HOMEWORK 5: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the vertex, the opening direction, the intercepts and make a rough sketch of the graph of the function $f(x)=-x^{2}-2 x$.

Solution:

We have $V=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. Therefore $x=-\frac{b}{2 a}=-\frac{-2}{2(-1)}=-1$ and $f(-1)=-(-1)^{2}-$ $2(-1)=-1+2=1$. The vertex thus is at $V=(-1,1)$.

The parabola will open down because $a=-1<0$.
The y-intercepts are given by setting $x=0$. We then get $y=0$. Finally, the x-intercepts are obtained by setting $y=0$. We find $-x^{2}-2 x=0$ implies $-x(x+2)=0$, i.e., $x=-2$ or $x=0$.

The rough sketch follows:

Problem 2 Do the same for the function $g(x)=x^{2}-x-2$.

Solution:

We have $V=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$. Therefore $x=-\frac{b}{2 a}=-\frac{-1}{2}=\frac{1}{2}$ and $f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-\frac{1}{2}-2=$ $\frac{1}{4}-\frac{1}{2}-2=-\frac{9}{4}$. The vertex thus is at $V=\left(\frac{1}{2},-\frac{9}{4}\right)$.

The parabola will open up because $a=1>0$.
The y-intercepts are given by setting $x=0$. We then get $y=-2$. Finally, the x-intercepts are obtained by setting $y=0$. We find $x^{2}-x-2=0$ implies $(x-2)(x+1)=0$, i.e., $x=-1$ or $x=2$.

The rough sketch follows:

Problem 3 Find the vertex and the opening direction of the graph of $h(x)=(x-1)^{2}-3$.

Solution:

Compare with the form $h(x)=a(x-h)^{2}+k$. We see that $a=1>0$, whence the parabola opens up and that $h=1, k=-3$, whence its vertex is at the point $V=(h, k)=(1,-3)$.

Problem 4 Find the equation of the function whose graph is a parabola with vertex $V=$ $(1,1)$ passing through $(-1,0)$.

Solution:

The general formula of a parabola with vertex at (h, k) is given by $f(x)=a(x-h)^{2}+k$. Since the vertex is at the point $V=(1,1)$, the parabola will have the equation $f(x)=$ $a(x-1)^{2}+1$. But we also know that it passes through the point $(-1,0)$, whence we must have

$$
0=a(-1-1)^{2}+1, \quad \text { i.e., } \quad 0=(-2)^{2} a+1,
$$

which gives $4 a=-1$, and, hence, $a=-\frac{1}{4}$. Thus, the equation of the parabola is $f(x)=$ $-\frac{1}{4}(x-1)^{2}+1$.

Problem 5 When the price of a bizz is $p(x)=200-x$, then x bizz are sold. Find an expression for the revenue $R(x)$ in terms of the number x of bizz. Find the number of bizz that have to be sold to maximize the revenue and the maximum revenue.

Solution:

The revenue is the product of the number of items sold times the price per item. Thus, it is given by $R(x)=x p(x)=x(200-x)=-x^{2}+200 x$. This is a parabola that opens down and, therefore, the maximum revenue will be achieved at its vertex point. The x-coordinate of the vertex is $-\frac{b}{2 a}=-\frac{200}{2(-1)}=100$ and the y-coordinate $y=R\left(-\frac{b}{2 a}\right)=R(100)=10,000$. Thus the maximum revenue is achieved when 100 bizz are sold and it is 10,000 .

Problem 6 An object is thrown upward with initial velocity 2 feet per second from an initial height of 3 feet. Then its height after t seconds is given by $h(t)=-t^{2}+2 t+3$. Find the maximum height that the object will attain and how long it will take for the object to hit the ground.

Solution:

The height as a function of time is a parabola that opens down. Hence the maximum height will be achieved at the vertex of the parabola. This is given by $t=-\frac{b}{2 a}=-\frac{2}{2(-1)}=1$ and $h(1)=-1+2+3=4$. Hence the maximum height is 4 feet and it is reached after 1 second.

When the object hits the ground, its height will be 0 . Hence $-t^{2}+2 t+3=0$, i.e., $t^{2}-2 t-3=0$, and, therefore $(t-3)(t+1)=0$. This gives $t=-1$ or $t=3$. Thus, the object will hit the ground after 3 seconds.

Problem 7 Create the sign table and graph the function $f(x)=2 x^{3}-3 x^{2}$.

Solution:

These are shown below:

Problem 8 Find the horizontal and vertical asymptotes of the function $g(x)=\frac{x+7}{x-3}$. Then roughly sketch its graph.

Solution:

The vertical asymptote is $x=3$, i.e., at the zero of the denominator. The horizontal asymptote is at $y=\frac{1}{1}=1$.

A rough sketch follows:

