HOMEWORK 1 - MATH 140

DUE DATE: Wednesday, September 8
INSTRUCTOR: George Voutsadakis
Read each problem very carefully before starting to solve it. One part of each homework problem will be chosen at random and graded. Each question is worth 1 point. It is necessary to show your work. Correct answers without explanations are worth 0 points.

GOOD LUCK!!

1. (a) Find the roots of the equation $x^{3}-3 x^{2}-x+3=0$ by factoring.
(b) Solve the linear inequality $3 x+4>\frac{1}{3}(x-2)$ and graph the solution set.
2. Find the distance between the two points $P=(-2,5)$ and $Q=(4,1)$. Then find the midpoint of the line segment $\overline{P Q}$.
3. Find the intercepts of $y=3 x-9$ and then use them to sketch its graph.
4. Find the center and the radius of the circle that is represented by the equation $x^{2}+y^{2}-6 x+2 y+9=0$.
5. Test for symmetry with respect to the x-axis, the y-axis and the origin the equation $y=\frac{x}{x^{2}+9}$.
6. Consider the function $f(x)=\frac{2 x}{x-2}$.
(a) Is $\left(\frac{1}{2},-\frac{2}{3}\right)$ on the graph of f ?
(b) If $x=4$ what is $f(x)$?
(c) Find the domain of f.
(d) Find the x - and the y-intercepts of the graph of f.
7. Find the domain, symmetry, monotonicity and local extrema of the function $y=f(x)$ whose graph is sketched below.
8. Use your calculators to graph the function $f(x)=x^{4}-x^{2}$ in the interval $(-2,2)$. Then find for this graph the domain, symmetry, monotonicity and local extrema.
