HOMEWORK 2 - MATH 325

DUE DATE: When Chapter 3 has been covered! INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. A few randomly selected problems will be graded for a total of 10 points. It is necessary to show your work. GOOD LUCK!!

- 1. Given triangles $\triangle ABC$ and $\triangle DEF$ such that \overline{AB} and \overline{DE} are parallel and congruent and \overline{BC} and \overline{EF} are parallel and congruent, prove that \overline{AC} and \overline{DF} are parallel and congruent.
- 2. Given a quadrilateral ABCD such that $\overline{AB} \parallel \overline{CD}$, prove that $\widehat{C} = \widehat{D}$ if and only if $\overline{AD} \cong \overline{BC}$.
- 3. Our proof that parallel lines are at a constant distance apart used the parallel postulate. Prove the following without using the parallel postulate: Assume that the lines l_1 and l_2 are at a constant distance apart. Then, if l_1 and l_2 are cut by a transversal, alternate interior angles must be congruent.
- 4. Let ABCD be a parallelogram. Define the base to be \overline{AB} and the height to be the distance between \overline{AB} and \overline{CD} . Prove that ABCD has area = base × height.
- 5. Assume that in quadrilateral $ABCD \ \overline{AB} \parallel \overline{CD}$. Let $AB = b_1, CD = b_2$ and let h be the distance between \overline{AB} and \overline{CD} . Prove that ABCD has area $\frac{1}{2}h(b_1 + b_2)$.
- 6. Prove that in a right triangle, if the hypotenuse is the base of length c, then the height is $h = \frac{ab}{c}$.
- 7. Given a convex quadrilateral ABCD with $AC \perp BD$, prove that $AB^2 + CD^2 = BC^2 + AD^2$.
- 8. (a) Given AB and CD construct EF such that EF² = AB² + CD².
 (b) Given AB, CD and EF, construct GH such that GH² = AB² + CD² + EF².
- 9. (a) Assume that in △ABC, a = 4, b = 9 and c = 11. Calculate the area.
 (b) Calculate the length of each of the three altitudes in the triangle of part (a).
 (c) If we let a = 2, b = 3 and c = 7 in Heron's formula we get a problem. What is the problem and why does it happen?