HOMEWORK 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 The equation of the line perpendicular to y = 5x - 2 and passing through (5, 2) is

(a)
$$y = -\frac{1}{5}x + 1$$
 (b) $y = 5x + 2$ (c) $y = -\frac{1}{5}x + 3$ (d) $y = \frac{1}{5}x + 1$

Solution:

Since the unknown line is perpendicular to y = 5x - 2, its slope m will be such that 5m = -1, i.e., $m = -\frac{1}{5}$. Then, since it passes through (5, 2), the point-slope form gives $y - 2 = -\frac{1}{5}(x-5)$, whence $y - 2 = -\frac{1}{5}x + 1$ or $y = -\frac{1}{5}x + 3$. Hence (c) is the correct answer.

Problem 2 The equation of the line with x-intercept 3 and y-intercept -9 is

(a)
$$y = 2x - 9$$
 (b) $y = -9x + 3$ (c) $y = -\frac{1}{3}x - 1$ (d) $y = 3x - 9$

Solution:

The given points are (3,0) and (0,-9). The slope of the line is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-9 - 0}{0 - 3} = 3.$$

Since the *y*-intercept is b = -9, the equation is given by the slope-intercept form as y = 3x - 9. Hence (d) is the correct answer.

Problem 3 The Revenue R in terms of the number of items produced is given by R(x) = 3xand the cost C by C(x) = 2x + 7. Then, the break-even point and the break-even price are

(a) 7,21 (b) 3,9 (c) 3,13 (d)
$$\frac{1}{3}$$
,1

Solution:

We set R(x) = C(x), whence 3x = 2x + 7, i.e., x = 7. R(7) = 21. Hence at x = 7 items the company breaks even and the break-even price is 21. (a) is the correct answer.

Problem 4 The supply S and the demand D in terms of the number of items q are given by $S(q) = \frac{1}{2}q + 4$ and $D(q) = -\frac{2}{3}q + 18$, respectively. Then the equilibrium demand and the equilibrium price are

(a) 10,9 (b) 12,10 (c) 3,16 (d)
$$1,\frac{17}{4}$$

Solution:

We set S(q) = D(q). Then $\frac{1}{2}q + 4 = -\frac{2}{3}q + 18$, which gives $\frac{7}{6}q = 14$, i.e., q = 12. Thus, the equilibrium price would be S(12) = 10. Hence (b) is the correct answer.

Problem 5 The solutions of $17x^2 - 17x = 0$ are

(a) 0, -1 (b) 0, 1 (c) -1, 1 (d) 1, 17

Solution:

We have $17x^2 - 17x = 0$, whence 17x(x - 1) = 0, and, therefore x = 0 or x - 1 = 0, i.e., x = 0 or x = 1. Thus, (b) is the correct answer.

Problem 6 $4x^2 - 8x - 5 = 0$ has

(a) 0 (b) 1 (c) 2 (d) 3 solutions

Solution:

We get $D = b^2 - 4ac = (-8)^2 - 4 \cdot 4 \cdot (-5) = 64 + 80 = 144$. Since D > 0 the quadratic has 2 different solutions. Thus (c) is the right answer.

Problem 7 George wants to buy a rug for a hallway that is 2 feet by 4 feet. He wants to leave a uniform strip of floor around the rug. Since he is a logician, he can only afford 3 square feet of carpeting. Can you help him out by computing what dimensions the rug should have?

(a) 1.5×3.5 (b) 1.75×3.75 (c) 0.5×2.5 (d) 1×3

Solution:

Draw the figure to realize that, if x denotes the width of the uniform strip around the rug, then we must have as dimensions of the rug $(2-2x) \times (4-2x)$. Therefore (2-2x)(4-2x) = 3 which gives $8 - 8x - 4x + 4x^2 = 3$, i.e., $4x^2 - 12x + 5 = 0$. Use the quadratic formula to find

$$x_{1,2} = \frac{-(-12) \pm \sqrt{(-12)^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{12 \pm \sqrt{144 - 80}}{8} = \frac{12 \pm 8}{8} = \frac{20}{8} \text{ or } \frac{4}{8}.$$

Note that $x = \frac{20}{8}$ is not valid because $2x \le 2$. Hence $x = \frac{1}{2}$ and therefore the rug would be of dimensions $(2 - 2\frac{1}{2}) \times (4 - 2\frac{1}{2})$, i.e., 1×3 . Hence (d) is the right answer.

Problem 8 |3x-2|+4>6 has solutions

(a)
$$x \le 0 \text{ or } x > \frac{4}{3}$$
 (b) $0 < x < \frac{4}{3}$ (c) $x < 0 \text{ or } x > \frac{4}{3}$ (d) $0 \le x < \frac{4}{3}$

Solution:

We have |3x - 2| + 4 > 6, whence |3x - 2| > 2, i.e., 3x - 2 < -2 or 3x - 2 > 2, which gives 3x < 0 or 3x > 4, which finally results in

$$x < 0$$
 or $x > \frac{4}{3}$.

Thus (c) is the right answer.