PRACTICE EXAM 4 - MATH 152

DATE: Friday, December 3
INSTRUCTOR: George Voutsadakis

Read each problem very carefully before starting to solve it.
Each question is worth 3 points. It is necessary to show your
work. Correct answers without explanations are worth 0 points.

GOOD LUCK!

1. Determine whether the following sequences converge and if so find the limits
(rigorous explanations required in all problems):
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2. Use any method to show that the sequence at hand is strictly increasing or
strictly decreasing:
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3. Let {a,} be the sequence defined recursively by a; = 1 and a,11 = %(an + %)
for n > 1.

(a) Show that a, > /3 for n > 2 by finding the minimum value of }(z + 2)
for > 0.

(b) Show that {a,} is eventually decreasing by examining either a,+1 — a,
or “t and using part (a).

(c) Show that {a,} converges and find its limit.

4. Determine if the series converges and if so find its sum:
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5. Determine whether the given series converges:
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6. Find the radius of convergence and the interval of convergence of the following
series:
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