PRACTICE EXAM 4 - MATH 152 DATE: Friday, December 3 INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it. Each question is worth 3 points. It is necessary to show your work. Correct answers without explanations are worth 0 points. GOOD LUCK!!

1. Determine whether the following sequences converge and if so find the limits (rigorous explanations required in all problems):

(a)
$$\left\{\frac{\ln n}{n}\right\}_{n=1}^{\infty}$$
 (b) $\left\{\cos\frac{\pi n}{2}\right\}_{n=1}^{\infty}$ (c) $\left\{\sqrt{n^2+3n}-n\right\}_{n=1}^{\infty}$

2. Use any method to show that the sequence at hand is strictly increasing or strictly decreasing:

(a)
$$\{n-2^n\}_{n=1}^{\infty}$$
 (b) $\{\frac{5^n}{2^{(n^2)}}\}_{n=1}^{\infty}$ (c) $\{\frac{1}{n+\ln n}\}_{n=1}^{\infty}$

- 3. Let $\{a_n\}$ be the sequence defined recursively by $a_1 = 1$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{3}{a_n})$ for $n \ge 1$.
 - (a) Show that $a_n \ge \sqrt{3}$ for $n \ge 2$ by finding the minimum value of $\frac{1}{2}(x + \frac{3}{x})$ for x > 0.
 - (b) Show that $\{a_n\}$ is eventually decreasing by examining either $a_{n+1} a_n$ or $\frac{a_{n+1}}{a_n}$ and using part (a).
 - (c) Show that $\{a_n\}$ converges and find its limit.
- 4. Determine if the series converges and if so find its sum:

(a)
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{7}{6^{k-1}}$$
 (b) $\sum_{k=1}^{\infty} \frac{1}{9k^2 + 3k - 2}$ (c) $\sum_{k=5}^{\infty} (\frac{e}{\pi})^{k-1}$

5. Determine whether the given series converges:

(a)
$$\sum_{k=1}^{\infty} k e^{-k^2}$$
 (b) $\sum_{k=1}^{\infty} k^2 \sin^2\left(\frac{1}{k}\right)$ (c) $\sum_{k=1}^{\infty} \frac{k!}{k^3}$

6. Find the radius of convergence and the interval of convergence of the following series:

(a)
$$\sum_{k=1}^{\infty} \frac{5^k}{k^2} x^k$$
 (b) $\sum_{k=0}^{\infty} \frac{3^k}{k!} x^k$