

Figure 1: The graphs of the three exponentials.

HOMEWORK 6: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Find the equations of the vertical and horizontal asymptotes of the function $f(x) = \frac{x^2 - 2x - 3}{x^2 - 7x + 10}$.

Solution:

We have

$$f(x) = \frac{x^2 - 2x - 3}{x^2 - 7x + 10} = \frac{(x - 3)(x + 1)}{(x - 2)(x - 5)}$$

Thus, the roots of the numerator are x = -1 and x = 3 and the roots of the denominator are x = 2 and x = 5. This shows that the vertical asymptotes are the vertical lines x = 2 and x = 5. The horizontal asymptote is the line $y = \frac{a}{a'}$, where a and a', respectively, are the coefficients of the highest degree terms of the numerator and of the denominator, respectively. Thus, $y = \frac{1}{1} = 1$ is the horizontal asymptote.

Problem 2 Graph on the same axis the functions $f(x) = 5^x$, $g(x) = 5^{-x}$ and $h(x) = -5^x$. Before graphing compute their values at x = 0 and x = 1 and depict those clearly on your graphs.

Solution:

The tables of values for the three functions are shown below:

Hence the three graphs are shown in Figure 1.

Problem 3 Solve the equation $5^{x^2} = 25^{2x-\frac{3}{2}}$.

Solution:

We have $5^{x^2} = (5^2)^{2x-\frac{3}{2}}$, whence $5^{x^2} = 5^{2(2x-\frac{3}{2})}$, and, therefore, $x^2 = 2(2x-\frac{3}{2})$. Hence $x^2 = 4x - 3$ and $x^2 - 4x + 3 = 0$. This gives (x - 3)(x - 1) = 0, whence x = 1 or x = 3.

Problem 4 Solve the equation $7^{-x+5} = (\frac{1}{7})^{2x-3}$.

Solution:

 $7^{-x+5} = (7^{-1})^{2x-3}$, whence $7^{-x+5} = 7^{-(2x-3)}$, i.e., -x+5 = -2x+3, which yields x = -2.

Problem 5 Culture studies in the lab have determined that the population of an organism A as a function of time t is given by $f(t) = e^{t^2 - 2t}$. At the same time, the population of another organism B in the same culture has been declining according to the function $g(t) = e^{-2t+1}$. At what time will the two organisms have the same populations in the culture?

Solution:

We must have f(t) = g(t), whence $e^{t^2 - 2t} = e^{-2t+1}$, and, hence, $t^2 - 2t = -2t + 1$, which yields $t^2 = 1$, and, thus, $t = \pm 1$. But t denotes time, whence t = 1.

Problem 6 Compute $\ln(\sqrt[6]{e})$ and $\ln(e^7)$ without using a calculator.

Solution:

$$\ln\left(\sqrt[6]{e}\right) = \ln\left(e^{\frac{1}{6}}\right)$$
$$= \frac{1}{6}\ln e$$
$$= \frac{1}{6}.$$

and

$$\ln(e^7) = 7\ln e$$
$$= 7.$$

Problem 7 If $\ln x = 3$ and $\ln y = 4$ find $\ln (\sqrt{x} \cdot y^2)$.

Solution:

We have

$$\ln (\sqrt{x} \cdot y^2) = \ln (\sqrt{x}) + \ln (y^2)$$

= $\ln (x^{\frac{1}{2}}) + \ln (y^2)$
= $\frac{1}{2} \ln x + 2 \ln y$
= $\frac{1}{2} \cdot 3 + 2 \cdot 4$
= $\frac{3}{2} + 8$
= $\frac{19}{2}$.

Problem 8 Solve the equation $\log_2 x - \log_2 (x - 3) = 3$.

Solution:

We get

$$\log_2 \frac{x}{x-3} = \log_2 8,$$

whence $\frac{x}{x-3} = 8$, which yields x = 8(x-3), i.e., x = 8x - 24, and, therefore, 7x = 24, or $x = \frac{24}{7}$.