slope intercept form y = mx + b. Since the slope m = 2 and the y-intercept is b = 1, we have y = 2x + 1. Thus (c) is the correct answer.

Problem 7 The equation of the line that is parallel to y = 3x + 2 and goes through the point (2,7) is

(a)
$$y = -\frac{1}{3}x - 1$$
 (b) $y = 3x + 1$ (c) $y = -3x + 1$ (d) $y = 3x - 1$

Solution:

The slopes of the two lines will have to be the same since they are parallel. Thus the slope of the line we are looking for is m = 3. Now since we also have the point (a, b) = (2, 7) on that line we may use the point-slope form y - b = m(x - a). We get y - 7 = 3(x - 2) or y = 3x + 1. Thus (b) is the correct answer.

Problem 8 The equation of the line that has slope m = 2 and goes through the point (2,3)

(a)
$$y = -2x - 1$$
 (b) $y = -2x + 1$ (c) $y = 2x + 1$ (d) $y = 2x - 1$

Solution:

Working in the same way as in 7, with m=2 and (a,b)=(2,3), we get y-3=2(x-2) or y=2x-1. Thus (d) is the right answer.