HOMEWORK 8: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 Solve the systems

$$
\left\{\begin{array}{r}
3 x+5 y=12 \\
-x+2 y=7
\end{array}\right\}, \quad\left\{\begin{array}{rr}
2 x-3 y=1 \\
8 x-12 y= & -4
\end{array}\right\},
$$

by the substitution method.

Solution:

For the first system we have, solving the second equation for $x, x=2 y-7$. Substituting this value for x into the first equation. we get $3(2 y-7)+5 y=12$, i.e., $6 y-21+5 y=12$. Therefore $11 y=33$, which gives $y=3$. Thus $x=6-7=-1$. The solution, thus, is $(x, y)=(-1,3)$.

For the second system, solving the first equation for $x, x=\frac{3}{2} y+\frac{1}{2}$. Substituting this value into the second equation one obtains $8\left(\frac{3}{2} y+\frac{1}{2}\right)-12 y=-4$, whence $12 y+4-12 y=-4$. But this yields $4=-4$ and therefore the system is inconsistent, i.e., it does not have any solutions.

Problem 2 Solve the system $\left\{\begin{array}{rrrr}x-2 y+z & = & -6 \\ -x+2 y+ & = & 8 \\ 2 x & -3 y+2 z & = & -10\end{array}\right\}$ by using allowable operations on the equations (Gauss elimination).

Solution:

We have

$$
\begin{aligned}
& \left\{\begin{array}{rlr}
x-2 y+z & =-6 \\
-x+2 y+z & =8 \\
2 x-3 y+2 z & =-10
\end{array}\right\} \longrightarrow\left\{\begin{array}{rlr}
x-2 y+ & = & -6 \\
2 z & = & 2 \\
y & = & 2
\end{array}\right\} \longrightarrow \\
& \left\{\begin{aligned}
x-2 y+z & = & -6 \\
z & = & 1 \\
y & = & 2
\end{aligned}\right\} \longrightarrow\left\{\begin{array}{rlr}
x & = & -2 \\
z & = & 1 \\
y & & =2
\end{array}\right\} \longrightarrow \\
& \left\{\begin{aligned}
x & & = & -3 \\
& z & = & 1 \\
y & & = & 2
\end{aligned}\right\}
\end{aligned}
$$

Hence $(x, y, z)=(-3,2,1)$.
Problem 3 Solve the system $\left\{\begin{array}{rlrl}x+y+z & = & -2 \\ -x & -2 y+3 z & =1 \\ 2 x+y & + & = & 3 z\end{array}\right\}$ by using the Gauss-Jordan method (matrix row operations).

Solution:

We have

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
1 & 1 & 1 & -2 \\
-1 & -2 & 3 & 1 \\
2 & 1 & -2 & 3
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & -2 \\
0 & -1 & 4 & -1 \\
0 & -1 & -4 & 7
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & -2 \\
0 & 1 & -4 & 1 \\
0 & -1 & -4 & 7
\end{array}\right] \longrightarrow} \\
& {\left[\begin{array}{rrr|r}
1 & 0 & 5 & -3 \\
0 & 1 & -4 & 1 \\
0 & 0 & -8 & 8
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 5 & -3 \\
0 & 1 & -4 & 1 \\
0 & 0 & 1 & -1
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right]}
\end{aligned}
$$

Hence $(x, y, z)=(2,-3,-1)$.
Problem 4 Solve the system $\left\{\begin{aligned} x+2 y-z & =1 \\ -3 x-y+2 & = \\ 2 x+4 y-2 z & =2\end{aligned}\right\}$ by using the Gauss-Jordan method (matrix row operations).

Solution:

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
-3 & -1 & 1 & 1 \\
2 & 4 & -2 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 5 & -2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{rrr|r}
1 & 2 & -1 & 1 \\
0 & 1 & -\frac{2}{5} & \frac{4}{5} \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{rrr|r}
1 & 0 & -\frac{1}{5} & -\frac{3}{5} \\
0 & 1 & -\frac{2}{5} & \frac{4}{5} \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Thus, we get $(x, y, z)=\left(\frac{1}{5} z-\frac{3}{5}, \frac{2}{5} z+\frac{4}{5}, z\right), z$ any real number.
Problem 5 Let $A=\left[\begin{array}{cc}1 & -2 \\ 3 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 6 \\ -8 & 5\end{array}\right]$. Compute $A+B, A-B$ and $3 A-2 B$.
Solution:

$$
\begin{gathered}
A+B=\left[\begin{array}{cc}
1 & -2 \\
3 & -1
\end{array}\right]+\left[\begin{array}{cc}
3 & 6 \\
-8 & 5
\end{array}\right]=\left[\begin{array}{cc}
4 & 4 \\
-5 & 4
\end{array}\right] \\
A-B=\left[\begin{array}{cc}
1 & -2 \\
3 & -1
\end{array}\right]-\left[\begin{array}{cc}
3 & 6 \\
-8 & 5
\end{array}\right]=\left[\begin{array}{cc}
-2 & -8 \\
11 & -6
\end{array}\right] \\
3 A-2 B=3\left[\begin{array}{cc}
1 & -2 \\
3 & -1
\end{array}\right]-2\left[\begin{array}{cc}
3 & 6 \\
-8 & 5
\end{array}\right]=\left[\begin{array}{cc}
3 & -6 \\
9 & -3
\end{array}\right]-\left[\begin{array}{cc}
6 & 12 \\
-16 & 10
\end{array}\right]=\left[\begin{array}{cc}
-3 & -18 \\
25 & -13
\end{array}\right]
\end{gathered}
$$

Problem 6 Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 5 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}-10 & 2 & -7 \\ 3 & 2 & 0\end{array}\right]$. Compute $A-B$ and $-2 A+$ $5 B$.

Solution:

$$
\begin{gathered}
A-B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 5 & 7
\end{array}\right]-\left[\begin{array}{ccc}
-10 & 2 & -7 \\
3 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
11 & 0 & 10 \\
-4 & 3 & 7
\end{array}\right] . \\
-2 A+5 B=-2\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 5 & 7
\end{array}\right]+5\left[\begin{array}{ccc}
-10 & 2 & -7 \\
3 & 2 & 0
\end{array}\right]= \\
{\left[\begin{array}{ccc}
-2 & -4 & -6 \\
2 & -10 & -14
\end{array}\right]+\left[\begin{array}{ccc}
-50 & 10 & -35 \\
15 & 10 & 0
\end{array}\right]=\left[\begin{array}{ccc}
-52 & 6 & -41 \\
17 & 0 & -14
\end{array}\right] .}
\end{gathered}
$$

Problem 7 Let $A=\left[\begin{array}{cccc}-1 & 3 & -5 & 0 \\ 2 & 6 & -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & 2 & 0 \\ -1 & 7 & -3 \\ 1 & -5 & 9\end{array}\right]$. Compute $A \cdot B$ and $B \cdot A$.

Solution:

A is a 2×4 matrix and B is a 4×3 matrix. Therefore $A \cdot B$ is well-defined and the result is a 2×3 matrix. $B \cdot A$, however cannot be computed, because the number of columns of B is different from the number of rows of A. We have

$$
\begin{gathered}
A \cdot B=\left[\begin{array}{cccc}
-1 & 3 & -5 & 0 \\
2 & 6 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & 2 & 0 \\
-1 & 7 & -3 \\
1 & -5 & 9
\end{array}\right]= \\
{\left[\begin{array}{ccc}
-1+9+5+0 & 0+6-35+0 & 2+0+15+0 \\
2+18+1+1 & 0+12-7-5 & -4+0+3+9
\end{array}\right]=\left[\begin{array}{ccc}
13 & -29 & 17 \\
22 & 0 & 8
\end{array}\right] .}
\end{gathered}
$$

Problem 8 Compute the inverses of the matrices $A=\left[\begin{array}{cc}-1 & 2 \\ 1 & -3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -1 \\ 6 & -3\end{array}\right]$.
Solution:
We have $\left|\begin{array}{rr}-1 & 2 \\ 1 & -3\end{array}\right|=3-2=1 \neq 0$. Therefore $A^{-1}=\left[\begin{array}{cc}-3 & -2 \\ -1 & -1\end{array}\right]$.
Also $\left|\begin{array}{ll}2 & -1 \\ 6 & -3\end{array}\right|=-6+6=0$, whence B is not invertible.

