HOMEWORK 2: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 The point of intersection of $y=x+1$ and $y=-\frac{1}{3} x+2$ is
(a) $(3,4)$
(b) $\left(\frac{3}{4}, \frac{4}{7}\right)$
(c) $\left(\frac{3}{4}, \frac{7}{4}\right)$
(d) $\left(\frac{7}{4}, \frac{3}{4}\right)$

Solution:

Since at the point of intersection the two lines will have equal y-values, we get $x+1=$ $-\frac{1}{3} x+2$, whence $\frac{4}{3} x=1$, and, therefore, $x=\frac{3}{4}$. Plugging back into either $y=x+1$ or $y=-\frac{1}{3} x+2$, we get $y=\frac{7}{4}$. Thus the point of intersection is $\left(\frac{3}{4}, \frac{7}{4}\right)$, and (c) the correct answer.

Problem 2 The sales of a company are approximated by a linear equation. If the sales were \$ 200,000 in 1985 and $\$ 600,000$ in 1988, then the amount of sales in 1991 is
(a) $\$ 400,000$
(b) $\$ 1,000,000$
(c) $\$ 800,000$
(d) $\$ 1,200,000$

Solution:

The line that approximates the sales passes through the points $(1985,200000)$ and $(1988,600000)$. Thus its slope m is given by

$$
m=\frac{600,000-200,000}{1988-1985}=\frac{400,000}{3}
$$

Its equation is therefore given by the point-slope form

$$
y-200,000=\frac{400,000}{3}(x-1985)
$$

Now, plug in 1991 for the year x to obtain

$$
y=\frac{400,000}{3}(1991-1985)+200,000=1,000,000
$$

Thus, the correct answer is (b).

Problem 3 The solutions of $(x-7)(3 x+5)=0$ are
(a) 7,3
(b) 5,7
(c) $-7, \frac{5}{3}$
(d) $7,-\frac{5}{3}$

Solution:

$(x-7)(3 x+5)=0$ implies $x-7=0$ or $3 x+5=0$ and, thus $x=7$ or $x=-\frac{5}{3}$. Thus (d) is the right answer.

Problem 4 The solutions of $x^{2}=9$ are
(a) 1, 3
(b) $\frac{1}{3},-\frac{1}{3}$
(c) $3,-3$
(d) 8,1

Solution:

$x^{2}=9$ implies $x=-\sqrt{9}$ or $x=\sqrt{9}$, i.e., $x=-3$ or $x=3$. Thus, (c) is the right answer.

Problem 5 The solutions of $x^{2}-3 x-10=0$ are
(a) $-2,5$
(b) $2,-5$
(c) 2,5
(d) $-2,-5$

Solution:

We have $x^{2}-3 x-10=0$ implies $(x-5)(x+2)=0$, whence $x-5=0$ or $x+2=0$, and, therefore $x=5$ or $x=-2$. Hence (a) is the correct answer.

Problem 6 The solution of $4 x+3 \leq 12$ is
(a) $x \leq \frac{9}{4}$
(b) $x \leq 12$
(c) $x \geq 4$
(d) $x \geq-\frac{9}{4}$

Solution:

We have $4 x+3 \leq 12$ implies $4 x \leq 9$, whence $x \leq \frac{9}{4}$. Thus, (a) is the correct answer.
Problem 7 The solution of $x+4(x+1)>5(2-x)+x$ is
(a) $\quad x \leq \frac{1}{3}$
(b) $\quad x>\frac{2}{3}$
(c) $\quad x<\frac{3}{2}$
(d) $\quad x \geq \frac{1}{3}$

Solution:

$x+4(x+1)>5(2-x)+x$ gives $x+4 x+4>10-5 x+x$, whence $5 x+4>10-4 x$, i.e., $9 x>6$, and, therefore, $x>\frac{2}{3}$. Thus, (b) is the right answer.

Problem 8 The solution of $\left|x+\frac{2}{5}\right|+1<3$ is
(a) $-\frac{12}{5}<x$
(b) $\frac{12}{5}<x<\frac{18}{5}$
(c) $x<\frac{8}{5}$
(d) $-\frac{12}{5}<x<\frac{8}{5}$

Solution:

$\left|x+\frac{2}{5}\right|+1<3$ gives $\left|x+\frac{2}{5}\right|<2$, whence

$$
-2<x+\frac{2}{5}<2 \Rightarrow-2-\frac{2}{5}<x<2-\frac{2}{5}
$$

and, therefore $-\frac{12}{5}<x<\frac{8}{5}$. Thus, (d) is the right answer.

