HOMEWORK 4: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Use the quadratic formula to solve $6x^2 - x - 2 = 0$. The solutions are

(a)
$$\frac{1}{2}, -\frac{2}{3}$$
 (b) $\frac{1}{2}, \frac{3}{2}$ (c) $-\frac{1}{2}, \frac{3}{2}$ (d) $-\frac{1}{2}, \frac{2}{3}$

Solution:

We have

$$D = b^{2} - 4ac = (-1)^{2} - 4 \cdot 6 \cdot (-2) = 1 + 48 = 49.$$

Hence

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-1) \pm \sqrt{49}}{2 \cdot 6} = \frac{1 \pm 7}{12} = \frac{2}{3} \text{ or } -\frac{1}{2}.$$

Thus (d) is the correct answer.

Problem 2 Use the quadratic formula to solve the equation $10x^2 - 11x + 3 = 0$. The solutions are

(a) no solutions (b)
$$\frac{3}{5}, \frac{1}{2}$$
 (c) $\frac{5}{3}, \frac{1}{2}$ (d) $-\frac{3}{5}, -\frac{1}{2}$

Solution:

We have

$$D = b^{2} - 4ac = (-11)^{2} - 4 \cdot 10 \cdot 3 = 121 - 120 = 1.$$

Hence

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-(-11) \pm \sqrt{1}}{2 \cdot 10} = \frac{11 \pm 1}{20} = \frac{3}{5} \text{ or } \frac{1}{2}.$$

Hence (b) is the right answer.

Problem 3 Solve the inequality $x^2 - 7x + 12 \ge 2$. The solution is

(a) 2 < x < 5 (b) x < 1 or x > 6 (c) $x \le 1$ or $x \ge 6$ (d) $x \le 2$ or $x \ge 5$

Solution:

We have $x^2 - 7x + 12 \ge 2$ implies $x^2 - 7x + 10 \ge 0$, i.e., $(x-2)(x-5) \ge 0$. Now construct the sign table to see that (x-2)(x-5) is positive or zero in the intervals

$$x \le 2$$
 or $x \ge 5$.

Hence (d) is the correct answer.

Problem 4 Solve the inequality $\frac{x-2}{x+3} \leq 0$. The solutions are

$$(a) \quad -3 \le x < 2 \quad (b) \quad -3 \le x \le 2 \quad (c) \quad -3 < x \le 2 \quad (d) \quad x < -3 \text{ or } x \ge 2$$

Solution:

Form the sign table to get the sign of the product (x-2)(x+3). This is negative or zero in the interval $-3 \le x \le 2$. However -3 zeros the denominator of the given fraction and has to be excluded from the solution set. Hence the interval of the solutions is

$$-3 < x \le 2.$$

Thus (c) is the right answer.

Problem 5 The domain of f(x) = |x| is

(a) \mathbb{R} (b) $\{x : x \ge 0\}$ (c) $\mathbb{R} - \{0\}$ (d) $\{x : x > 0\}$

Solution:

No denominators and no square roots appear. So there are no restrictions that have to be taken care of. The answer, thus, is the whole set of real numbers \mathbb{R} . I.e., (a) is the correct answer.

Problem 6 The domain of
$$g(x) = \sqrt{\frac{x^2 - 2x + 1}{x - 3}}$$
 is

(a) $\{x : x \le 1 \text{ or } x > 3\}$ (b) $\{x : x \ge 3\}$ (c) $\{x : x > 3\}$ (d) $\mathbb{R} - \{3\}$

Solution:

We must take the two restrictions

1.
$$x - 3 \neq 0$$
 and

2. $\frac{x^2 - 2x + 1}{x - 3} \ge 0.$

The first gives $x \neq 3$. The second, after setting up the sign table, yields x = 1 or x > 3. Thus $\{x : x = 1 \text{ or } x > 3\}$ is the right answer. Unfortunately, because of my mistake, this correct answer does not appear in the multiple choice answers...

Problem 7 Graph the piece-wise linear function

$$f(x) = \begin{cases} -x - 2, & \text{if } x \le 2\\ 2x + 3, & \text{if } x > 2 \end{cases}$$

Solution:

Draw the graphs of g(x) = -x - 2 for $x \le 2$ and of h(x) = 2x + 3 for x > 2 on the same coordinate axes. You would obtain the following graph

Problem 8 Consider the function $g(x) = -x^2 + 8x - 15$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The *x*-coordinate of the vertex is $x = -\frac{b}{2a} = -\frac{8}{2 \cdot (-1)} = 4$. Thus, the *y*-coordinate is $f(4) = -4^2 + 8 \cdot 4 - 15 = -16 + 32 - 15 = 1$. Thus V = (4, 1).

The x-intercepts may be found by setting y = 0. Then $-x^2 + 8x - 15 = 0$, i.e., $x^2 - 8x + 15 = 0$. This gives (x - 3)(x - 5) = 0, whence x = 3 or x = 5. The x-intercepts are therefore the points (3, 0) and (5, 0).

Since a = -1 < 0, the parabola opens down.

Its rough sketch follows: