HOMEWORK 4: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Use the quadratic formula to solve $6 x^{2}-x-2=0$. The solutions are
(a) $\frac{1}{2},-\frac{2}{3}$
(b) $\frac{1}{2}, \frac{3}{2}$
(c) $-\frac{1}{2}, \frac{3}{2}$
(d) $-\frac{1}{2}, \frac{2}{3}$

Solution:

We have

$$
D=b^{2}-4 a c=(-1)^{2}-4 \cdot 6 \cdot(-2)=1+48=49
$$

Hence

$$
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-1) \pm \sqrt{49}}{2 \cdot 6}=\frac{1 \pm 7}{12}=\frac{2}{3} \text { or }-\frac{1}{2} .
$$

Thus (d) is the correct answer.
Problem 2 Use the quadratic formula to solve the equation $10 x^{2}-11 x+3=0$. The solutions are
(a) no solutions
(b) $\frac{3}{5}, \frac{1}{2}$
(c) $\frac{5}{3}, \frac{1}{2}$
(d) $-\frac{3}{5},-\frac{1}{2}$

Solution:

We have

$$
D=b^{2}-4 a c=(-11)^{2}-4 \cdot 10 \cdot 3=121-120=1
$$

Hence

$$
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-11) \pm \sqrt{1}}{2 \cdot 10}=\frac{11 \pm 1}{20}=\frac{3}{5} \text { or } \frac{1}{2}
$$

Hence (b) is the right answer.
Problem 3 Solve the inequality $x^{2}-7 x+12 \geq 2$. The solution is
(a) $2<x<5$
(b) $x<1$ or $x>6$
(c) $x \leq 1$ or $x \geq 6$
(d) $x \leq 2$ or $x \geq 5$

Solution:

We have $x^{2}-7 x+12 \geq 2$ implies $x^{2}-7 x+10 \geq 0$, i.e., $(x-2)(x-5) \geq 0$. Now construct the sign table to see that $(x-2)(x-5)$ is positive or zero in the intervals

$$
x \leq 2 \quad \text { or } \quad x \geq 5
$$

Hence (d) is the correct answer.
Problem 4 Solve the inequality $\frac{x-2}{x+3} \leq 0$. The solutions are
(a) $-3 \leq x<2$
(b) $-3 \leq x \leq 2$
(c) $-3<x \leq 2$
(d) $x<-3$ or $x \geq 2$

Solution:

Form the sign table to get the sign of the product $(x-2)(x+3)$. This is negative or zero in the interval $-3 \leq x \leq 2$. However -3 zeros the denominator of the given fraction and has to be excluded from the solution set. Hence the interval of the solutions is

$$
-3<x \leq 2
$$

Thus (c) is the right answer.
Problem 5 The domain of $f(x)=|x|$ is
(a) \mathbb{R}
(b) $\quad\{x: x \geq 0\}$
(c) $\mathbb{R}-\{0\}$
(d) $\{x: x>0\}$

Solution:

No denominators and no square roots appear. So there are no restrictions that have to be taken care of. The answer, thus, is the whole set of real numbers \mathbb{R}. I.e., (a) is the correct answer.

Problem 6 The domain of $g(x)=\sqrt{\frac{x^{2}-2 x+1}{x-3}}$ is
(a) $\{x: x \leq 1$ or $x>3\}$
(b) $\quad\{x: x \geq 3\}$
(c) $\{x: x>3\}$
(d) $\mathbb{R}-\{3\}$

Solution:

We must take the two restrictions

1. $x-3 \neq 0$ and
2. $\frac{x^{2}-2 x+1}{x-3} \geq 0$.

The first gives $x \neq 3$. The second, after setting up the sign table, yields $x=1$ or $x>3$. Thus $\{x: x=1$ or $x>3\}$ is the right answer. Unfortunately, because of my mistake, this correct answer does not appear in the multiple choice answers...

Problem 7 Graph the piece-wise linear function

$$
f(x)= \begin{cases}-x-2, & \text { if } x \leq 2 \\ 2 x+3, & \text { if } x>2\end{cases}
$$

Solution:

Draw the graphs of $g(x)=-x-2$ for $x \leq 2$ and of $h(x)=2 x+3$ for $x>2$ on the same coordinate axes. You would obtain the following graph

Problem 8 Consider the function $g(x)=-x^{2}+8 x-15$. Its graph is a parabola. Find its vertex and x-intercepts, state whether it opens up or down and make a rough sketch of it.

Solution:

The x-coordinate of the vertex is $x=-\frac{b}{2 a}=-\frac{8}{2 \cdot(-1)}=4$. Thus, the y-coordinate is $f(4)=-4^{2}+8 \cdot 4-15=-16+32-15=1$. Thus $V=(4,1)$.

The x-intercepts may be found by setting $y=0$. Then $-x^{2}+8 x-15=0$, i.e., $x^{2}-$ $8 x+15=0$. This gives $(x-3)(x-5)=0$, whence $x=3$ or $x=5$. The x-intercepts are therefore the points $(3,0)$ and $(5,0)$.

Since $a=-1<0$, the parabola opens down.
Its rough sketch follows:

