HOMEWORK 3: SOLUTIONS - MATH 111 INSTRUCTOR: George Voutsadakis

Problem 1 The Revenue R in terms of the number of items produced is given by $R(x)=$ $12 x$ and the cost C by $C(x)=7 x+85$. Find the break-even point and the break-even price.

Solution:

At the break-even point we have $R(x)=C(x)$. Hence $12 x=7 x+85$, which yields $5 x=85$, and therefore $x=17$. The break-even revenue is thus $R(17)=12 \cdot 17=204$.

Problem 2 The supply S and the demand D in terms of the number of items q are given by $S(q)=\frac{1}{5} q+5$ and $D(q)=-q+47$, respectively. Find the equilibrium demand and the equilibrium price.

Solution:

At the equilibrium point $S(q)=D(q)$. Thus, $\frac{1}{5} q+5=-q+47$, whence $\frac{6}{5} q=42$, which yields $q=35$. The equilibrium price is $D(35)=S(35)=-35+47=12$.

Problem 3 Find the number of solutions of $5 x^{2}-6 x+2=0$.

Solution:

For the number of solutions of a quadratic one only has to compute the discriminant $D=b^{2}-4 a c$ and check its sign. If $D>0$, then the quadratic has two different solutions. If $D=0$, then the quadratic has one double root and if $D<0$, then the quadratic does not have any real roots. In the present case we have $D=b^{2}-4 a c=(-6)^{2}-4 \cdot 5 \cdot 2=36-40=$ $-4<0$. Hence the quadratic does not have any real roots.

Problem 4 Use the quadratic formula to solve $7 x^{2}+2 x-3=0$.

Solution:

Compute the discriminant $D=b^{2}-4 a c=2^{2}-4 \cdot 7 \cdot(-3)=4+84=88$. Hence $x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-2 \pm \sqrt{88}}{2 \cdot 7}=\frac{-2 \pm 2 \sqrt{22}}{14}=\frac{-1 \pm \sqrt{22}}{7}$, whence $x_{1}=\frac{-1-\sqrt{22}}{7}$ and $x_{2}=-\frac{-1+\sqrt{22}}{7}$.

Problem 5 Solve the inequality $x^{2}+4 x-18 \geq 3$.

Solution:

First subtract 3 from both sides to obtain $x^{2}+4 x-21 \geq 0$. The left hand side now factors as $(x+7)(x-3) \geq 0$. Therefore, by building the sign table one discovers that $x \leq-7$ or $x \geq 3$ give the solutions for this inequality.

Problem 6 Solve the inequality $\frac{x-11}{x+25} \leq 0$.

Solution:

This inequality is also solved by constructing the sign table for the fraction $\frac{x-11}{x+25}$. One then sees that the fraction becomes ≤ 0 when $-25<x \leq 11$.

Problem 7 Find the domain of $f(x)=|5 x+9|$.

Solution:

Since no denominators or square roots appear in the expression defining $f(x)$ the domain of f is the set $D(f)=\mathbb{R}=(-\infty,+\infty)$ of all real numbers.

Problem 8 Find the domain of $g(x)=\sqrt{\frac{x-5}{x^{2}+2 x-3}}$.

Solution:

The two restrictions that x should obey are, first, that $x^{2}+2 x-3 \neq 0$ and, second, that $\frac{x-5}{x^{2}+2 x-3} \geq 0$. To find the x 's that obey both we may set up the sign table for the fraction $\frac{x-5}{x^{2}+2 x-3}=\frac{x-5}{(x+3)(x-1)}$. The sign table, if built correctly, would give us $-3<x<1$ or $x \geq 5$ as the range of values that satisfy both restrictions simultaneously. Hence $D(g)=$ $\{x:-3<x<1$ or $x \geq 5\}$.

