HOMEWORK 7: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Solve the equation $\log _{18} x+\log _{18}(x-7)=1$.

Solution:

We have $\log _{18} x+\log _{18}(x-7)=1$ implies $\log _{18}(x(x-7))=1$, whence $x(x-7)=18$. Therefore $x^{2}-7 x-18=0$, i.e., $(x-9)(x+2)=0$. Thus, $x=-2$ or $x=9$. But only $x=9$ is an acceptable solution because for $x=-2$ both arguments of the logarithms $\log _{18} x$ and $\log _{18}(x-7)$ become negative.

Problem 2 Solve the equation $\log \left(x^{3}\right)=(\log x)^{2}$.

Solution:

$$
\begin{gathered}
\log \left(x^{3}\right)=(\log x)^{2} \text { implies } 3 \log x=(\log x)^{2} \text {, whence }(\log x)^{2}-3 \log x=0 \text {, i.e., } \\
\log x(\log x-3)=0 .
\end{gathered}
$$

Hence $\log x=0$ or $\log x-3=0$. These give $\log x=0$ or $\log x=3$. Thus $x=10^{0}$ or $x=10^{3}$, whence $x=1$ or $x=1000$.

Problem 3 The growth of an outpatient surgery as a percent of total surgeries at hospitals is approximated by $f(x)=-1317+304 \ln x$, where x represents the number of years since 1900.
(a) What does this function predict for the percent of outpatient surgeries in 1998?
(b) When did outpatient surgeries reach 50% ?

Solution:

(a) Since x represents the number of years since 1900, the percent of outpatient surgeries in 1998 is given by $f(98)=-1317+304 \ln 98$.
(b) We need to find x such that $f(x)=50$ and then add 1900 to it to find the year. $f(x)=50$ implies $-1317+304 \ln x=50$, i.e., $304 \ln x=1367$, whence $\ln x=\frac{1367}{304}$, and, therefore, $x=e^{\frac{1367}{304}}$. Thus the answer for the year would be $1900+e^{\frac{1367}{304}}$.

Problem 4 Find the simple interest on a loan of $\$ 40,000$ at 6% made on September 1 and due on November 30.

Solution:

We have to use the simple interest formula

$$
I=P r t,
$$

where $P=40,000, r=0.06$ and $t=0.25$. Thus $I=40,000 \cdot 0.06 \cdot 0.25=10,000 \cdot 0.06=600$.

Problem 5 A friend of yours decided to go back to college. She decides to buy a small car for $\$ 6,000$. She intends to borrow the money from a bank with 10% discount rate. If she plans to repay the loan in 2 years what will be the amount of her loan?

Solution:

Recall the discount formula

$$
P=A(1-r t) .
$$

We have $P=6000, r=0.1$ and $t=2$ and we need to solve for A. Thus $A=\frac{P}{1-r t}$, whence $A=\frac{6000}{1-0.1 \cdot 2}=\frac{6000}{0.8}=7500$.

Problem 6 Find the amount of interest earned by a deposit of \$10,000 compounded semiannually at 5\% for 3 years.

Solution:

We have that

$$
I=P\left(1+\frac{r}{m}\right)^{t m}-P,
$$

where $P=10000, r=0.05, m=2$ and $t=3$. Hence $I=10000\left(1+\frac{0.05}{2}\right)^{2 \cdot 3}-1000$, i.e., $I=10000(1.025)^{6}-10000=1596.934$.

Problem 7 Find the present value of the future amount $\$ 5,000$ compounded semiannually at 3\% for 2 years.

Solution:

We have

$$
A=P\left(1+\frac{r}{m}\right)^{t m}
$$

where $A=5000, r=0.03, m=2$ and $t=2$. Hence $P=\frac{A}{\left(1+\frac{r}{m}\right)^{t m}}=\frac{5000}{(1.015)^{4}}=4710.92$.
Problem 8 Find the sum of the first four terms of the geometric sequence with first term $a=2$ and common ratio $r=3$.

Solution:

We have

$$
S_{n}=a \frac{1-r^{n}}{1-r}
$$

whence for $n=4$,

$$
S_{4}=2 \frac{1-3^{4}}{1-3}=2 \frac{-80}{-2}=80 .
$$

