HOMEWORK 5: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the vertex, the opening direction, the intercepts and make a rough sketch of the graph of the function $f(x) = -x^2 - 2x$.

Solution:

We have $V = (-\frac{b}{2a}, f(-\frac{b}{2a}))$. Therefore $x = -\frac{b}{2a} = -\frac{-2}{2(-1)} = -1$ and $f(-1) = -(-1)^2 - 2(-1) = -1 + 2 = 1$. The vertex thus is at V = (-1, 1).

The parabola will open down because a = -1 < 0.

The y-intercepts are given by setting x = 0. We then get y = 0. Finally, the x-intercepts are obtained by setting y = 0. We find $-x^2 - 2x = 0$ implies -x(x+2) = 0, i.e., x = -2 or x = 0.

The rough sketch follows:

Problem 2 Do the same for the function $g(x) = x^2 - x - 2$.

Solution:

We have $V = \left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$. Therefore $x = -\frac{b}{2a} = -\frac{-1}{2} = \frac{1}{2}$ and $f(\frac{1}{2}) = (\frac{1}{2})^2 - \frac{1}{2} - 2 = \frac{1}{4} - \frac{1}{2} - 2 = -\frac{9}{4}$. The vertex thus is at $V = (\frac{1}{2}, -\frac{9}{4})$.

The parabola will open up because a = 1 > 0.

The y-intercepts are given by setting x = 0. We then get y = -2. Finally, the x-intercepts are obtained by setting y = 0. We find $x^2 - x - 2 = 0$ implies (x - 2)(x + 1) = 0, i.e., x = -1 or x = 2.

The rough sketch follows:

Problem 3 Find the vertex and the opening direction of the graph of $h(x) = (x-1)^2 - 3$.

Solution:

Compare with the form $h(x) = a(x-h)^2 + k$. We see that a = 1 > 0, whence the parabola opens up and that h = 1, k = -3, whence its vertex is at the point V = (h, k) = (1, -3).

Problem 4 Find the equation of the function whose graph is a parabola with vertex V = (1,1) passing through (-1,0).

Solution:

The general formula of a parabola with vertex at (h, k) is given by $f(x) = a(x-h)^2 + k$. Since the vertex is at the point V = (1, 1), the parabola will have the equation $f(x) = a(x-1)^2 + 1$. But we also know that it passes through the point (-1, 0), whence we must have

$$0 = a(-1-1)^2 + 1$$
, i.e., $0 = (-2)^2 a + 1$,

which gives 4a = -1, and, hence, $a = -\frac{1}{4}$. Thus, the equation of the parabola is $f(x) = -\frac{1}{4}(x-1)^2 + 1$.

Problem 5 When the price of a bizz is p(x) = 200 - x, then x bizz are sold. Find an expression for the revenue R(x) in terms of the number x of bizz. Find the number of bizz that have to be sold to maximize the revenue and the maximum revenue.

Solution:

The revenue is the product of the number of items sold times the price per item. Thus, it is given by $R(x) = xp(x) = x(200 - x) = -x^2 + 200x$. This is a parabola that opens down and, therefore, the maximum revenue will be achieved at its vertex point. The *x*-coordinate of the vertex is $-\frac{b}{2a} = -\frac{200}{2(-1)} = 100$ and the *y*-coordinate $y = R(-\frac{b}{2a}) = R(100) = 10,000$. Thus the maximum revenue is achieved when 100 bizz are sold and it is 10,000.

Problem 6 An object is thrown upward with initial velocity 2 feet per second from an initial height of 3 feet. Then its height after t seconds is given by $h(t) = -t^2 + 2t + 3$. Find the maximum height that the object will attain and how long it will take for the object to hit the ground.

Solution:

The height as a function of time is a parabola that opens down. Hence the maximum height will be achieved at the vertex of the parabola. This is given by $t = -\frac{b}{2a} = -\frac{2}{2(-1)} = 1$ and h(1) = -1 + 2 + 3 = 4. Hence the maximum height is 4 feet and it is reached after 1 second.

When the object hits the ground, its height will be 0. Hence $-t^2 + 2t + 3 = 0$, i.e., $t^2 - 2t - 3 = 0$, and, therefore (t - 3)(t + 1) = 0. This gives t = -1 or t = 3. Thus, the object will hit the ground after 3 seconds.

Problem 7 Create the sign table and graph the function $f(x) = 2x^3 - 3x^2$.

Solution:

These are shown below:

Problem 8 Find the horizontal and vertical asymptotes of the function $g(x) = \frac{x+7}{x-3}$. Then roughly sketch its graph.

Solution:

The vertical asymptote is x = 3, i.e., at the zero of the denominator. The horizontal asymptote is at $y = \frac{1}{1} = 1$.

A rough sketch follows: