HOMEWORK 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 The equation of the line perpendicular to $y=5 x-2$ and passing through $(5,2)$ is
(a) $y=-\frac{1}{5} x+1$
(b) $y=5 x+2$
(c) $y=-\frac{1}{5} x+3$
(d) $y=\frac{1}{5} x+1$

Solution:

Since the unknown line is perpendicular to $y=5 x-2$, its slope m will be such that $5 m=-1$, i.e., $m=-\frac{1}{5}$. Then, since it passes through $(5,2)$, the point-slope form gives $y-2=-\frac{1}{5}(x-5)$, whence $y-2=-\frac{1}{5} x+1$ or $y=-\frac{1}{5} x+3$. Hence (c) is the correct answer.

Problem 2 The equation of the line with x-intercept 3 and y-intercept -9 is
(a) $y=2 x-9$
(b) $y=-9 x+3$
(c) $y=-\frac{1}{3} x-1$
(d) $y=3 x-9$

Solution:

The given points are $(3,0)$ and $(0,-9)$. The slope of the line is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-9-0}{0-3}=3
$$

Since the y-intercept is $b=-9$, the equation is given by the slope-intercept form as $y=$ $3 x-9$. Hence (d) is the correct answer.

Problem 3 The Revenue R in terms of the number of items produced is given by $R(x)=3 x$ and the cost C by $C(x)=2 x+7$. Then, the break-even point and the break-even price are
(a) 7, 21
(b) 3,9
(c) 3,13
(d) $\frac{1}{3}, 1$

Solution:

We set $R(x)=C(x)$, whence $3 x=2 x+7$, i.e., $x=7 . R(7)=21$. Hence at $x=7$ items the company breaks even and the break-even price is 21 . (a) is the correct answer.

Problem 4 The supply S and the demand D in terms of the number of items q are given by $S(q)=\frac{1}{2} q+4$ and $D(q)=-\frac{2}{3} q+18$, respectively. Then the equilibrium demand and the equilibrium price are
(a) 10,9
(b) 12,10
(c) 3,16
(d) $1, \frac{17}{4}$

Solution:

We set $S(q)=D(q)$. Then $\frac{1}{2} q+4=-\frac{2}{3} q+18$, which gives $\frac{7}{6} q=14$, i.e., $q=12$. Thus, the equilibrium price would be $S(12)=10$. Hence (b) is the correct answer.

Problem 5 The solutions of $17 x^{2}-17 x=0$ are
(a) $0,-1$
(b) 0,1
(c) $-1,1$
(d) 1,17

Solution:

We have $17 x^{2}-17 x=0$, whence $17 x(x-1)=0$, and, therefore $x=0$ or $x-1=0$, i.e., $x=0$ or $x=1$. Thus, (b) is the correct answer.

Problem $64 x^{2}-8 x-5=0$ has
(a) 0
(b) 1
(c) 2
(d) 3 solutions

Solution:

We get $D=b^{2}-4 a c=(-8)^{2}-4 \cdot 4 \cdot(-5)=64+80=144$. Since $D>0$ the quadratic has 2 different solutions. Thus (c) is the right answer.

Problem 7 George wants to buy a rug for a hallway that is 2 feet by 4 feet. He wants to leave a uniform strip of floor around the rug. Since he is a logician, he can only afford 3 square feet of carpeting. Can you help him out by computing what dimensions the rug should have?
(a) 1.5×3.5
(b) 1.75×3.75
(c) 0.5×2.5
(d) 1×3

Solution:

Draw the figure to realize that, if x denotes the width of the uniform strip around the rug, then we must have as dimensions of the rug $(2-2 x) \times(4-2 x)$. Therefore $(2-2 x)(4-2 x)=3$ which gives $8-8 x-4 x+4 x^{2}=3$, i.e., $4 x^{2}-12 x+5=0$. Use the quadratic formula to find

$$
x_{1,2}=\frac{-(-12) \pm \sqrt{(-12)^{2}-4 \cdot 4 \cdot 5}}{2 \cdot 4}=\frac{12 \pm \sqrt{144-80}}{8}=\frac{12 \pm 8}{8}=\frac{20}{8} \text { or } \frac{4}{8}
$$

Note that $x=\frac{20}{8}$ is not valid because $2 x \leq 2$. Hence $x=\frac{1}{2}$ and therefore the rug would be of dimensions $\left(2-2 \frac{1}{2}\right) \times\left(4-2 \frac{1}{2}\right)$, i.e., 1×3. Hence (d) is the right answer.

Problem $8|3 x-2|+4>6$ has solutions
(a) $x \leq 0$ or $x>\frac{4}{3}$
(b) $0<x<\frac{4}{3}$
(c) $x<0$ or $x>\frac{4}{3}$
(d) $0 \leq x<\frac{4}{3}$

Solution:

We have $|3 x-2|+4>6$, whence $|3 x-2|>2$, i.e., $3 x-2<-2$ or $3 x-2>2$, which gives $3 x<0$ or $3 x>4$, which finally results in

$$
x<0 \quad \text { or } \quad x>\frac{4}{3}
$$

Thus (c) is the right answer.

