HOMEWORK 1 SOLUTIONS - MATH 325 INSTRUCTOR: George Voutsadakis

Problem 1 Prove SSA for right triangles: If $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$ and if $\widehat{B} = 90^{\circ}$ and $\widehat{E} = 90^{\circ}$, then $\triangle ABC \cong \triangle DEF$.

Solution: Extend \overline{BC} on the side of B and take G, such that $BG \cong EF$. Then $AB \cong DE, GB \cong EF$ and $\widehat{ABG} \cong \widehat{DEF}$, whence, by ASA, $\triangle ABG \cong \triangle DEF$. Thus $AG \cong AC$, whence $\widehat{DFE} \cong \widehat{AGB} \cong \widehat{ACB}$ and, therefore, $\triangle ABC \cong \triangle DEF$, by ASA.

Problem 2 Prove SAA: If $\widehat{A} \cong \widehat{D}$, $\widehat{B} \cong \widehat{E}$ and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

Solution: If you assume that it has been proven that the sum of the angles of a triangle is 180° , then this is very easy and it's been given in your book:

Since $\widehat{A} \cong \widehat{D}$ and $\widehat{B} \cong \widehat{E}$, we get $\widehat{C} \cong 180^{\circ} - \widehat{A} - \widehat{B} \cong 180^{\circ} - \widehat{D} - \widehat{E} \cong \widehat{F}$. Therefore, by ASA, $\triangle ABC \cong \triangle DEF$.

However, without this assumption, we may work as follows:

If AB = DE, then we are done by SAS. So suppose that $AB \neq DE$ and, without loss of generality, that AB > DE. Then take G on \overline{AB} , such that GB = DE. Now by SAS, we get $\triangle GBC \cong \triangle DEF$, whence $\widehat{BGC} \cong \widehat{D} \cong \widehat{A}$, which contradicts the exterior angle theorem.

Problem 3 Let l be a line and P a point not on l. Construct a line that contains P and that is perpendicular to l.

Solution: Use a compass to take points A, B on l such that $PA \cong PB$. Then use the compass to construct a point P' on the opposite side of \overline{AB} from P, such that $AP' \cong BP'$. We claim that $PP' \perp l$.

Let Q be the point of intersection of PP' with l. By construction $AP \cong BP$, whence $\widehat{PAQ} \cong \widehat{PBQ}$. Also by construction $AP \cong BP, AP' \cong BP'$ and $PP' \cong PP'$, whence by SSS, $\triangle PAP' \cong \triangle PBP'$, and, therefore $\widehat{APQ} \cong \widehat{BPQ}$. Therefore $\widehat{AQP} \cong 180^\circ - \widehat{PAQ} - \widehat{APQ} \cong 180^\circ - \widehat{PBQ} - \widehat{BPQ} \cong \widehat{BQP}$. But these two angles are also supplementary angles, whence $PP' \perp l$.

Problem 4 Let l be a line and P a point not on l. Construct a line that contains P and that meets l at a 45° angle. Construct a line that contains P and that meets l at a 30° angle. (To do this exercise you need to use the fact that the sum of the angles in any triangle is 180°.)

Solution: Use the construction of the previous exercise to find $PQ \perp l$. Then take A on l, such that $AQ \cong PQ$. Obviously, $\widehat{PAQ} \cong \widehat{QPA}$ and these two are also complementary angles, whence $\widehat{PAQ} = 45^{\circ}$.

Similarly, take instead of $QA \cong PQ$, $PA \cong 2PQ$. Then $\sin \widehat{PAQ} = \frac{PQ}{PA} = \frac{1}{2}$, whence $\widehat{PAQ} = 30^{\circ}$.

Problem 5 Given triangles $\triangle ABC$ and $\triangle DEF$ such that $\overline{AB} \cong \overline{DE}, \overline{AC} \cong \overline{DF}$ and $\widehat{A} > \widehat{D}$, prove that BC > EF.

Solution: Let \overline{AG} be such that $\widehat{BAG} \cong \widehat{D}$ and $AG \cong DF$. Then, by SAS, $\triangle ABG \cong \triangle DEF$, whence $AG \cong DF \cong AC$. This yields $\widehat{AGC} \cong \widehat{ACG}$. We now have:

$$\widehat{BGC} \cong \widehat{BGA} + \widehat{AGC} \cong \widehat{EFD} + \widehat{ACG} \cong \widehat{BGA} + \widehat{BCG} + \widehat{ACB} > \widehat{BCG}.$$

Therefore $BC > BG \cong EF$.

Problem 6 Given BC and A_1, \ldots, A_n , prove that $BC \leq BA_1 + A_1A_2 + \ldots + A_nC$.

Solution: By induction on n. For n = 1, we get $BC \leq BA_1 + A_1C$, by the triangle inequality. Suppose that the given inequality holds for n = k, i.e., that $BC \leq BA_1 + A_1A_2 + \ldots + A_kC$. Consider k + 1 points A_1, \ldots, A_{k+1} . We then have

$$BC \leq BA_{1} + A_{1}A_{2} + \ldots + A_{k-1}A_{k+1} + A_{k+1}C$$

$$\leq BA_{1} + A_{1}A_{2} + \ldots + (A_{k-1}A_{k} + A_{k}A_{k+1}) + A_{k+1}C$$

$$= BA_{1} + A_{1}A_{2} + \ldots + A_{k-1}A_{k} + A_{k}A_{k+1} + A_{k+1}C$$

Problem 7 Prove that the sum of the angles in a convex n-sided figure is $(n-2)180^{\circ}$.

Solution: Again by induction on the number of sides n. For n = 3, the result reduces to the sum of the angles in a convex triangle being 180°. Suppose the result is true for n = k. For n = k+1, we get

Problem 8 Prove that a parallelogram ABCD is a rectangle if and only if the diagonals \overline{AC} and \overline{BD} are congruent.

Solution: First suppose that ABCD is a rectangle. Compare the right triangles $\triangle ABC$ and $\triangle ADB$. They have $AD \cong BC$, $AB \cong AB$, $\widehat{A} \cong \widehat{B}$. Thus, by SAS, we get $\triangle ABC \cong \triangle BAD$ and, therefore $AC \cong BD$.

Suppose conversely, that $AC \cong BD$. Then, by SSS, $\triangle ABC \cong \triangle BAD$, whence $\widehat{B}AD \cong \widehat{A}B\widehat{C}$. But these two are supplementary angles, whence each is a right angle and ABCD is a rectangle. **Problem 9** Prove that a parallelogram ABCD is a rhombus if and only if the diagonals \overline{AC} and \overline{BD} are perpendicular to each other.

Solution: First suppose that ABCD is a rhombus. We have $AB \cong AD$, whence $\widehat{ABD} \cong \widehat{ADB}$. Also, by SSS $\triangle ABC \cong \triangle ADC$, whence $\widehat{BAC} \cong \widehat{CAD}$. These two angle equalities yield $\widehat{BPA} \cong \widehat{DPA}$, where P is the point of intersection of the two diagonals. But these two are also supplementary angles, whence they are both right angles and the diagonals are perpendicular.

Suppose conversely, that $\overline{AC} \perp \overline{BD}$. We have by ASA, $\triangle ABP \cong \triangle CDP$, whence AP = CP and, thus, by SAS, $\triangle ABP \cong \triangle CBP$. This yields AB = BC.