HOMEWORK 7: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Solve the equation $\log_{18} x + \log_{18} (x - 7) = 1$.

Solution:

We have $\log_{18} x + \log_{18} (x - 7) = 1$ implies $\log_{18} (x(x - 7)) = 1$, whence x(x - 7) = 18. Therefore $x^2 - 7x - 18 = 0$, i.e., (x - 9)(x + 2) = 0. Thus, x = -2 or x = 9. But only x = 9 is an acceptable solution because for x = -2 both arguments of the logarithms $\log_{18} x$ and $\log_{18} (x - 7)$ become negative.

Problem 2 Solve the equation $\log (x^3) = (\log x)^2$.

Solution:

 $\log (x^3) = (\log x)^2$ implies $3 \log x = (\log x)^2$, whence $(\log x)^2 - 3 \log x = 0$, i.e.,

$$\log x(\log x - 3) = 0.$$

Hence $\log x = 0$ or $\log x - 3 = 0$. These give $\log x = 0$ or $\log x = 3$. Thus $x = 10^0$ or $x = 10^3$, whence x = 1 or x = 1000.

Problem 3 The growth of an outpatient surgery as a percent of total surgeries at hospitals is approximated by $f(x) = -1317 + 304 \ln x$, where x represents the number of years since 1900.

- (a) What does this function predict for the percent of outpatient surgeries in 1998?
- (b) When did outpatient surgeries reach 50%?

Solution:

- (a) Since x represents the number of years since 1900, the percent of outpatient surgeries in 1998 is given by $f(98) = -1317 + 304 \ln 98$.
- (b) We need to find x such that f(x) = 50 and then add 1900 to it to find the year. f(x) = 50 implies $-1317 + 304 \ln x = 50$, i.e., $304 \ln x = 1367$, whence $\ln x = \frac{1367}{304}$, and, therefore, $x = e^{\frac{1367}{304}}$. Thus the answer for the year would be $1900 + e^{\frac{1367}{304}}$.

Problem 4 Find the simple interest on a loan of \$40,000 at 6% made on September 1 and due on November 30.

Solution:

We have to use the simple interest formula

$$I = Prt,$$

where P = 40,000, r = 0.06 and t = 0.25. Thus $I = 40,000 \cdot 0.06 \cdot 0.25 = 10,000 \cdot 0.06 = 600$.

Problem 5 A friend of yours decided to go back to college. She decides to buy a small car for 6,000. She intends to borrow the money from a bank with 10% discount rate. If she plans to repay the loan in 2 years what will be the amount of her loan?

Solution:

Recall the discount formula

$$P = A(1 - rt).$$

We have P = 6000, r = 0.1 and t = 2 and we need to solve for A. Thus $A = \frac{P}{1-rt}$, whence $A = \frac{6000}{1-0.1\cdot 2} = \frac{6000}{0.8} = 7500.$

Problem 6 Find the amount of interest earned by a deposit of \$10,000 compounded semiannually at 5% for 3 years.

Solution:

We have that

$$I = P(1 + \frac{r}{m})^{tm} - P,$$

where P = 10000, r = 0.05, m = 2 and t = 3. Hence $I = 10000(1 + \frac{0.05}{2})^{2\cdot3} - 1000$, i.e., $I = 10000(1.025)^6 - 10000 = 1596.934$.

Problem 7 Find the present value of the future amount \$5,000 compounded semiannually at 3% for 2 years.

Solution:

We have

$$A = P(1 + \frac{r}{m})^{tm},$$

where A = 5000, r = 0.03, m = 2 and t = 2. Hence $P = \frac{A}{(1 + \frac{r}{m})^{tm}} = \frac{5000}{(1.015)^4} = 4710.92$.

Problem 8 Find the sum of the first four terms of the geometric sequence with first term a = 2 and common ratio r = 3.

Solution:

We have

$$S_n = a \frac{1 - r^n}{1 - r},$$

whence for n = 4,

$$S_4 = 2\frac{1-3^4}{1-3} = 2\frac{-80}{-2} = 80.$$